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Abstract 

Solvable Graphs (also known as Reachable Graphs) are types of graphs that any arrangement of a specified number of agents located on the 
graph’s vertices can be reached from any initial arrangement through agents’ moves along the graph’s edges, while avoiding deadlocks 
(interceptions). In this paper, the properties of Solvable Graphs are investigated, and a new concept in multi agent motion planning, called 
Minimal Solvable Graphs is introduced. Minimal Solvable Graphs are the smallest graphs among Solvable Graphs in terms of the number 
of vertices. Also, for the first time, the problem of deciding whether a graph is Solvable for m agents is answered, and a new algorithm is 
presented for making an existing graph solvable and lean for a given number of agents. Finally, through an industrial example, it is 
demonstrated that how the findings of this paper can be used in designing and reshaping transportation networks (e.g. railways, traffic 
roads, AGV routs, robotic workspaces, etc.) for multiple moving agents such as trains, vehicles, and robots.   

Keywords: Solvable Graphs, Intelligent Moving Agents, Motion Planning, Deadlocks; 

——— 
* Corresponding author. Tel.: +98-21-82883987; e-mail: masehian@modares.ac.ir. 

1. Introduction 

Future generation autonomous agents are expected to 
operate in remote and dangerous places like outer space, 
undersea, hazardous waste sites, and are therefore 
anticipated to be far more self-directed than today's 
existing agents. The ability of an agent to plan its own 
motion seems pivotal to its autonomy. For over more than 
three decades, agent motion planning in general, and 
robot motion planning in particular, have attracted much 
research in various fields and have become central topics 
in autonomous agents and artificial intelligence. Although 
today the term ‘motion planning is considered to cover a 
wide variety of problems, we will use it for the problem 
of planning collision-free motions for an autonomous 
agent moving among obstacles. 

The necessity of planning the motions of autonomous 
agents originally arose in early 1970’s, when the first 
industrial robots were to perform automatic tasks of 
manipulation and navigation. Soon it was realized that the 
complexity of the robot motion planning problem is 
PSPACE-hard and NP-complete since the size of the 
solution space grows exponentially and gets extremely 
complicated, especially for high degrees of freedom [3]. 

 

 
 
 
Many techniques have been developed for solving the  

Robot motion planning problem, including the ‘Skeleton’  
Or ‘Roadmap’ approach [4]. In this approach, the 
continuous workspace is mapped into a one-dimensional 
graph with vertices including the start and goal of the 
robot, and edges as paths between vertices. This graph is 
then searched to find a collision-free start-to-goal path. 
Visibility Graph is a type of roadmap which is the 
collection of lines in the free space connecting vertices of 
an object to those of another (Fig. 1(a)). There are O(n2) 
edges in the Visibility Graph, and it can be constructed in 
O(n2) time and space in 2D, where n is the number of 
vertices. Voronoi Diagram is another roadmap defined as 
the set of points equidistant from two or more objects 
(Fig. 1(b)). The Voronoi Diagram partitions the space into 
regions, where each region contains one object. For each 
point in a region, the object within the region is the 
closest to that point than any other object. There are only 
O(n) edges in the Voronoi Diagram, and it can be 
efficiently constructed in Ω(nlogn) time, where n is the 
number of objects [7]. 

When multiple moving agents (e.g. robots) share a 
common workspace, the motion planning task becomes 
even more difficult and cannot be performed for just one 
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agent without considering others. In this kind of 
problems, while pursuing their individual (local) goals, 
agents must coordinate their motions with each other in 
order to avoid collisions with obstacles and one another, 
thus contributing to the task of achieving a global goal,  
which might be minimizing the total time or distance. 
This problem is called Multi Agent Motion Planning 
(MAMP) problem. In MAMP, each agent is regarded as a  
dynamic obstacle for other agents, and therefore the 
element of time plays a major role in planning, especially  
because of its irreversible nature [9]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. (up) Visibility Graph, and (down) Voronoi Diagram. 

When multiple moving agents (e.g. robots) share a 
common workspace, the motion planning task becomes 
even more difficult and cannot be performed for just one 
agent without considering others. In this kind of 
problems, while pursuing their individual (local) goals, 
agents must coordinate their motions with each other in 
order to avoid collisions with obstacles and one another, 
thus contributing to the task of achieving a global goal, 
which might be minimizing the total time or distance. 
This problem is called Multi Agent Motion Planning 
(MAMP) problem. In MAMP, each agent is regarded as a 
dynamic obstacle for other agents, and therefore the 
element of time plays a major role in planning, especially 
because of its irreversible nature [9]. 

Although classic roadmaps like Visibility Graph and 
Voronoi diagram have proved to be effective for single-
agent problems, they do not provide straightforward 
solutions to MAMP problems, including the corridor-like 
environment shown in Fig. 2(a). This kind of 
environments is prevalent in large warehouses, plants, and 
transportation systems, where Automatic Guided Vehicles 
(AGVs) convey material and products (Fig. 2(b)). 

Space is the most limiting constraint in a typical 
MAMP problem: often, because of lack of sufficient 
space around moving agents, they cannot reach their 
destinations without obstructing each other’s way, 
causing deadlocks. Deadlocks are situations in which two 
(or more) agents intercept each other’s motions and are 
prevented from reaching their goals. This happens 
generally in narrow passageways where autonomous 
moving agents cannot pass by each other. To resolve such 
a deadlock, one of the agents should leave and evacuate 
the passageway (by usually backtracking), and let the 
opposite agent move out of the passage. 

A well-known cooperative behavior of agents is 
following independent start-to-goal paths while resolving 
deadlocks by reshuffling, circumnavigating, detouring, 
and speed regulating (also known as Velocity Tuning). 
Another approach developed for resolving deadlocks is 
the Prioritized Planning, in which the agents are sorted by 
their moving priorities. Higher-priority agents are planned 
first, whereas lower-priority agents plan their motion 
subsequently by considering higher-priority agents as 
dynamic obstacles. 

 
 
 
 
 

 

 

Fig.2. (left) Each agent must move toward its final destination while 
allowing other agents to reach their goals. (right) Planning the motions 
of AGVs to different locations in a shop floor or warehouse is a real-
world application of MAMP. 

