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Abstract 

Vendor managed inventory is a continuous replenishment program that is designed to provide major cost saving benefits for both vendors 
and retailers. Previous research on this area mainly included single objective optimization models where the objective is to minimize the 
total supply chain costs or to maximize the total supply chain benefits. This paper presents a bi-objective mathematical model for single-
manufacture multi-retailer with multi-product in order to maximize their benefits. It is assumed that demand is a decreasing and convex 
function of the retail price. In this paper, common replenishment cycle is considered for the manufacturer and its retailers. Then, the 
proposed model converts to the single-objective optimization problem using a weighted sum method. A genetic algorithm (GA) is applied 
to solve it and response surface methodology is employed to tune the GA parameters. Finally, several numerical examples are investigated 
to demonstrate the applicability of the proposed model and solution approach. 
Keywords: Bi-objective optimization; Vendor managed inventory; Genetic algorithm. 

1.  Introduction 

Supply chain management is a set of approaches used to 
efficiently integrate suppliers, manufacturers, warehouses, 
and stores so that merchandise is produced and distributed 
in the right quantities, to the right locations, and at the right 
time in order to minimize total costs while satisfying 
service-level requirements (Pasandideh et al., 2011). One of 
the well-known concepts utilized in supply chain is the 
vendor managed inventory (VMI) models (see Disney & 
Towill, 2002; Cheung & Lee, 2002). 

VMI is a program that has been recognized as one of the 
most successful practices that enhances supply chain 
integration. VMI is a industry practice for supply chain 
collaboration, in which the manufacturer manages inventory 
at hand the retailer and decides when and how much to 
replenish. Under VMI program, the vendor is able to 
determine the timing and quantity of replenishment and 
access to the retailer’s inventory and demand data. 
Consequently, the vendor can coordinate his long-term 
plans and control the day-to-day flow of goods and 
material. On the other hand, retailers incur no ordering cost 
and are guarded against excessive inventory cost by 
contractual agreements (Guan & Zhao, 2010). 

 The benefits of VMI for retailers included reduction of 
overhead costs when consignment stock is adopted, and  

 

 
 
 
 
 

transfer of inventory costs to the manufacture; while the 
benefits of VMI for manufacture are not very 
straightforward (Lee & Ren, 2011). There are many 
researches on the VMI-driven supply chains. A part of these 
researches focus on measuring the benefits of adopting this 
inventory cooperative strategy, and another part look into 
the optimal decisions made by the members of the supply 
chain by adopting a VMI contract (Almehdawe & Mantin, 
2010). 

Yao et al. (2007) introduced a model to explore the 
effects of cooperative supply chain initiatives such as 
vendor managed inventory (VMI). This model was 
developed by Vlist et al. (2007) where the shipment sizes 
from supplier to buyer increase, inventory at the supplier 
goes down and inventory at the buyer goes up. Zhang et al. 
(2007) presented an integrated VMI model for a single-
vendor and multi-buyer, where the vendor purchases and 
processes raw materials and then delivers finished items to 
multi-buyer. Investment decision and constant production 
are considered where the buyers’ ordering cycles are 
different. In their research, buyers can replenish more than 
once in a production cycle time. 

The impact of the consignment inventory (CI) and 
vendor-managed inventory was studied by Gümüş et al. 
(2008). In this paper, analyzing the CI is the goal in a two-
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party supply chain under deterministic demand. This 
research provided some general conditions under CI 
benefits for the vendor, customer, and two parties together. 
Sari (2008) presented a comprehensive simulation model 
representing two popular supply chain initiatives, which is 
collaborative planning, forecasting and replenishment 
(CPFR) along with VMI. The aim is selection of an 
appropriate collaboration mode in business conditions. 
Their results showed that benefits of CPFR are always 
higher than VMI. An integrated production-inventory 
model is developed by Zavanella and Zanoni (2009). They 
studied a particular VMI policy, which is known as 
consignment stock (CS) for both the buyer and supplier. Yu 
et al. (2009a) illustrated how the vendor can take into 
account the advantage of the information for increasing his 
own profit by using a Stackelberg game in a VMI system.  
Yu et al. (2009b) studied how to analyze the intrinsic 
evolutionary mechanism of the VMI supply chains by 
applying the evolutionary game theories. Darwish and Odah 
(2010) developed a model for a supply chain with single 
vendor and multiple retailers based on VMI, considering 
capacity constraints by selecting high penalty cost. 
Almehdawe and Mantin (2010) proposed supply chain 
included a single capacitated manufacturer and multiple 
retailers. They formulated a Stackelberg game vendor 
managed inventory framework under two scenarios: in the 
first, the manufacturer is the leader; in the second, one of 
the retailers acts as the dominant player of the supply chain. 
In addition, market demand is a function of the retail price. 
Also, This model was developed by  Yu et al. (2009c), 
considering advertising investment and pricing. 

