
 Journal of Industrial Engineering 2 (2009) 41-54

41

Designing Solvable Graphs for Multiple Moving Agents

Ellips Masehiana,*, Farzaneh Daneshzanda

a Industrial Engineering Dept., Tarbiat Modares University, Tehran, 14115-317, Iran

Received 3 Nov., 2008; revised 4 Dec., 2008; accepted 12 Feb. 2009

Abstract

Solvable Graphs (also known as Reachable Graphs) are types of graphs that any arrangement of a specified number of agents located on the
graph’s vertices can be reached from any initial arrangement through agents’ moves along the graph’s edges, while avoiding deadlocks
(interceptions). In this paper, the properties of Solvable Graphs are investigated, and a new concept in multi agent motion planning, called
Minimal Solvable Graphs is introduced. Minimal Solvable Graphs are the smallest graphs among Solvable Graphs in terms of the number
of vertices. Also, for the first time, the problem of deciding whether a graph is Solvable for m agents is answered, and a new algorithm is
presented for making an existing graph solvable and lean for a given number of agents. Finally, through an industrial example, it is
demonstrated that how the findings of this paper can be used in designing and reshaping transportation networks (e.g. railways, traffic
roads, AGV routs, robotic workspaces, etc.) for multiple moving agents such as trains, vehicles, and robots.

Keywords: Solvable Graphs, Intelligent Moving Agents, Motion Planning, Deadlocks;

———
* Corresponding author. Tel.: +98-21-82883987; e-mail: masehian@modares.ac.ir.

1. Introduction

Future generation autonomous agents are expected to
operate in remote and dangerous places like outer space,
undersea, hazardous waste sites, and are therefore
anticipated to be far more self-directed than today's
existing agents. The ability of an agent to plan its own
motion seems pivotal to its autonomy. For over more than
three decades, agent motion planning in general, and
robot motion planning in particular, have attracted much
research in various fields and have become central topics
in autonomous agents and artificial intelligence. Although
today the term ‘motion planning is considered to cover a
wide variety of problems, we will use it for the problem
of planning collision-free motions for an autonomous
agent moving among obstacles.

The necessity of planning the motions of autonomous
agents originally arose in early 1970’s, when the first
industrial robots were to perform automatic tasks of
manipulation and navigation. Soon it was realized that the
complexity of the robot motion planning problem is
PSPACE-hard and NP-complete since the size of the
solution space grows exponentially and gets extremely
complicated, especially for high degrees of freedom [3].

Many techniques have been developed for solving the

Robot motion planning problem, including the ‘Skeleton’
Or ‘Roadmap’ approach [4]. In this approach, the
continuous workspace is mapped into a one-dimensional
graph with vertices including the start and goal of the
robot, and edges as paths between vertices. This graph is
then searched to find a collision-free start-to-goal path.
Visibility Graph is a type of roadmap which is the
collection of lines in the free space connecting vertices of
an object to those of another (Fig. 1(a)). There are O(n2)
edges in the Visibility Graph, and it can be constructed in
O(n2) time and space in 2D, where n is the number of
vertices. Voronoi Diagram is another roadmap defined as
the set of points equidistant from two or more objects
(Fig. 1(b)). The Voronoi Diagram partitions the space into
regions, where each region contains one object. For each
point in a region, the object within the region is the
closest to that point than any other object. There are only
O(n) edges in the Voronoi Diagram, and it can be
efficiently constructed in Ω(nlogn) time, where n is the
number of objects [7].

When multiple moving agents (e.g. robots) share a
common workspace, the motion planning task becomes
even more difficult and cannot be performed for just one

Ellips Masehian et al./Designing Solvable Graphs for Multiple Moving Agents

42

agent without considering others. In this kind of
problems, while pursuing their individual (local) goals,
agents must coordinate their motions with each other in
order to avoid collisions with obstacles and one another,
thus contributing to the task of achieving a global goal,
which might be minimizing the total time or distance.
This problem is called Multi Agent Motion Planning
(MAMP) problem. In MAMP, each agent is regarded as a
dynamic obstacle for other agents, and therefore the
element of time plays a major role in planning, especially
because of its irreversible nature [9].

Fig.1. (up) Visibility Graph, and (down) Voronoi Diagram.

When multiple moving agents (e.g. robots) share a
common workspace, the motion planning task becomes
even more difficult and cannot be performed for just one
agent without considering others. In this kind of
problems, while pursuing their individual (local) goals,
agents must coordinate their motions with each other in
order to avoid collisions with obstacles and one another,
thus contributing to the task of achieving a global goal,
which might be minimizing the total time or distance.
This problem is called Multi Agent Motion Planning
(MAMP) problem. In MAMP, each agent is regarded as a
dynamic obstacle for other agents, and therefore the
element of time plays a major role in planning, especially
because of its irreversible nature [9].

Although classic roadmaps like Visibility Graph and
Voronoi diagram have proved to be effective for single-
agent problems, they do not provide straightforward
solutions to MAMP problems, including the corridor-like
environment shown in Fig. 2(a). This kind of
environments is prevalent in large warehouses, plants, and
transportation systems, where Automatic Guided Vehicles
(AGVs) convey material and products (Fig. 2(b)).

Space is the most limiting constraint in a typical
MAMP problem: often, because of lack of sufficient
space around moving agents, they cannot reach their
destinations without obstructing each other’s way,
causing deadlocks. Deadlocks are situations in which two
(or more) agents intercept each other’s motions and are
prevented from reaching their goals. This happens
generally in narrow passageways where autonomous
moving agents cannot pass by each other. To resolve such
a deadlock, one of the agents should leave and evacuate
the passageway (by usually backtracking), and let the
opposite agent move out of the passage.

A well-known cooperative behavior of agents is
following independent start-to-goal paths while resolving
deadlocks by reshuffling, circumnavigating, detouring,
and speed regulating (also known as Velocity Tuning).
Another approach developed for resolving deadlocks is
the Prioritized Planning, in which the agents are sorted by
their moving priorities. Higher-priority agents are planned
first, whereas lower-priority agents plan their motion
subsequently by considering higher-priority agents as
dynamic obstacles.

Fig.2. (left) Each agent must move toward its final destination while
allowing other agents to reach their goals. (right) Planning the motions
of AGVs to different locations in a shop floor or warehouse is a real-
world application of MAMP.