By reducing the workspace into a graph with vertices 
including the starts and goals of all agents, the MAMP 
problem can turn into a sequencing problem where the 
agents are planed to move sequentially (or concurrently) 
toward their destinations, without colliding with each 
other. The graph structure stipulates them to remain on 
predefined routs (i.e. graph edges), and so avoid static 
obstacles existing in the workspace. 

The main question in designing a predefined graph, 
however, is to find out whether the graph is ‘reachable’ 
(solvable) for any initial and final configurations. 
Solvable Graphs allow the transition of any initial 
configuration of agents (e.g. pebbles (beans), robots, or 
vehicles) to a final state via their sequential moves along 
the graph’s edges. 

Wilson in [14] worked out a relation between the 
number of pebbles (k) and the number of vertices (n) of 
only bi-connected graphs as k = n − 1. Kornhauser in [8] 
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improved this result through generalizing the decision 
problem for all graphs and any number of agents. Auletta 
et al. in [1] and [2] studied the above problem as pebble 
motion problem by following the generalization of the 15-
puzzle and presented a linear algorithm for deciding the 
reachability of trees. Ryan in [13] studied the possibility 
of reaching destinations of connected sub-graphs by 
simplifying the multi robot motion planning between the 
sub-graphs. He worked on predefined sub-graphs like 
stack, clique and hall. In [12] it is demonstrated that the 
environment can be shown through any two-connected 
graph which has a routing with a practical social law for 
motion planning. 

During our research on optimal multi agent motion 
planning on graphs we encountered the main problem of 
finding the maximum number of agents able to navigate on 
a graph. The topologies and properties of Solvable Graphs 
are extensively dealt with through a number of lemmas and 
theorems. Also, considering the fact that the complexity of 
graph searching operations is directly influenced from the 
graph size, finding solvable graphs with minimum number 
of vertices can significantly ease the motion planning task 
for multiple agents. As a result, the concept of Minimal 
Solvable Graphs (MSGs) is introduced for the first time in 
this paper. Accordingly, it can be determined whether a 
graph is solvable for a certain number of agents or not. We 
then develop a new algorithm for making a Solvable Graph 
‘leaner’ and smaller while it remains solvable for the same 
number of agents before and after performing the 
algorithm. Lastly, the presented theories are applied in a 
practical industrial example. 

2. Definitions and Assumptions 

As mentioned earlier, reducing (or mapping) the 
configuration space into a graph is very advantageous 
regarding the significant savings in required time and 
memory. In order to lay a proper mathematical foundation 
for expressing and investigating the properties of graphs, 
we adopt the standard terminology used in Graph Theory 
[5]. In addition, some definitions and symbols have been 
introduced and defined specifically for this work, all 
presented in Table 1. A number of these concepts are 
illustrated in Fig. 2.  

Generally, an MAMP in a continuous space is 
composed of the following phases: 

(a) Constructing a network (graph) with nodes 
(vertices) including the agents’ initial and final stopping 
locations, together with all the locations the agents should 
be able to temporarily stop at and offer a service. The arcs 
(edges) of the graph must pass through free spaces (e.g. 
unoccupied rooms or corridors) such that no obstacle may 
be collided with during the agents’ motions along the 
edges. 

(b) Planning the agents’ motions along the arcs of the 
network from their starting to final locations, such that a 
cost criterion (e.g. time, distance, or expense) is 
minimized. 
Table 1 

 Definitions of used terms and symbols. 

Term/Symbol Description 

|G| Order: The number of vertices of the Graph G = (V, 
E). 

||G|| The number of edges on G. 

Path A non-empty graph P = (V, E) of the form 
V = {v0, v1, ..., vk}, E = {v0v1, v1v2, ..., vk−1vk}, where 
all vi are distinct. 

Cycle A non-empty graph of the form V = {v0, v1, ..., vk}, E = 
{v0v1, v1v2, ..., vk−1vk, vkv0}, where all vi are distinct.  

Cycle Edge An edge on a cycle. 

Tree An acyclic subgraph connected to a cycle. 

Leaf, L A vertex with a degree d = 1. 

Cycle Vertex, C A vertex located on a cycle. 

Internal Vertex, I A vertex with a degree d > 1 which is not a Cycle 
Vertex. 

Stem, S The longest path in the graph with its one end (or 
both ends, if located between two cycles) connected 
to a cycle vertex and including it, and not 
containing any Cycle Edges. None of the edges of 
the Stem are cycle edges. If not unique, the Stem is 
selected arbitrarily. The number of vertices on the 
Stem (i.e. its order) is shown by |IS|. 

Configuration An arrangement of agents on the graph vertices 
such that no vertex is occupied by more than one 
agent. 

 

Fig. 3. Some concepts illustrated: L, I, and C denote Leaf, Internal 
vertex and Cycle vertex, respectively. The symbol  indicates a cycle, 
and the dashed area designates the Stem. 

When designing a graph or networks of routs, it is 
always important to consider current transportation 
demands, as well as future developments of the system. In 
the context of MAMP, this consideration requires that the 
system designer decides the proper topology of the 
network, the number of agents (as mobile robots or 
vehicles) required to move along the routs, and the 
possibilities of expanding the network for future increased 
transportation traffic. 
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Concerned about these issues, we will 
comprehensively investigate the concept of Solvable 
Graphs. To date, the notion of graph solvability has been 
essentially depended on the initial and final 
configurations (situations) of the moving objects. For 
instance, the question whether a tree-like graph is 
solvable for a given initial and final configuration of 
pebbles is solvable or not is addressed in [1] and [2]. 
However, no work exists in the literature for all types of 
graphs, and never has the problem of deciding if a graph 
is always solvable for a specific number of agents for any 
initial and final configuration been mentioned or 
addressed. 

In this paper we focus on the first phase of MAMP, 
that is, the graph construction and optimization, and 
propound some related problems of broad scope, such as: 

- What is the maximum number of agents a graph can 
accommodate such that any final configuration can be 
reached from any initial configuration? 