By reducing the workspace into a graph with vertices
including the starts and goals of all agents, the MAMP
problem can turn into a sequencing problem where the
agents are planed to move sequentially (or concurrently)
toward their destinations, without colliding with each
other. The graph structure stipulates them to remain on
predefined routs (i.e. graph edges), and so avoid static
obstacles existing in the workspace.

The main question in designing a predefined graph,
however, is to find out whether the graph is ‘reachable’
(solvable) for any initial and final configurations.
Solvable Graphs allow the transition of any initial
configuration of agents (e.g. pebbles (beans), robots, or
vehicles) to a final state via their sequential moves along
the graph’s edges.

Wilson in [14] worked out a relation between the
number of pebbles (k) and the number of vertices (n) of
only bi-connected graphs as k = n − 1. Kornhauser in [8]

 Journal of Industrial Engineering 2 (2009) 41-54

43

improved this result through generalizing the decision
problem for all graphs and any number of agents. Auletta
et al. in [1] and [2] studied the above problem as pebble
motion problem by following the generalization of the 15-
puzzle and presented a linear algorithm for deciding the
reachability of trees. Ryan in [13] studied the possibility
of reaching destinations of connected sub-graphs by
simplifying the multi robot motion planning between the
sub-graphs. He worked on predefined sub-graphs like
stack, clique and hall. In [12] it is demonstrated that the
environment can be shown through any two-connected
graph which has a routing with a practical social law for
motion planning.

During our research on optimal multi agent motion
planning on graphs we encountered the main problem of
finding the maximum number of agents able to navigate on
a graph. The topologies and properties of Solvable Graphs
are extensively dealt with through a number of lemmas and
theorems. Also, considering the fact that the complexity of
graph searching operations is directly influenced from the
graph size, finding solvable graphs with minimum number
of vertices can significantly ease the motion planning task
for multiple agents. As a result, the concept of Minimal
Solvable Graphs (MSGs) is introduced for the first time in
this paper. Accordingly, it can be determined whether a
graph is solvable for a certain number of agents or not. We
then develop a new algorithm for making a Solvable Graph
‘leaner’ and smaller while it remains solvable for the same
number of agents before and after performing the
algorithm. Lastly, the presented theories are applied in a
practical industrial example.

2. Definitions and Assumptions

As mentioned earlier, reducing (or mapping) the
configuration space into a graph is very advantageous
regarding the significant savings in required time and
memory. In order to lay a proper mathematical foundation
for expressing and investigating the properties of graphs,
we adopt the standard terminology used in Graph Theory
[5]. In addition, some definitions and symbols have been
introduced and defined specifically for this work, all
presented in Table 1. A number of these concepts are
illustrated in Fig. 2.

Generally, an MAMP in a continuous space is
composed of the following phases:

(a) Constructing a network (graph) with nodes
(vertices) including the agents’ initial and final stopping
locations, together with all the locations the agents should
be able to temporarily stop at and offer a service. The arcs
(edges) of the graph must pass through free spaces (e.g.
unoccupied rooms or corridors) such that no obstacle may
be collided with during the agents’ motions along the
edges.

(b) Planning the agents’ motions along the arcs of the
network from their starting to final locations, such that a
cost criterion (e.g. time, distance, or expense) is
minimized.
Table 1

 Definitions of used terms and symbols.

Term/Symbol Description

|G| Order: The number of vertices of the Graph G = (V,
E).

||G|| The number of edges on G.

Path A non-empty graph P = (V, E) of the form
V = {v0, v1, ..., vk}, E = {v0v1, v1v2, ..., vk−1vk}, where
all vi are distinct.

Cycle A non-empty graph of the form V = {v0, v1, ..., vk}, E =
{v0v1, v1v2, ..., vk−1vk, vkv0}, where all vi are distinct.

Cycle Edge An edge on a cycle.

Tree An acyclic subgraph connected to a cycle.

Leaf, L A vertex with a degree d = 1.

Cycle Vertex, C A vertex located on a cycle.

Internal Vertex, I A vertex with a degree d > 1 which is not a Cycle
Vertex.

Stem, S The longest path in the graph with its one end (or
both ends, if located between two cycles) connected
to a cycle vertex and including it, and not
containing any Cycle Edges. None of the edges of
the Stem are cycle edges. If not unique, the Stem is
selected arbitrarily. The number of vertices on the
Stem (i.e. its order) is shown by |IS|.

Configuration An arrangement of agents on the graph vertices
such that no vertex is occupied by more than one
agent.

Fig. 3. Some concepts illustrated: L, I, and C denote Leaf, Internal
vertex and Cycle vertex, respectively. The symbol indicates a cycle,
and the dashed area designates the Stem.

When designing a graph or networks of routs, it is
always important to consider current transportation
demands, as well as future developments of the system. In
the context of MAMP, this consideration requires that the
system designer decides the proper topology of the
network, the number of agents (as mobile robots or
vehicles) required to move along the routs, and the
possibilities of expanding the network for future increased
transportation traffic.

L L I

C C I I L

C C

C L

C C

I L

C

C CCC

C

I

L

L

I

C

L

L

Stem

Ellips Masehian et al./Designing Solvable Graphs for Multiple Moving Agents

44

Concerned about these issues, we will
comprehensively investigate the concept of Solvable
Graphs. To date, the notion of graph solvability has been
essentially depended on the initial and final
configurations (situations) of the moving objects. For
instance, the question whether a tree-like graph is
solvable for a given initial and final configuration of
pebbles is solvable or not is addressed in [1] and [2].
However, no work exists in the literature for all types of
graphs, and never has the problem of deciding if a graph
is always solvable for a specific number of agents for any
initial and final configuration been mentioned or
addressed.

In this paper we focus on the first phase of MAMP,
that is, the graph construction and optimization, and
propound some related problems of broad scope, such as:

- What is the maximum number of agents a graph can
accommodate such that any final configuration can be
reached from any initial configuration?

- What topology must a graph have to be solvable for a
specific number of agents?

- What is the ‘smallest’ graph solvable for a specific
number of agents?

Before dealing with the answers to the above
questions, three new fundamental and correlated notions
are presented below:

Definition 1. A Solvable Graph is a graph on which
any configuration of at most m agents can be reached
from any initial configuration through their moves on
graph edges, and is shown by SGm.

Definition 2. A Partially Solvable Graph is a graph on
which only some configurations of m agents can be
reached from any initial configuration through their
moves on graph edges, and is shown by PSGm.

Definition 3. A Minimal Solvable Graph is the
smallest graph on which any configuration of at most m
agents can be reached from any initial configuration
through their moves on graph edges, and is shown by
MSGm. In this definition, ‘smallest’ can be expressed and
measured in terms of the number of either vertices or
edges.

In the Graph Theory literature, graphs are categorized
into two general classes: Cyclic graphs (having loops),
and Acyclic graphs (without loops, i.e. trees). However,
based on our findings in this and other relevant papers, we
propose a more precise categorization of graphs, as: (1)
Acyclic graphs, (2) Purely Cyclic graphs, and (3)
Compound graphs. A Purely Cyclic graph is defined as
graph with merely cyclic edges, and therefore has no
leaves or internal vertices. A Compound graph is a
combination of Acyclic and Purely Cyclic graphs; that is,
it contains at least one loop and at least one leaf.

Since Compound graphs constitute a large portion of
graphs and have the broadest applications among graphs,
we will deal with this kind of graphs in this paper, as a
part of our research on graph-based motion planning. The

properties and topologies of solvable acyclic graphs are
presented in our previous research, in [10] and [11].
Therefore, all graphs mentioned in the next Sections of
the paper are Compound graphs.

2.1. Assumptions

In the phase of graph construction, the topological, and
not geometric, features of the world are important;
features like the number and degrees of vertices, existing
of edges between certain pairs of vertices, existing of
loops and their sizes, etc. Nevertheless, the geometrical
features of the world, such as the exact coordinates of the
vertices, the lengths of edges, etc. become decisive in the
phase of motion planning.

In this paper some simplifying (yet not limiting)
assumptions about the graph and agents are made as
following:
1. An essential assumption is that the designed graph is

finite, connected, planar, and represents the free
space. This means that edges intersect only at
vertices.

2. The graph is assumed to be a Compound graph, i.e.
has at least one cycle (loop) and at least one Leaf.
Actually this assumption is not a restrictive one in
most real-world problems since a natural roadmap
near a simple disjoint obstacle always forms a loop
around it. An important issue, however, is to identify
the cycles of the graph and verify that the graph is
cyclic. A straightforward method for cycle detection
is by performing a Depth-First Search in the graph:
starting from a desired vertex, all children of that
vertex is explored in depth, and so on. If a
previously visited vertex is encountered, then all the
vertices explored between the two visits of that
vertex are identified as cycle vertices. The running
time of this method is the same as that of the Depth-
First Search. A number of cycle-detecting strategies
are reviewed in [6].

3. The graph is undirected, and a path exists from any
vertex v to u and vice versa.

4. The initial and final locations of all agents lie on the
graph and are known.

5. All agents share the same graph and can (and may)
move on the edges of the graph and stay on the
vertices of the graph. A Move is defined as
transferring an agent from a vertex to its neighboring
vertex via their connecting edge.

6. Two or more agents may not simultaneously occupy
the same vertex in the graph. That is, the vertices are
supposed to be spaced sufficiently far apart so that
two agents can occupy any two distinct vertices
without having collision.

7. Agents have sequential (i.e. one at a time)
movements on non-Cycle Edges of the graph. In
other words, an agent at vertex v can move to its

 Journal of Industrial Engineering 2 (2009) 41-54

45

neighboring Leaf or Internal vertex u only if u is
unoccupied. Agents occupying other vertices in the
graph do not affect this movement.

8. Agents can have concurrent movements on Cycle
Edges of the graph with the following condition: an
agent at Cycle Vertex v can move to its neighboring
Cycle Vertex u if u is unoccupied, or the agent on u
can evacuate the vertex u before the first agent
reaches it, or no other agent is approaching vertex u
via another edge.

3. Solvable Graphs

In Solvable Graphs (SGm) any configuration of at most
m agents can be reached from any initial configuration
through agents’ moves along the graph’s edges. However,
a principal question is to determine the maximum number
of agents a graph with known topology can accommodate
such that any final configuration can be reached from any
initial configuration. This question can be rephrased as
“what topology a graph must have to be solvable for a
specific number of agents?”

It is noted that we are trying to find the maximum
number of agents a graph is solvable for. Obviously, any
graph solvable for m agents is also solvable for k < m
agents since there will be more empty vertices and so
deadlocks can be resolved more easily.

For finding the maximum number of agents a graph is
solvable for, it is essential to investigate the conditions for
changing the arrangements of a number of agents through
sequential or concurrent moves. Regarding that the graph
is assumed to be cyclic, we will first study the solvability
conditions of a single cycle, and then expand the results to
general Compound graphs through a number of lemmas
and theorems.

Imagine a single cycle of k vertices: the total number
of distinct configurations of k agents located on the
vertices of the cycle is k!. However, regarding that the
only permitted movements on a cycle is the concurrent
clockwise or counterclockwise rotation of agents, only k
distinct configurations can be reached from an initial
configuration, all of which have the same sequence. It
follows that a single cycle is not sufficient for achieving
all k! permutations of agents, and so additional vertices
are needed for changing the sequence of agents. Lemma 1
formalizes this fact:

Lemma 1. A specific sequence of agents on a cycle
can be reordered iff at least an empty vertex is connected
to the cycle.

Proof. A sequence of agents a1, a2, …, ak can be
reordered (rearranged) only when any arbitrary agent, say
ai, could be located between any two other adjacent
agents, such as aj and ar. This is possible only by
removing ai from the agents’ chain (sequence) and
reinserting it between aj and ar. Apparently, as Fig. 4

illustrates, any outside vertex connected to the cycle (such
as vertex u) is a feasible position on which ai can lay
temporarily. If the departure of ai from the cycle is not
possible directly, the whole sequence of agents must
rotate until ai resides on vertex v, after which ai can move
to u. The agents remaining in the cycle further rotate until
aj and ar locate on both sides of the vertex v. Now ai can
re-enter the cycle, between aj and ar.

Conversely, if no vertex exists outside of the cycle,
then ai cannot exit the cycle and therefore cannot locate
between aj and ar. □

For our future reference, we will define a Basic
Unicycle Graph (BUG) as a single cycle fully occupied
by agents connected to one empty leaf (as in Fig. 4).

Fig. 4. Illustration for Lemma 1.

As Lemma 1 implies, cycles and their connected empty
vertices play a critical role in reordering the agents’
sequences, and hence in the solvability of Compound
graphs. The connected empty vertices help to make start-
to-goal paths of agents as free as possible and facilitate
resolving deadlocks.