- What topology must a graph have to be solvable for a 
specific number of agents? 

- What is the ‘smallest’ graph solvable for a specific 
number of agents? 

Before dealing with the answers to the above 
questions, three new fundamental and correlated notions 
are presented below: 

Definition 1. A Solvable Graph is a graph on which 
any configuration of at most m agents can be reached 
from any initial configuration through their moves on 
graph edges, and is shown by SGm. 

Definition 2. A Partially Solvable Graph is a graph on 
which only some configurations of m agents can be 
reached from any initial configuration through their 
moves on graph edges, and is shown by PSGm.  

Definition 3. A Minimal Solvable Graph is the 
smallest graph on which any configuration of at most m 
agents can be reached from any initial configuration 
through their moves on graph edges, and is shown by 
MSGm. In this definition, ‘smallest’ can be expressed and 
measured in terms of the number of either vertices or 
edges. 

In the Graph Theory literature, graphs are categorized 
into two general classes: Cyclic graphs (having loops), 
and Acyclic graphs (without loops, i.e. trees). However, 
based on our findings in this and other relevant papers, we 
propose a more precise categorization of graphs, as: (1) 
Acyclic graphs, (2) Purely Cyclic graphs, and (3) 
Compound graphs. A Purely Cyclic graph is defined as 
graph with merely cyclic edges, and therefore has no 
leaves or internal vertices. A Compound graph is a 
combination of Acyclic and Purely Cyclic graphs; that is, 
it contains at least one loop and at least one leaf. 

Since Compound graphs constitute a large portion of 
graphs and have the broadest applications among graphs, 
we will deal with this kind of graphs in this paper, as a 
part of our research on graph-based motion planning. The 

properties and topologies of solvable acyclic graphs are 
presented in our previous research, in [10] and [11]. 
Therefore, all graphs mentioned in the next Sections of 
the paper are Compound graphs. 

2.1. Assumptions 

In the phase of graph construction, the topological, and 
not geometric, features of the world are important; 
features like the number and degrees of vertices, existing 
of edges between certain pairs of vertices, existing of 
loops and their sizes, etc. Nevertheless, the geometrical 
features of the world, such as the exact coordinates of the 
vertices, the lengths of edges, etc. become decisive in the 
phase of motion planning. 

In this paper some simplifying (yet not limiting) 
assumptions about the graph and agents are made as 
following: 
1. An essential assumption is that the designed graph is 

finite, connected, planar, and represents the free 
space. This means that edges intersect only at 
vertices. 

2. The graph is assumed to be a Compound graph, i.e. 
has at least one cycle (loop) and at least one Leaf. 
Actually this assumption is not a restrictive one in 
most real-world problems since a natural roadmap 
near a simple disjoint obstacle always forms a loop 
around it. An important issue, however, is to identify 
the cycles of the graph and verify that the graph is 
cyclic. A straightforward method for cycle detection 
is by performing a Depth-First Search in the graph: 
starting from a desired vertex, all children of that 
vertex is explored in depth, and so on. If a 
previously visited vertex is encountered, then all the 
vertices explored between the two visits of that 
vertex are identified as cycle vertices. The running 
time of this method is the same as that of the Depth-
First Search. A number of cycle-detecting strategies 
are reviewed in [6]. 

3. The graph is undirected, and a path exists from any 
vertex v to u and vice versa. 

4. The initial and final locations of all agents lie on the 
graph and are known. 

5. All agents share the same graph and can (and may) 
move on the edges of the graph and stay on the 
vertices of the graph. A Move is defined as 
transferring an agent from a vertex to its neighboring 
vertex via their connecting edge. 

6. Two or more agents may not simultaneously occupy 
the same vertex in the graph. That is, the vertices are 
supposed to be spaced sufficiently far apart so that 
two agents can occupy any two distinct vertices 
without having collision. 

7. Agents have sequential (i.e. one at a time) 
movements on non-Cycle Edges of the graph. In 
other words, an agent at vertex v can move to its 
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neighboring Leaf or Internal vertex u only if u is 
unoccupied. Agents occupying other vertices in the 
graph do not affect this movement. 

8. Agents can have concurrent movements on Cycle 
Edges of the graph with the following condition: an 
agent at Cycle Vertex v can move to its neighboring 
Cycle Vertex u if u is unoccupied, or the agent on u 
can evacuate the vertex u before the first agent 
reaches it, or no other agent is approaching vertex u 
via another edge. 

3. Solvable Graphs 

In Solvable Graphs (SGm) any configuration of at most 
m agents can be reached from any initial configuration 
through agents’ moves along the graph’s edges. However, 
a principal question is to determine the maximum number 
of agents a graph with known topology can accommodate 
such that any final configuration can be reached from any 
initial configuration. This question can be rephrased as 
“what topology a graph must have to be solvable for a 
specific number of agents?” 

It is noted that we are trying to find the maximum 
number of agents a graph is solvable for. Obviously, any 
graph solvable for m agents is also solvable for k < m 
agents since there will be more empty vertices and so 
deadlocks can be resolved more easily. 

For finding the maximum number of agents a graph is 
solvable for, it is essential to investigate the conditions for 
changing the arrangements of a number of agents through 
sequential or concurrent moves. Regarding that the graph 
is assumed to be cyclic, we will first study the solvability 
conditions of a single cycle, and then expand the results to 
general Compound graphs through a number of lemmas 
and theorems. 

Imagine a single cycle of k vertices: the total number 
of distinct configurations of k agents located on the 
vertices of the cycle is k!. However, regarding that the 
only permitted movements on a cycle is the concurrent 
clockwise or counterclockwise rotation of agents, only k 
distinct configurations can be reached from an initial 
configuration, all of which have the same sequence. It 
follows that a single cycle is not sufficient for achieving 
all k! permutations of agents, and so additional vertices 
are needed for changing the sequence of agents. Lemma 1 
formalizes this fact: 

Lemma 1. A specific sequence of agents on a cycle 
can be reordered iff at least an empty vertex is connected 
to the cycle. 