Lemma 2. A graph is solvable iff any two agents can
interchange their positions.

Proof. If we show the transformation of a
configuration C1 to another configuration C2 merely
through position interchange of any 2 agents by f2: C1 →
C2, then using the Chain Rule for n agents, the
transformation of any initial configuration Ci to any final
configuration Cf can be shown by a sequence of 2-agent
exchanges, as a compound function fn: Ci → Cf
≡ f2

1 ○ f2
2 ○ …○ f2

n. It follows that if according to the
premise of the lemma any 2-agent interchange is possible,
then any n-agent interchange is also possible due to the
Chain Rule, which means the graph is solvable.

On the other hand, if a graph is solvable, then any
configuration is reachable from any initial configuration,
a special case of which could be the interchanging of just
two agents. This shows that graph solvability and 2-agent
interchanging are logically equal. □

Corollary 1. A Basic Unicycle Graph is solvable iff
one vertex in the graph is empty.

Proof. Regarding the proof of Lemma 1, for m agents
on a BUG, any final arrangement is accessible from any
initial arrangement, and so the graph is solvable.
Conversely, if there is no empty vertex in the graph, then
no sequence can be rearranged on the cycle. Therefore,
the assumption of no empty vertices is incorrect. □

v u

ai

aj

ar

Ellips Masehian et al./Designing Solvable Graphs for Multiple Moving Agents

46

Corollary 2. A graph comprised of a chain of i
vertices connected to the leaf of a Basic Unicycle Graph
is solvable iff h = i + 1 vertices in the graph are empty.

Proof. Let us first consider a graph made of one extra
vertex connected to the leaf of a BUG occupied by k
agents (as in Fig. 5). If the extra vertex is empty (hence
there are k agents and 2 empty vertices in total), then
according to Lemma 1 the graph is solvable for k agents.
If the extra vertex is occupied by an agent (hence there
are k + 1 agents and 1 empty vertex in total), then since
the new agent cannot enter the cycle, the graph is still
solvable only for k agents, and the number of necessary
empty vertices will be h = 2. By the same logic, the graph
is expanded by consecutively appending up to i vertices to
the leaf of the BUG, for which the number of necessary
empty vertices must increase as much as i + 1. If
h < i + 1, then there would be some agents on the chain
that are unable to reach the cycle and hence cannot be
reordered. □

Fig. 5. A Basic Unicycle Graph (gray vertices) is connected to a chain of
i vertices.

For a later reference, at this point we define a special
type of graph derived from the Basic Unicycle Graph,
called an Extended Unicycle Graph (EUG): An Extended
Unicycle Graph is a graph comprised of j chains of
vertices each with lengths of 1 ≤ i ≤ lmax connected to
some or all vertices of a Basic Unicycle Graph such that
there is no internal vertex with degree d(I) > 2. Fig. 6
depicts an example of EUG.

Lemma 3. An Extended Unicycle Graph is solvable iff
at least h = lmax vertices in the graph are empty.
Proof. We know that the maximum distance from the
EUG’s cycle to any vertex in the graph is lmax. The worst
case of interchanging the positions of two agents occurs
when an agent ai located on the vertex with maximum
distance from the cycle (i.e. lmax) has to move to the depth
of another chain of the graph. Since there is only one
cycle in the graph, at least the path P connecting the
vertex v(ai) and including the nearest cycle vertex must be
either initially empty, or able to be emptied by motions of
other agents. By having that many empty vertices, ai can
reach the cycle and concurrently move with other agents
of the cycle. Moreover, since the longest chain P is (or
can be) emptied, then all the agents on ai’s destination
chain can be accommodated on the P, making room for ai
to occupy its final destination vertex. After relocation of
ai, all other agents can return to their original positions via

Fig. 6. In a typical Extended Unicycle Graph (EUG) the length of the
longest chain is lmax.

moves in reverse order of their evacuation. This
concludes that at least h = lmax vertices in the graph should
be empty to enable any two agents to interchange and
hence make the graph solvable. □

Corollary 3. A Compound Graph is solvable iff at
least h = lmax vertices in the graph are empty, where lmax is
the length (diameter) of the graph’s Stem.

Proof. Any Compound graph with c cycles can be
regarded as a set of c distinct Extended Unicycle Graphs.
Since the Stem of the whole graph is the longest non-
cyclic path with a length of lmax, then any path P
connecting any agent on the graph to its nearest cycle
vertex has at most a length of lmax. Because the graph is
connected, it is possible to make any non-cyclic path free
of agents by having at least h = lmax empty vertices in the
graph via agents moving. Therefore, concluding from the
Lemma 3, all cycles of the graph are solvable, and since
each two adjacent cycles share a path between, it is
possible to move any agent to any vertex of a ‘far’ EUG
through moving on intermediate cycles located in
between. □

Theorem 1. The maximum number of agents for which
a Compound graph is solvable is m = |G| − |IS| − 1, in
which |IS| is the number of Internal Vertices on the Stem.

Proof. As stated in Corollary 3, the number of
necessary empty vertices in a solvable graph must be at
least h = ||S||, in which ||S|| is the number of edges on the
Stem. Referring to the definition of the Stem in Table 1
and Fig. 3, the length of a Stem can be expressed as
||S|| = |IS| + 1, in which |IS| is the number of its Internal
vertices. Regarding that the order of every graph is equal
to the sum of vertices occupied by agents and empty
vertices, i.e., |G| = m + h, it is concluded that
|G| = m + |IS| + 1, and therefore the maximum number of
agents on a solvable Compound graph is
m = |G| − |IS| − 1. □

The result of Theorem 1 serves as a foundation for the
next Sections of the paper.

4. Converting SGm Into SGm′

As discussed in Theorem 1, the maximum number of
agents for which a graph can be solvable is determined by
the order of the graph, |G|, and the number of internal

1 2 i

1 2 ij

1 2 i3

1 2 i2

1 2 i112

i4 1

2

i5 1

 Journal of Industrial Engineering 2 (2009) 41-54

47

Stem

a

b b

a

Stem

vertices on the Stem, |IS|. On the other hand, sometimes it
is desirable to modify a given Solvable Graph SGm in
order to accommodate larger or smaller numbers of
moving agents. This happens for instance when the graph
represents the routes of Automatic Guided Vehicles
(AGVs) on plant floor, or railways connecting urban or
rural districts.

Converting an SGm into SGm′ has two aspects:
(1) If m′ > m, then the SGm is partially solvable for m′

agents (i.e., it is a PSGm′). In this case, some vertices
and/or edges must be inserted or relocated to give an
SGm′.

(2) If m′ ≤ m, then the SGm is solvable for m′ agents. In
this case, there might be some redundant vertices and/or
edges in the graph which can be truncated or relocated to
give a ‘lean’ SGm′.

In this section, mainly the first case, i.e. the problem of
converting an SGm into an SGm′ (m′ > m), is dealt with,
where n = m′ − m additional agents should navigate on the
graph. Regarding that in an SGm the maximum number of
agents is m = |G| − |IS| − 1, accommodating n additional
agents requires that the difference |G| − |IS| be increased
by n.

The graph expansion/modification is done through four
basic operations: Vertex Insertion, Vertex Relocation,
Edge Insertion, and Edge Relocation.

It is noteworthy that for the second case above
(m′ ≤ m), all of the above basic operations can be
performed in reverse order. Precisely, Vertex/Edge
Insertion operations change to Vertex/Edge Deletion
operations, respectively, and Vertex/Edge Relocation
operations remain Vertex/Edge Relocations, but in
reverse order.

4.1. Vertex Insertion

In this operation the difference |G| − |IS| increases by
locating new vertices on the graph in a way that
augmenting |G| does not increase |IS|. This is done
generally by creating cycle vertices, or inserting new
leaves or internal vertices. Table 2 illustrates different
variations of converting an SGm into SGm+1 via vertex
insertion. For obtaining an SGm+n any combination of
these variations should be repeated for n times.

4.2. Vertex Relocation

In this operation, instead of adding new vertices to the
graph, existing vertices plus their connected edges are
relocated such that the difference |G| − |IS| is increased.
For converting an SGm into SGm+1, since |G| remains
constant, |IS| must be reduced by relocating its Leaf to
somewhere in the graph other than the Stem (as in Fig.
7(a)), through one of the methods explained in the Table
2. The Vertex Relocation operation must be repeated for
obtaining an SGm+n.

It is noted that when the Stem is not unique (as in Fig.
7(b)), relocating its Leaf will not increase the maximum
number of navigable agents since an alternative path will
be the new Stem with a length equal to the previous Stem.
In such cases, Vertex Relocation must be repeated until
|IS| decreases (Fig. 7(c) and 7(d)). Note that this operation
must be done in a way that the graph’s connectivity is
maintained.

4.3. Edge Insertion

In this operation no new vertices are added to the
graph; instead, new edges connecting existing vertices are
inserted such that the difference |G| − |IS| is increased. For
converting an SGm into SGm+n through the Edge Insertion
operation, since |G| remains constant in this operation, |IS|
must reduce by converting the Stem’s internal vertices
into cycle vertices. As a result, new cycles are created, as
shown in Fig. 8.

It is noted that when the Stem is not unique (as {h-e-d}
and {h-f-g} in Fig. 8(b)), similar to the Vertex Relocation
operation, inserting an edge on the Stem will not increase
the maximum number of navigable agents since an
alternative path will be the new Stem with a length equal
to the previous Stem. In such cases, edge insertion must
be repeated until |IS| decreases (Figs. 8(c) and 8(d)).
Table 2
Possible variations of converting an SGm into SGm+1 through Vertex
Insertion.

Description
Graphical Example (for m = 7)

SG7 SG8

Expanding
a cycle

Inserting a
Leaf on a

cycle
vertex

Inserting a
Leaf on an

internal
vertex

Inserting
an internal
vertex such

that |IS|
does not
increase

Ellips Masehian et al./Designing Solvable Graphs for Multiple Moving Agents

48

Fig. 7. Graph modification through Vertex Relocation. Dashed areas
indicate Stems. The graphs are SG6, SG7, SG7, and SG8, respectively.

Fig. 8. Graph modification through Edge Insertion. Dashed areas
indicate Stems, which change as new edges are inserted in the graph.
The graphs are SG8, SG9, SG9, and SG10, respectively.

4.4. Edge Relocation

In this operation, instead of adding new edges to the
graph, existing cycle edges are relocated to create ‘longer’
cycles (i.e. cycles with larger number of vertices within)
such that the difference |G| − |IS| is increased.

For converting an SGm into SGm+n through the Edge
Relocation operation, since |G| remains constant, |IS| must
reduce by converting the Stem’s internal vertices into
cycle vertices, as shown in Fig. 9. Note that this operation
must be done in a way that the graph’s connectivity is
maintained.

As mentioned earlier, when the Stem is not unique,
relocating a cycle edge will not increase the maximum
number of navigable agents since an alternative path will
be the new Stem with a length equal to the previous Stem.

In such cases, Edge Relocation must be repeated until |IS|
decreases.

Fig. 9. Graph modification through Edge Relocation. Dashed areas
indicate Stems. The graphs are SG6 and SG7, respectively.

It should be noted that in real world applications,
where existing of multiple cycles or cycles with large
number of vertices are not practically feasible, instead of
expanding the number or size of cycles, we may expand
the trees connected to cycles of graphs such that the
difference |G| − |IS| remains unchanged, and the graph
remains solvable for the same number of agents.

5. Minimal Solvable Graphs

For a specific number of agents (m), a notable subclass
of Solvable Graphs SGm is the set of Minimal Solvable
Graphs (MSGm) which have the minimum number of
vertices necessary for accommodating m agents.
Considering that the complexity of graph searching
operations is directly influenced from the graph size,
finding Minimal Solvable Graphs would significantly
ease the tasks of graph designing and multi agent motion
planning. In this Section the topologies of Minimal
Solvable Graphs are introduced through a number of
theorems. Also, a special subset of MSGs are identified
which have the minimal number of edges.

Theorem 2. The minimum number of vertices for a
graph to be solvable is m + 1.

Proof. As stated in the Theorem 1, the maximum
number of agents in a solvable graph is m = |G| − |IS| − 1,
and so |G| = m + |IS| + 1. For minimal number of vertices,
|IS| must take the least possible value, which is 0. It
follows that |G| = m + 0 + 1 = m + 1, and so MSGms have
m + 1 vertices. □

Corollary 4. Minimal Solvable Graphs do not contain
any internal vertices.