Proof. A sequence of agents a1, a2, …, ak can be 
reordered (rearranged) only when any arbitrary agent, say 
ai, could be located between any two other adjacent 
agents, such as aj and ar. This is possible only by 
removing ai from the agents’ chain (sequence) and 
reinserting it between aj and ar. Apparently, as Fig. 4 

illustrates, any outside vertex connected to the cycle (such 
as vertex u) is a feasible position on which ai can lay 
temporarily. If the departure of ai from the cycle is not 
possible directly, the whole sequence of agents must 
rotate until ai resides on vertex v, after which ai can move 
to u. The agents remaining in the cycle further rotate until 
aj and ar locate on both sides of the vertex v. Now ai can 
re-enter the cycle, between aj and ar. 

Conversely, if no vertex exists outside of the cycle, 
then ai cannot exit the cycle and therefore cannot locate 
between aj and ar.        □ 

For our future reference, we will define a Basic 
Unicycle Graph (BUG) as a single cycle fully occupied 
by agents connected to one empty leaf (as in Fig. 4). 

Fig. 4. Illustration for Lemma 1. 

As Lemma 1 implies, cycles and their connected empty 
vertices play a critical role in reordering the agents’ 
sequences, and hence in the solvability of Compound 
graphs. The connected empty vertices help to make start-
to-goal paths of agents as free as possible and facilitate 
resolving deadlocks. 

Lemma 2. A graph is solvable iff any two agents can 
interchange their positions. 

Proof. If we show the transformation of a 
configuration C1 to another configuration C2 merely 
through position interchange of any 2 agents by f2: C1 → 
C2, then using the Chain Rule for n agents, the 
transformation of any initial configuration Ci to any final 
configuration Cf can be shown by a sequence of 2-agent 
exchanges, as a compound function fn: Ci → Cf 
≡ f2

1 ○ f2
2 ○ …○ f2

n. It follows that if according to the 
premise of the lemma any 2-agent interchange is possible, 
then any n-agent interchange is also possible due to the 
Chain Rule, which means the graph is solvable. 

On the other hand, if a graph is solvable, then any 
configuration is reachable from any initial configuration, 
a special case of which could be the interchanging of just 
two agents. This shows that graph solvability and 2-agent 
interchanging are logically equal.       □ 

Corollary 1. A Basic Unicycle Graph is solvable iff 
one vertex in the graph is empty. 

Proof. Regarding the proof of Lemma 1, for m agents 
on a BUG, any final arrangement is accessible from any 
initial arrangement, and so the graph is solvable. 
Conversely, if there is no empty vertex in the graph, then 
no sequence can be rearranged on the cycle. Therefore, 
the assumption of no empty vertices is incorrect.     □ 

v u

ai

aj

ar
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Corollary 2. A graph comprised of a chain of i 
vertices connected to the leaf of a Basic Unicycle Graph 
is solvable iff  h = i + 1 vertices in the graph are empty. 

Proof. Let us first consider a graph made of one extra 
vertex connected to the leaf of a BUG occupied by k 
agents (as in Fig. 5). If the extra vertex is empty (hence 
there are k agents and 2 empty vertices in total), then 
according to Lemma 1 the graph is solvable for k agents. 
If the extra vertex is occupied by an agent (hence there 
are k + 1 agents and 1 empty vertex in total), then since 
the new agent cannot enter the cycle, the graph is still 
solvable only for k agents, and the number of necessary 
empty vertices will be h = 2. By the same logic, the graph 
is expanded by consecutively appending up to i vertices to 
the leaf of the BUG, for which the number of necessary 
empty vertices must increase as much as i + 1. If 
h < i + 1, then there would be some agents on the chain 
that are unable to reach the cycle and hence cannot be 
reordered.         □ 

Fig. 5. A Basic Unicycle Graph (gray vertices) is connected to a chain of 
i vertices. 

For a later reference, at this point we define a special 
type of graph derived from the Basic Unicycle Graph, 
called an Extended Unicycle Graph (EUG): An Extended 
Unicycle Graph is a graph comprised of j chains of 
vertices each with lengths of 1 ≤ i ≤ lmax connected to 
some or all vertices of a Basic Unicycle Graph such that 
there is no internal vertex with degree d(I) > 2. Fig. 6 
depicts an example of EUG.  

Lemma 3. An Extended Unicycle Graph is solvable iff 
at least h = lmax vertices in the graph are empty. 
Proof. We know that the maximum distance from the 
EUG’s cycle to any vertex in the graph is lmax. The worst 
case of interchanging the positions of two agents occurs 
when an agent ai located on the vertex with maximum 
distance from the cycle (i.e. lmax) has to move to the depth 
of another chain of the graph. Since there is only one 
cycle in the graph, at least the path P connecting the 
vertex v(ai) and including the nearest cycle vertex must be 
either initially empty, or able to be emptied by motions of 
other agents. By having that many empty vertices, ai can 
reach the cycle and concurrently move with other agents 
of the cycle. Moreover, since the longest chain P is (or 
can be) emptied, then all the agents on ai’s destination 
chain can be accommodated on the P, making room for ai 
to occupy its final destination vertex. After relocation of 
ai, all other agents can return to their original positions via  

 
Fig. 6. In a typical Extended Unicycle Graph (EUG) the length of the 
longest chain is lmax. 

moves in reverse order of their evacuation. This 
concludes that at least h = lmax vertices in the graph should 
be empty to enable any two agents to interchange and 
hence make the graph solvable.       □ 

Corollary 3. A Compound Graph is solvable iff at 
least h = lmax vertices in the graph are empty, where lmax is 
the length (diameter) of the graph’s Stem. 

Proof. Any Compound graph with c cycles can be 
regarded as a set of c distinct Extended Unicycle Graphs. 
Since the Stem of the whole graph is the longest non-
cyclic path with a length of lmax, then any path P 
connecting any agent on the graph to its nearest cycle 
vertex has at most a length of lmax. Because the graph is 
connected, it is possible to make any non-cyclic path free 
of agents by having at least h = lmax empty vertices in the 
graph via agents moving. Therefore, concluding from the 
Lemma 3, all cycles of the graph are solvable, and since 
each two adjacent cycles share a path between, it is 
possible to move any agent to any vertex of a ‘far’ EUG 
through moving on intermediate cycles located in 
between.          □ 

Theorem 1. The maximum number of agents for which 
a Compound graph is solvable is m = |G| − |IS| − 1, in 
which |IS| is the number of Internal Vertices on the Stem. 

Proof. As stated in Corollary 3, the number of 
necessary empty vertices in a solvable graph must be at 
least h = ||S||, in which ||S|| is the number of edges on the 
Stem. Referring to the definition of the Stem in Table 1 
and Fig. 3, the length of a Stem can be expressed as 
||S|| = |IS| + 1, in which |IS| is the number of its Internal 
vertices. Regarding that the order of every graph is equal 
to the sum of vertices occupied by agents and empty 
vertices, i.e., |G| = m + h, it is concluded that 
|G| = m + |IS| + 1, and therefore the maximum number of 
agents on a solvable Compound graph is 
m = |G| − |IS| − 1.         □ 

The result of Theorem 1 serves as a foundation for the 
next Sections of the paper. 

4. Converting SGm Into SGm′ 

As discussed in Theorem 1, the maximum number of 
agents for which a graph can be solvable is determined by 
the order of the graph, |G|, and the number of internal 
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vertices on the Stem, |IS|. On the other hand, sometimes it 
is desirable to modify a given Solvable Graph SGm in 
order to accommodate larger or smaller numbers of 
moving agents. This happens for instance when the graph 
represents the routes of Automatic Guided Vehicles 
(AGVs) on plant floor, or railways connecting urban or 
rural districts. 

Converting an SGm into SGm′ has two aspects:  
(1) If m′ > m, then the SGm is partially solvable for m′ 

agents (i.e., it is a PSGm′). In this case, some vertices 
and/or edges must be inserted or relocated to give an 
SGm′.  

(2) If m′ ≤ m, then the SGm is solvable for m′ agents. In 
this case, there might be some redundant vertices and/or 
edges in the graph which can be truncated or relocated to 
give a ‘lean’ SGm′. 

In this section, mainly the first case, i.e. the problem of 
converting an SGm into an SGm′ (m′ > m), is dealt with, 
where n = m′ − m additional agents should navigate on the 
graph. Regarding that in an SGm the maximum number of 
agents is m = |G| − |IS| − 1, accommodating n additional 
agents requires that the difference |G| − |IS| be increased 
by n. 

The graph expansion/modification is done through four 
basic operations: Vertex Insertion, Vertex Relocation, 
Edge Insertion, and Edge Relocation. 

It is noteworthy that for the second case above 
(m′ ≤ m), all of the above basic operations can be 
performed in reverse order. Precisely, Vertex/Edge 
Insertion operations change to Vertex/Edge Deletion 
operations, respectively, and Vertex/Edge Relocation 
operations remain Vertex/Edge Relocations, but in 
reverse order. 

4.1. Vertex Insertion 

In this operation the difference |G| − |IS| increases by 
locating new vertices on the graph in a way that 
augmenting |G| does not increase |IS|. This is done 
generally by creating cycle vertices, or inserting new 
leaves or internal vertices. Table 2 illustrates different 
variations of converting an SGm into SGm+1 via vertex 
insertion. For obtaining an SGm+n any combination of 
these variations should be repeated for n times. 

4.2. Vertex Relocation 

In this operation, instead of adding new vertices to the 
graph, existing vertices plus their connected edges are 
relocated such that the difference |G| − |IS| is increased. 
For converting an SGm into SGm+1, since |G| remains 
constant, |IS| must be reduced by relocating its Leaf to 
somewhere in the graph other than the Stem (as in Fig. 
7(a)), through one of the methods explained in the Table 
2. The Vertex Relocation operation must be repeated for 
obtaining an SGm+n. 

It is noted that when the Stem is not unique (as in Fig. 
7(b)), relocating its Leaf will not increase the maximum 
number of navigable agents since an alternative path will 
be the new Stem with a length equal to the previous Stem. 
In such cases, Vertex Relocation must be repeated until 
|IS| decreases (Fig. 7(c) and 7(d)). Note that this operation 
must be done in a way that the graph’s connectivity is 
maintained. 

4.3. Edge Insertion 

In this operation no new vertices are added to the 
graph; instead, new edges connecting existing vertices are 
inserted such that the difference |G| − |IS| is increased. For 
converting an SGm into SGm+n through the Edge Insertion 
operation, since |G| remains constant in this operation, |IS| 
must reduce by converting the Stem’s internal vertices 
into cycle vertices. As a result, new cycles are created, as 
shown in Fig. 8. 

It is noted that when the Stem is not unique (as {h-e-d} 
and {h-f-g} in Fig. 8(b)), similar to the Vertex Relocation 
operation, inserting an edge on the Stem will not increase 
the maximum number of navigable agents since an 
alternative path will be the new Stem with a length equal 
to the previous Stem. In such cases, edge insertion must 
be repeated until |IS| decreases (Figs. 8(c) and 8(d)). 
Table 2 
Possible variations of converting an SGm into SGm+1 through Vertex 
Insertion. 

Description
Graphical Example (for m = 7) 

SG7 SG8 

Expanding 
a cycle 

 

Inserting a 
Leaf on a 

cycle 
vertex  

Inserting a 
Leaf on an 

internal 
vertex  

Inserting 
an internal 
vertex such 

that |IS| 
does not 
increase 

 



Ellips Masehian et al./Designing Solvable Graphs for Multiple Moving Agents 

48 
 

 

Fig. 7. Graph modification through Vertex Relocation. Dashed areas 
indicate Stems. The graphs are SG6, SG7, SG7, and SG8, respectively. 

Fig. 8. Graph modification through Edge Insertion. Dashed areas 
indicate Stems, which change as new edges are inserted in the graph. 
The graphs are SG8, SG9, SG9, and SG10, respectively. 

4.4. Edge Relocation 

In this operation, instead of adding new edges to the 
graph, existing cycle edges are relocated to create ‘longer’ 
cycles (i.e. cycles with larger number of vertices within) 
such that the difference |G| − |IS| is increased. 