Proof. As proved in Theorem 2, the Stem in MSGs
does not contain internal vertices (i.e. |IS| = 0). On the
other hand, since the Stem is the longest non-cyclic chain
and no other path may have more internal vertices than it,
then there should be no internal vertices in the entire
graph. □

Corollary 5. An MSGm is not solvable for more than m
agents.

Proof. Since an MSGm has m + 1 vertices, placing one
more agent on the graph will make the graph fully

a

b

c

b

c

a

b

a

c

(a)

(d)

(b)

(c)

b

c

a

a h

e

f c b

d

g

h

e

f c

d

gb

h

e

f

d

g b

a h

e

f cb

d

g

(a) (b)

(c) (d)

 Journal of Industrial Engineering 2 (2009) 41-54

49

occupied, and hence no sequential moves would be
possible. □

Theorem 3. An MSGm with c cycles has m + c edges.
Proof. According to the Euler’s Formula, for a

connected planar graph with V vertices, E edges, and F
faces, the following equation holds: V − E + F = 2
(proved in [5]). Each cycle divides the space into two
faces: a finite face enclosed in the cycle, and an infinite
face outside of the cycle. In the context of our definitions
and notations, by excluding the infinite face from both
sides of the Euler’s Formula, it can be rewritten as

|G| − ||G|| + c = 1. (1)
As proved in Theorem 3, in an MSGm, m = |G| − 1.

Therefore,
m + 1 − ||G|| + c = 1, (2)
⇒ m − ||G|| + c = 0, (3)
⇒ ||G|| = m + c, (4)

which proves the theorem. □
Corollary 6. An MSG has minimal edges if there is

only one cycle in the graph.
Proof. It was proved previously that an MSGm

containing c cycles has m + 1 vertices and m + c edges.
The number of edges is minimal when c = 1, i.e. there is
be only one cycle in the graph. □

For constructing MSGm, m + 1 vertices must be
connected such that at least one cycle and no internal
vertices are formed. As an example, all possible
topologies of Minimal Solvable compound Graphs for
m = 6 agents are shown in Fig. 10. All these graphs have
6 + 1 = 7 vertices, 0 internal vertices, and 6 + c edges, in
which c is the number of cycles. In order to obtain various
topologies for MSGs, a number of transformation
operations are worked out and illustrated in Table 3.

Table 3

 Operations for creating different topologies of MSGs.

Description Graphical Examples (for m = 7)

Converting a cycle vertex
into a leaf connected to a

cycle

Converting a leaf
connected to a cycle into

a cycle vertex

Relocating a leaf
connected to a cycle

between cycle-vertices

Transforming cycles with
lengths of c1 and c2 into

cycles with lengths c1 − 1
and c2 + 1

Since MSGms have |G| = m + 1 vertices and ||G|| = m +

c edges, and regarding that compound graphs have at least
one cycle, Minimal Solvable Graphs with one cycle have
minimal number of edges, as well as vertices. Therefore,
for minimizing the edges of an existing MSGm, multiple
cycles must be decomposed into one cycle, via operations
described in Table 4.

Fig. 10. All possible Minimal Compound Solvable Graphs for m = 6 agents (MSG6).

Ellips Masehian et al./Designing Solvable Graphs for Multiple Moving Agents

50

Table 4

 Methods of creating MSGs with minimal number of edges.

Method Description Graphical Examples (for m = 6)

V
er

te
x

R
el

oc
at

io
n

Creating larger
cycles instead of

two or more cycles

Converting cycles
vertices into leaves
connected to cycles

V
er

te
x

D
el

et
io

n

Deleting common
edges in cycles

6. Designing Lean Graphs

Although the results of the previous sections are of
theoretical nature, they can be used straightforwardly in
real world applications, such as designing and reshaping
transportation networks, railways, traffic roads, AGV
routs, and robotic workspaces for multiple moving agents
such as trains, vehicles, and robots.

On the other hand, in order for a graph to be utilized as
the structure of a real network, its topology must be suited
to the application it is designed for. Thus, efficiency is an
important issue in designing and tailoring applied graphs.

A graph is considered to be efficient if, in addition to
being solvable, has no or very few redundant edges and
vertices. Lacking redundant elements (i.e. edges and
vertices) in a solvable graph becomes substantially
significant particularly when the cost of constructing real
world counterparts of graph elements (such as roads,
railways, canals, etc.) is remarkably high.

In order to implement the findings of the previous
sections in making an efficient graph, a new algorithm is
developed in this section, which operates in two phases:

(a) Compatibility phase, and (b) Rightsizing phase.

Table 5

 Possible operations in the Rightsizing Phase.

Method Description Results Graphical Examples (for m = 6)

Vertex
Deletion

Deleting the Stem’s leaf if the
Stem is unique The Stem becomes shorter

Edge
Deletion

Deleting the cycle edge if it does
not change the Stem

A cycle vertex is converted into a leaf
connected to an internal vertex

A cycle vertex is converted into a leaf
connected to a cycle vertex

No change in the type of the vertex

 Journal of Industrial Engineering 2 (2009) 41-54

51

In the Compatibility phase, the given graph is made

compatible with the needs and constraints of the
application. This may include making the graph solvable
for the specified number of agents by expanding it if it’s
not solvable, or reducing the size of the graph if it is
solvable for an excessive, unnecessary number of agents.
The output of this phase is a Solvable Graph for exactly
the predefined number of agents, e.g., k.

In the Rightsizing phase, the SGk is further examined
to find any redundant edges or vertices for pruning. We
will call the resultant graph a ‘Lean’ graph since it is fully
operational and optimized for the application at hand.

In expanding the size of the graph in the Compatibility
phase special care must be taken to comply with the
limitations and conditions of the application. For
example, there might be no sufficient space for inserting a
vertex or edge, or that inserting an edge is infeasible
economically or technically. In case that the graph is not
capable of accommodating the specified number of
agents, a possible engineering solution could be either
reducing the number of agents or inserting the required

graph elements such that the sustained expense is
minimized.

On the other hand, in reducing/pruning the graph,
some vertices might be indelible as they are essential to
the system, as the positions for loading, feeding, or
parking machines or vehicles. Therefore, possible
operations in the Rightsizing phase are Vertex Deletion
and Edge Deletion operations, and Vertex/Edge
Relocation and Insertion are not considered. The results
of Vertex/Edge Deletion operations are illustrated in
Table 5.