For converting an SGm into SGm+n through the Edge 
Relocation operation, since |G| remains constant, |IS| must 
reduce by converting the Stem’s internal vertices into 
cycle vertices, as shown in Fig. 9. Note that this operation 
must be done in a way that the graph’s connectivity is 
maintained. 

As mentioned earlier, when the Stem is not unique, 
relocating a cycle edge will not increase the maximum 
number of navigable agents since an alternative path will 
be the new Stem with a length equal to the previous Stem. 

In such cases, Edge Relocation must be repeated until |IS| 
decreases. 

Fig. 9. Graph modification through Edge Relocation. Dashed areas 
indicate Stems. The graphs are SG6 and SG7, respectively. 

It should be noted that in real world applications, 
where existing of multiple cycles or cycles with large 
number of vertices are not practically feasible, instead of 
expanding the number or size of cycles, we may expand 
the trees connected to cycles of graphs such that the 
difference |G| − |IS| remains unchanged, and the graph 
remains solvable for the same number of agents.  

5. Minimal Solvable Graphs 

For a specific number of agents (m), a notable subclass 
of Solvable Graphs SGm is the set of Minimal Solvable 
Graphs (MSGm) which have the minimum number of 
vertices necessary for accommodating m agents. 
Considering that the complexity of graph searching 
operations is directly influenced from the graph size, 
finding Minimal Solvable Graphs would significantly 
ease the tasks of graph designing and multi agent motion 
planning. In this Section the topologies of Minimal 
Solvable Graphs are introduced through a number of 
theorems. Also, a special subset of MSGs are identified 
which have the minimal number of edges. 

Theorem 2. The minimum number of vertices for a 
graph to be solvable is m + 1. 

Proof. As stated in the Theorem 1, the maximum 
number of agents in a solvable graph is m = |G| − |IS| − 1, 
and so |G| = m + |IS| + 1. For minimal number of vertices, 
|IS| must take the least possible value, which is 0. It 
follows that |G| = m + 0 + 1 = m + 1, and so MSGms have 
m + 1 vertices.         □ 

Corollary 4. Minimal Solvable Graphs do not contain 
any internal vertices. 

Proof. As proved in Theorem 2, the Stem in MSGs 
does not contain internal vertices (i.e. |IS| = 0). On the 
other hand, since the Stem is the longest non-cyclic chain 
and no other path may have more internal vertices than it, 
then there should be no internal vertices in the entire 
graph.          □ 

Corollary 5. An MSGm is not solvable for more than m 
agents. 

Proof. Since an MSGm has m + 1 vertices, placing one 
more agent on the graph will make the graph fully 
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occupied, and hence no sequential moves would be 
possible.          □ 

Theorem 3. An MSGm with c cycles has m + c edges. 
Proof. According to the Euler’s Formula, for a 

connected planar graph with V vertices, E edges, and F 
faces, the following equation holds: V − E + F = 2 
(proved in [5]). Each cycle divides the space into two 
faces: a finite face enclosed in the cycle, and an infinite 
face outside of the cycle. In the context of our definitions 
and notations, by excluding the infinite face from both 
sides of the Euler’s Formula, it can be rewritten as  

|G| − ||G|| + c = 1.  (1) 
As proved in Theorem 3, in an MSGm, m = |G| − 1. 

Therefore, 
m + 1 − ||G|| + c = 1,   (2) 
⇒ m − ||G|| + c = 0,   (3) 
⇒ ||G|| = m + c,   (4) 

which proves the theorem.       □ 
Corollary 6. An MSG has minimal edges if there is 

only one cycle in the graph.  
Proof. It was proved previously that an MSGm 

containing c cycles has m + 1 vertices and m + c edges. 
The number of edges is minimal when c = 1, i.e. there is 
be only one cycle in the graph.        □ 

For constructing MSGm, m + 1 vertices must be 
connected such that at least one cycle and no internal 
vertices are formed. As an example, all possible 
topologies of Minimal Solvable compound Graphs for 
m = 6 agents are shown in Fig. 10. All these graphs have 
6 + 1 = 7 vertices, 0 internal vertices, and 6 + c edges, in 
which c is the number of cycles. In order to obtain various 
topologies for MSGs, a number of transformation 
operations are worked out and illustrated in Table 3. 

 
Table 3 

 Operations for creating different topologies of MSGs. 

Description Graphical Examples (for m = 7) 

Converting a cycle vertex 
into a leaf connected to a 

cycle 
 

Converting a leaf 
connected to a cycle into 

a cycle vertex 
 

Relocating a leaf 
connected to a cycle 

between cycle-vertices 

 

Transforming cycles with 
lengths of c1 and c2 into 

cycles with lengths c1 − 1 
and c2 + 1 

 
 
Since MSGms have |G| = m + 1 vertices and ||G|| = m + 

c edges, and regarding that compound graphs have at least 
one cycle, Minimal Solvable Graphs with one cycle have 
minimal number of edges, as well as vertices. Therefore, 
for minimizing the edges of an existing MSGm, multiple 
cycles must be decomposed into one cycle, via operations 
described in Table 4. 

 

Fig. 10. All possible Minimal Compound Solvable Graphs for m = 6 agents (MSG6). 
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Table 4 

 Methods of creating MSGs with minimal number of edges. 

Method Description Graphical Examples (for m = 6) 

V
er

te
x 

R
el

oc
at

io
n 

Creating larger 
cycles instead of 

two or more cycles 

 

Converting cycles 
vertices into leaves 
connected to cycles 

 

V
er

te
x 

D
el

et
io

n 

Deleting common 
edges in cycles 

 

6. Designing Lean Graphs 

Although the results of the previous sections are of 
theoretical nature, they can be used straightforwardly in 
real world applications, such as designing and reshaping 
transportation networks, railways, traffic roads, AGV 
routs, and robotic workspaces for multiple moving agents 
such as trains, vehicles, and robots. 

On the other hand, in order for a graph to be utilized as 
the structure of a real network, its topology must be suited 
to the application it is designed for. Thus, efficiency is an 
important issue in designing and tailoring applied graphs. 

A graph is considered to be efficient if, in addition to 
being solvable, has no or very few redundant edges and 
vertices. Lacking redundant elements (i.e. edges and 
vertices) in a solvable graph becomes substantially 
significant particularly when the cost of constructing real 
world counterparts of graph elements (such as roads, 
railways, canals, etc.) is remarkably high. 

In order to implement the findings of the previous 
sections in making an efficient graph, a new algorithm is 
developed in this section, which operates in two phases: 

(a) Compatibility phase, and  (b) Rightsizing phase. 
 

 

Table 5 

 Possible operations in the Rightsizing Phase.  

Method Description Results Graphical Examples (for m = 6) 

Vertex 
Deletion 

Deleting the Stem’s leaf if the 
Stem is unique The Stem becomes shorter 

 

Edge 
Deletion 

Deleting the cycle edge if it does 
not change the Stem 

A cycle vertex is converted into a leaf 
connected to an internal vertex 

 

A cycle vertex is converted into a leaf 
connected to a cycle vertex 

 

No change in the type of the vertex 
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In the Compatibility phase, the given graph is made 

compatible with the needs and constraints of the 
application. This may include making the graph solvable 
for the specified number of agents by expanding it if it’s 
not solvable, or reducing the size of the graph if it is 
solvable for an excessive, unnecessary number of agents. 
The output of this phase is a Solvable Graph for exactly 
the predefined number of agents, e.g., k. 

In the Rightsizing phase, the SGk is further examined 
to find any redundant edges or vertices for pruning. We 
will call the resultant graph a ‘Lean’ graph since it is fully 
operational and optimized for the application at hand. 

In expanding the size of the graph in the Compatibility 
phase special care must be taken to comply with the 
limitations and conditions of the application. For 
example, there might be no sufficient space for inserting a 
vertex or edge, or that inserting an edge is infeasible 
economically or technically. In case that the graph is not 
capable of accommodating the specified number of 
agents, a possible engineering solution could be either 
reducing the number of agents or inserting the required 

graph elements such that the sustained expense is 
minimized. 

On the other hand, in reducing/pruning the graph, 
some vertices might be indelible as they are essential to 
the system, as the positions for loading, feeding, or 
parking machines or vehicles. Therefore, possible 
operations in the Rightsizing phase are Vertex Deletion 
and Edge Deletion operations, and Vertex/Edge 
Relocation and Insertion are not considered. The results 
of Vertex/Edge Deletion operations are illustrated in 
Table 5. 

It must be noted that although deletion of redundant 
vertices or edges from the graph may reduce the overall 
cost of network design and construction, it may lead to 
higher costs of agents’ movements as well, since by 
possessing a more limited space for maneuvering and 
reshuffling, agents may be forced to travel / stop more 
frequently for resolving deadlocks. The details of the 
algorithm is explained in the flowchart illustrated in Fig. 
11. 

 
 

 
                         Fig. 11. Flowchart of the algorithm for designing a lean graph. |Ci| is the order of the ith cycle. The dashed gray areas include   

 the two main phases, the Compatibility and Rightsizing phases. 
 

Detect all cycles, 
set c = No. of cycles 

Detect alternative Stems (the 
longest paths in the graph) 

Is the Stem 
unique? 

Delete its leaf 

No

Yes 

Delete all Common 
Cycle Edges (if any) 

Initialize: 
i = 1 (the cycle counter) 
j = 1 (the cycle edge counter) 

Input the initial graph and the 
number of moving agents, k 

Start 

Calculate the maximum 
number of agents: 
m = |G| − |IS| − 1 
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YesExpand the graph using Vertex/Edge 
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j
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No 
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j 
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7. Practical Application 

In this section a practical illustrative example is 
provided for demonstrating a typical application of the 
results of the previous sections. Specifically, it is shown 
how designing a Solvable Graph and then optimizing it 
might help solving an industrial shop floor problem. 

Suppose a factory is consisted of a workshop and two 
warehouses, one for raw material and one for finished 
products. Te production area accommodates two pressing, 
three drilling, and three grinding machines, as well as 
other equipment for milling, forging, turning and 
assembly, arranged as departments. Each of these 
machines or departments requires certain amount of raw 
material (or unfinished parts) to be loaded, processed, 
unloaded and then transported to other divisions of the 
factory. The layout of the factory and the 
loading/unloading positions for each machine and 
department are shown in Fig. 12. 

 

Fig. 12. Layout of the factory. The specific locations for loading / 
unloading parts and material are shown with small circles. 

Currently the material and products are carried 
manually by carts and pallets, but the management 
decides to upgrade the factory’s transportation system and 
utilize Automatic Guided Vehicles (AGVs). However, 
there are a number of constraints and conditions in this 
regard. 
Constraints: 
1. The AGVs can only move along predefined paths 

realized by embedding special type of wires in the 
floor and covering them with epoxy resins for safety 
and durability. 

2. Due to space limitation, no two AGVs can move 
along a single passageway or corridor side by side, 
and should therefore wait until the passageway (i.e. 

the wire track) is evacuated and emptied from other 
AGVs. 

3. AGVs can only stop at certain locations for 
loading/unloading or changing their tracks. They 
cannot stay at any point on the track. 

4. Since the factory’s production system is Job-Shop, 
the volume of interdepartmental transportation is 
high. Therefore, all AGVs need to have access to all 
points of the transportation network. In other words, 
all AGVs must be able to reach any destination from 
any initial position. 

5. Each AGV is equipped with some batteries that 
actuate it and provide power for its sensors and 
control unit, and therefore needs to be recharged 
daily. The recharging is done during the factory’s 
idle times, i.e. at nights. However, for safety 
reasons, recharging hubs are located in warehouses 
so that AGVs can be recharged and kept secured at 
nights. 

6. The cost of laying out wire tracks is proportionate to 
their lengths. Also, situating each stop point requires 
additional expense due to the special sensors and 
circuits needed. These initial costs are much higher 
than the costs of increased movements the AGVs 
need to do for avoiding collisions or deadlocks. 