It must be noted that although deletion of redundant
vertices or edges from the graph may reduce the overall
cost of network design and construction, it may lead to
higher costs of agents’ movements as well, since by
possessing a more limited space for maneuvering and
reshuffling, agents may be forced to travel / stop more
frequently for resolving deadlocks. The details of the
algorithm is explained in the flowchart illustrated in Fig.
11.

 Fig. 11. Flowchart of the algorithm for designing a lean graph. |Ci| is the order of the ith cycle. The dashed gray areas include

 the two main phases, the Compatibility and Rightsizing phases.

Detect all cycles,
set c = No. of cycles

Detect alternative Stems (the
longest paths in the graph)

Is the Stem
unique?

Delete its leaf

No

Yes

Delete all Common
Cycle Edges (if any)

Initialize:
i = 1 (the cycle counter)
j = 1 (the cycle edge counter)

Input the initial graph and the
number of moving agents, k

Start

Calculate the maximum
number of agents:
m = |G| − |IS| − 1

m < k
YesExpand the graph using Vertex/Edge

Insertion and Relocation operations.

m = k Prune the graph using Vertex/Edge
Deletion operations.

Will deleting ei
j

increase |IS| or
make the graph
disconnected?

No

Delete ei
j

Yes
j = j + 1

i = i + 1
j = 1

i = c

No

Yes

j > |Ci|

Yes

No

Stop

Are there more
than one cycle?

Yes

No

UD1

No

Ellips Masehian et al./Designing Solvable Graphs for Multiple Moving Agents

52

7. Practical Application

In this section a practical illustrative example is
provided for demonstrating a typical application of the
results of the previous sections. Specifically, it is shown
how designing a Solvable Graph and then optimizing it
might help solving an industrial shop floor problem.

Suppose a factory is consisted of a workshop and two
warehouses, one for raw material and one for finished
products. Te production area accommodates two pressing,
three drilling, and three grinding machines, as well as
other equipment for milling, forging, turning and
assembly, arranged as departments. Each of these
machines or departments requires certain amount of raw
material (or unfinished parts) to be loaded, processed,
unloaded and then transported to other divisions of the
factory. The layout of the factory and the
loading/unloading positions for each machine and
department are shown in Fig. 12.

Fig. 12. Layout of the factory. The specific locations for loading /
unloading parts and material are shown with small circles.

Currently the material and products are carried
manually by carts and pallets, but the management
decides to upgrade the factory’s transportation system and
utilize Automatic Guided Vehicles (AGVs). However,
there are a number of constraints and conditions in this
regard.
Constraints:
1. The AGVs can only move along predefined paths

realized by embedding special type of wires in the
floor and covering them with epoxy resins for safety
and durability.

2. Due to space limitation, no two AGVs can move
along a single passageway or corridor side by side,
and should therefore wait until the passageway (i.e.

the wire track) is evacuated and emptied from other
AGVs.

3. AGVs can only stop at certain locations for
loading/unloading or changing their tracks. They
cannot stay at any point on the track.

4. Since the factory’s production system is Job-Shop,
the volume of interdepartmental transportation is
high. Therefore, all AGVs need to have access to all
points of the transportation network. In other words,
all AGVs must be able to reach any destination from
any initial position.

5. Each AGV is equipped with some batteries that
actuate it and provide power for its sensors and
control unit, and therefore needs to be recharged
daily. The recharging is done during the factory’s
idle times, i.e. at nights. However, for safety
reasons, recharging hubs are located in warehouses
so that AGVs can be recharged and kept secured at
nights.

6. The cost of laying out wire tracks is proportionate to
their lengths. Also, situating each stop point requires
additional expense due to the special sensors and
circuits needed. These initial costs are much higher
than the costs of increased movements the AGVs
need to do for avoiding collisions or deadlocks.

7. The management has decided to carry out the
upgrade in two phases: in the first phase, 12 AGVs
are planned to operate in the factory, and in the
second phase, in parallel with increasing the
production volume and variety, the number of AGVs
will be increased to 18.

Problem:
The problem is to design a network of wire tracks and

stopping stations such that the total cost of upgrading is
minimized while the above constraints are fulfilled. In
other words, it is desired to plan a Solvable Graph for 12
agents (for the first phase) which is efficient in terms of
the number of vertices and edges.
Solution:

As a starting point, the Voronoi Diagram of the factory
is calculated, which is the collection of points equidistant
from two or more facilities or walls (refer to Section 1 for
more details). Implementing the Voronoi Diagram is quite
proper since it yields the safest paths passing through
narrow corridors and production facilities. Fig. 13 depicts
the Voronoi Diagram of the factory.

As can be seen in the Fig. 13, the Voronoi Diagrams
has some small redundant edges connected to concave
corners of the workspace. These edges, however, can be
easily pruned (removed) from the diagram. Also, there are
some vertices very close to each other (as shown in
dashed circles in the Fig. 13) which can be merged for
simplicity and practicality.

U
P2

D
1

G1

D
2

D
3

Ra
w

 m
ate

ria
l

Pr
od

uc
t

In
ve

nt
or

y

Ra
w

 m
ate

ria
l

Ra
w

 m
ate

ria
l

Milling department

Forging
dept.

Assembly station

G2

Turning department

G3

P1

Ra
w

 m
ate

ria
l

Ra
w

 m
ate

ria
l

Ra
w

 m
ate

ria
l

Pr
od

uc
t

In
ve

nt
or

y
Pr

od
uc

t
In

ve
nt

or
y

Pr
od

uc
t

In
ve

nt
or

y

Pr
od

uc
t I

nv
en

to
ry

 Journal of Industrial Engineering 2 (2009) 41-54

53

Fig. 13. Voronoi Diagram of the factory, which is the collection of safest
paths amid facilities.

The next step is to modify the pruned Voronoi
Diagram in order to comply with the requirements of
loading/unloading stations imposed by the constraint 3.
This is done by superimposing the Voronoi Diagram and
the stations’ locations, as illustrated in Fig. 14.

Fig. 14. Superimposition of the Voronoi Diagram and stopping stations.

Nearly all stopping stations situate at proper positions
on the Voronoi Diagram, except for the upper-left corner,
for which we proposed a simplifying solution depicted in
Fig. 15.