7. The management has decided to carry out the 
upgrade in two phases: in the first phase, 12 AGVs 
are planned to operate in the factory, and in the 
second phase, in parallel with increasing the 
production volume and variety, the number of AGVs 
will be increased to 18. 

Problem: 
The problem is to design a network of wire tracks and 

stopping stations such that the total cost of upgrading is 
minimized while the above constraints are fulfilled. In 
other words, it is desired to plan a Solvable Graph for 12 
agents (for the first phase) which is efficient in terms of 
the number of vertices and edges. 
Solution: 

As a starting point, the Voronoi Diagram of the factory 
is calculated, which is the collection of points equidistant 
from two or more facilities or walls (refer to Section 1 for 
more details). Implementing the Voronoi Diagram is quite 
proper since it yields the safest paths passing through 
narrow corridors and production facilities. Fig. 13 depicts 
the Voronoi Diagram of the factory. 

As can be seen in the Fig. 13, the Voronoi Diagrams 
has some small redundant edges connected to concave 
corners of the workspace. These edges, however, can be 
easily pruned (removed) from the diagram. Also, there are 
some vertices very close to each other (as shown in 
dashed circles in the Fig. 13) which can be merged for 
simplicity and practicality. 
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Fig. 13. Voronoi Diagram of the factory, which is the collection of safest 
paths amid facilities. 

The next step is to modify the pruned Voronoi 
Diagram in order to comply with the requirements of 
loading/unloading stations imposed by the constraint 3. 
This is done by superimposing the Voronoi Diagram and 
the stations’ locations, as illustrated in Fig. 14. 

 

Fig. 14. Superimposition of the Voronoi Diagram and stopping stations. 

Nearly all stopping stations situate at proper positions 
on the Voronoi Diagram, except for the upper-left corner, 
for which we proposed a simplifying solution depicted in 
Fig. 15. 

As stated in the constraint 7 above, the management 
has decided to operate the network for 12 AGVs in the 
first phase. By taking into consideration all possible 
vertices of the network, the maximum number of AGVs 
that can travel in the whole factory is m = 33 − 3 − 1 = 29. 
Although in this case a large number of AGVs can 
operate, they have to make use of all vertices (including 
those in warehouses) for accessing all stations, which may 
make their travels long and unnecessary, or expose the 
warehouses to disorder and insecurity.  

The engineering team responsible for designing the 
network recommends limiting the scope of AGVs’ 
motions to the production workshop, such that no AGV 
can enter the warehouses except for material loading or 
unloading, and therefore is only allowed to travel in the 
production area for resolving deadlocks with other AGVs. 
In this case, the maximum number of agents able to move 
will be m = 15 − 3 − 1 = 11. Since this number is less that 
the required number of AGVs the management has 
planned, either of the vertices v17 or v26, which are the 
nearest vertices to the production area, is selected to be 
included in the operational network (refer to Fig. 15 for 
vertex numbers). This resolution will not affect the size of 
the network’s Stem, and so the number of operational 
AGVs increases to m = 16 − 3 − 1 = 12, which will make 
the network compatible with the requirements of the 
management. 

Fig. 15. A simplified AGV transportation network for the factory. 

For Rightsizing the network, deleting edges v12-v8 and 
v12-v7 is proposed, regarding their lengths. Also, if there 
would be the possibility of creating an edge between v2 
and v7, then there would be no need to utilize vertices v17 
or v26 as recommended earlier. 

For increasing the production volume and variety, the 
number of AGVs is planned to increase to 18. For this 
phase two possible scenarios are: 

(1) Utilizing 7 additional vertices located in the 
warehouse areas, such as v16, v17, v18, v19, v20, v21 and v23. 
In this case the maximum number of AGVs will be 
m = 22 − 3 − 1 = 18. 

(2) Creating an edge between vertices v2 and v7 and 
utilizing 4 additional vertices located in the warehouse 
areas (i.e. v17, v20, v26, v29). In this case the maximum 
number of AGVs will be m = 19 − 0 − 1 = 18, which will 
enable us to delete the edges v12-v8 and v12-v7 in the 
Rightsizing phase. 

Each of the above solutions should undergo financial 
and technical feasibility studies to be selected and 
finalized. 
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8. Discussion and Conclusion 

The time complexity of the proposed method for 
verifying the solvability of a graph is in O(n2) which is 
spent on detecting cycles and identifying the Stem, where 
n is the number of graph vertices. Also, calculating the 
maximum number of agents operable on a given graph 
takes is performed in the same time order. In contrast, 
investigating the solvability of a Multi Agent Motion 
Planning problem of m agents on a graph with n vertices 
through exhaustive enumeration will require p different 
permutations of agents to be checked as calculated in (5), 
which is far beyond the time order of the presented 
algorithm. 

!

( )!

n
p

n m
=

−
   (5) 

Moreover, verifying whether a graph is SGm would 
require q operations to be checked as calculated in (6), for 
any initial and final configurations, which is again 
exponentially time consuming. These figures demonstrate 
the effectiveness of our findings in terms of required time 
and memory. 
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nq n i=

⎛ ⎞
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⎜ ⎟
⎝ ⎠

= −∑    (6) 

In designing transportation networks for multiple 
autonomous agents (such as mobile robots, AGVs, cars, 
etc.) which can merely move along the network’s arcs, it 
is important to make sure that the graph has a proper 
topology and sufficient number of vertices (relative to the 
number of agents) to enable the agents move planning. 
This paper deals with the topology of Solvable Graphs 
and introduces the new concept of Minimal Solvable 
Graphs and investigates their properties, which are the 
smallest graphs that satisfy the feasibility conditions for 
multi agent motion planning for any initial and final 
configurations of agents. Also a new algorithm is 
proposed for making an existing graph solvable and lean 
for a given number of agents. 

In this paper we supposed that the agents may move 
concurrently on cycles and sequentially on internal 
vertices and leaves of the graph. For further research it is  

 
 
 
 
 
 
 
 
 
 

possible to assume all moves to be concurrent and find the 
minimum sequence of moves to reach the final 
configuration with different edge lengths and agents 
velocities. Also, further research is underway for working 
out solvability conditions for Purely Cyclic Graphs and 
Partially Solvable Graphs. 
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