As stated in the constraint 7 above, the management
has decided to operate the network for 12 AGVs in the
first phase. By taking into consideration all possible
vertices of the network, the maximum number of AGVs
that can travel in the whole factory is m = 33 − 3 − 1 = 29.
Although in this case a large number of AGVs can
operate, they have to make use of all vertices (including
those in warehouses) for accessing all stations, which may
make their travels long and unnecessary, or expose the
warehouses to disorder and insecurity.

The engineering team responsible for designing the
network recommends limiting the scope of AGVs’
motions to the production workshop, such that no AGV
can enter the warehouses except for material loading or
unloading, and therefore is only allowed to travel in the
production area for resolving deadlocks with other AGVs.
In this case, the maximum number of agents able to move
will be m = 15 − 3 − 1 = 11. Since this number is less that
the required number of AGVs the management has
planned, either of the vertices v17 or v26, which are the
nearest vertices to the production area, is selected to be
included in the operational network (refer to Fig. 15 for
vertex numbers). This resolution will not affect the size of
the network’s Stem, and so the number of operational
AGVs increases to m = 16 − 3 − 1 = 12, which will make
the network compatible with the requirements of the
management.

Fig. 15. A simplified AGV transportation network for the factory.

For Rightsizing the network, deleting edges v12-v8 and
v12-v7 is proposed, regarding their lengths. Also, if there
would be the possibility of creating an edge between v2
and v7, then there would be no need to utilize vertices v17
or v26 as recommended earlier.

For increasing the production volume and variety, the
number of AGVs is planned to increase to 18. For this
phase two possible scenarios are:

(1) Utilizing 7 additional vertices located in the
warehouse areas, such as v16, v17, v18, v19, v20, v21 and v23.
In this case the maximum number of AGVs will be
m = 22 − 3 − 1 = 18.

(2) Creating an edge between vertices v2 and v7 and
utilizing 4 additional vertices located in the warehouse
areas (i.e. v17, v20, v26, v29). In this case the maximum
number of AGVs will be m = 19 − 0 − 1 = 18, which will
enable us to delete the edges v12-v8 and v12-v7 in the
Rightsizing phase.

Each of the above solutions should undergo financial
and technical feasibility studies to be selected and
finalized.

Milling department

Forging
dept.

Assembly station

1

Turning department

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

24

23

25

26

27

29

30

31

32

Ellips Masehian et al./Designing Solvable Graphs for Multiple Moving Agents

54

8. Discussion and Conclusion

The time complexity of the proposed method for
verifying the solvability of a graph is in O(n2) which is
spent on detecting cycles and identifying the Stem, where
n is the number of graph vertices. Also, calculating the
maximum number of agents operable on a given graph
takes is performed in the same time order. In contrast,
investigating the solvability of a Multi Agent Motion
Planning problem of m agents on a graph with n vertices
through exhaustive enumeration will require p different
permutations of agents to be checked as calculated in (5),
which is far beyond the time order of the presented
algorithm.

!

()!

n
p

n m
=

−
 (5)

Moreover, verifying whether a graph is SGm would
require q operations to be checked as calculated in (6), for
any initial and final configurations, which is again
exponentially time consuming. These figures demonstrate
the effectiveness of our findings in terms of required time
and memory.

2

1

!
()!

m

i

nq n i=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

= −∑ (6)

In designing transportation networks for multiple
autonomous agents (such as mobile robots, AGVs, cars,
etc.) which can merely move along the network’s arcs, it
is important to make sure that the graph has a proper
topology and sufficient number of vertices (relative to the
number of agents) to enable the agents move planning.
This paper deals with the topology of Solvable Graphs
and introduces the new concept of Minimal Solvable
Graphs and investigates their properties, which are the
smallest graphs that satisfy the feasibility conditions for
multi agent motion planning for any initial and final
configurations of agents. Also a new algorithm is
proposed for making an existing graph solvable and lean
for a given number of agents.

In this paper we supposed that the agents may move
concurrently on cycles and sequentially on internal
vertices and leaves of the graph. For further research it is

possible to assume all moves to be concurrent and find the
minimum sequence of moves to reach the final
configuration with different edge lengths and agents
velocities. Also, further research is underway for working
out solvability conditions for Purely Cyclic Graphs and
Partially Solvable Graphs.

References

[1] V. Auletta, A. Monti, D. Parente, G. Persiano, A Linear-Time
Algorithm for the Feasibility of Pebble Motion on Trees,
Algorithmica, Vol. 23(3), 223-245, 1999.

[2] V. Auletta, D. Parente, G. Persiano, A New Approach to Optimal
Planning of Robot Motion on a Tree with Obstacle, proceding of
4th European Symposium on Algorithms (ESA), Spain, 25-27,
1996.

[3] J. F. Canny, The Complexity of Robot Motion Planning, The MIT
press, Cambridge, Mass, 1988.

[4] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. E. Kavraki, S. Thrun, Principles of Robot Motion: Theory,
Algorithms, and Implementations, MIT Press, Boston, 2005.

[5] R. Diestel, Graph Theory, Springer-Verlag, New York, 2000.
[6] B. C herkassky, A.V. Goldberg, Negative-cycle detection

algorithms, Mathematical Programming, Vol. 85(2), 277-311,
1999.

[7] Y.K. Hwang, N. Ahuja, Gross motion planning - a survey, ACM
Comp. Surveys, Vol. 24(3), 219-291, 1992.

[8] D. Kornhauser, G. Miller, P. Spirakis, Coordinating pebble
motion on graphs, the diameter of permutations groups and
applications,proceding of 25th IEEE Symp. On Foundations of
Comp. Science, 241-250, 1984.

[9] J.C. Latombe, Robot Motion Planning, Kluwer Acad. Pub,
London, 1991.

[10] E. Masehian, A.H. Nejad, Multi robot motion planning on trees;
Part I: feasibility of motions, submitted to IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), St. Louis,
USA, 2009.

[11] E. Masehian and A.H. Nejad, Multi robot motion planning on
trees; Part II: minimal agent motions, submitted to IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), St. Louis, USA, 2009.

 [12] S. Onn, M. Tennenholtz, Determination of social laws for agent
mobilization, Artificial Intelligence, Vol. 95, 155-167, 1997.

[13] M.R.K. Ryan, Multi-robot path planning with subgraphs,
proceding of 19th Australasian Conf. Rob. and Autom, Auckland,
New Zealand, 2006.

[14] R.M. Wilson, Graph puzzles, homotopy, and the alternating group,
Journal of Combinatorial Theory, Series B, Vol. 16, 86-94, 1974.