Quaternary policy system towards integrated logistics 
and inventory aspect of the supply chain are presented by 
Arora et al. (2010). They considered a supply chain with 
multi-retailer and distributors, in which all distributors 
follow a unique policy and VMI system is used for updating 
the inventory of the retailers. Yang et al. (2010) studied the 
effects of the distribution centre (DC) in a VMI system 
comprising one manufacturer, one DC and multi-  retailer, 
where the system aims to maximize the overall system 
profit. Lee and Ren (2011) examined the total supply chain 
cost decreases under VMI, and the reduction of the supply 
chain total cost is more when there is exchange rate 
uncertainty, as compared to the case of exchange rate 
without uncertainty. They considered a state-dependent (s, 
S) policy for the supplier. Pasandideh et al. (2011) 
presented an economic order quantity model for vendor 
managed inventory control system with multi-product and 
multi-constraint and developed a genetic algorithm to find 
the best order quantities and the maximum backorder levels 
so that the total inventory cost of the supply chain is 
minimized. 

A logistics network design problem under VMI by 
considering location, transportation, pricing, and 
warehouse-retailer echelon inventory replenishment are 
presented by Shu et al. (2012). Zanoni et al. (2012) 
provided a two-level supply chain system with a single-
vendor and a single-buyer at each level. They studied 

different policies that the vendor may adopt to exploit the 
advantages offered by the VMI with consignment 
agreement when the vendor’s production process is subject 
to learning effects.  

In many researches related to this issue, the relationship 
between the manufacturer and retailers is a non-cooperative 
as Stackelberg game where the manufacturer is the leader 
and retailers are the followers. In addition, a few of them 
are related to the concept of pricing. Also, previous research 
on this area mainly included a single objective optimization 
model where the objective is to minimize the total supply 
chain costs or to maximize the total supply chain benefits. 
In this sense, some current approaches are based on the 
development of design-planning models ( Yu et al., 2009a; 
Almehdawe and Mantin 2010). 

This paper presents a two-level supply chain by 
assuming a single capacitated manufacture at the first level 
and multiple retailers at the second level. The manufacturer 
(vendor) produces multiple products, sells to retailers, and 
manages the retailers’ inventories under VMI. The demand 
rate for each product in each retailer is assumed to be 
considered a decreasing function of the retail price. This is 
called Cobb–Douglas demand function. This paper 
formulates a non-linear mathematical model with two-
objective that is called manufacture-retailers model, in 
order to maximize benefits for manufacturer and its 
retailers. The manufacturer and its retailers determine 
wholesale prices, retail prices, replenishment cycles and 
backorder quantity to maximize their profits. Finally, this 
model was converted to the single-objective optimization 
problem using a weighted sum method and genetic 
algorithm (GA) is applied for solving the proposed model. 
Response surface methodology is employed to tune the GA 
parameters. 

The paper is organized as follows. Section 2 contains 
defining the problem. Section 3 discusses Mathematical 
model of the problem. In Section 4, a genetic algorithm is 
developed to solve the problem. RSM parameter-tuned is 
described in Section 5. In order to demonstrate the 
application of the proposed methodology, we provide 
several numerical examples in Section 6. Finally, 
conclusion is provided in Section 7. 

2.  Defining the Problem 

Let us consider a two-echelon supply chain that consists 
of a single manufacturer and multiple retailers. The 
manufacturer’s capacity is finite and produces different 
products with a fixed production rate, and sells the products 
to its retailers with a common replenishment cycle. Thus, a 
common replenishment cycle eliminates the influence of the 
variation of the common replenishment cycle and backorder 
rate of every retailer. The manufacturer must sell the 
different products at the different wholesale prices to its 
retailers. Manufacturers and retailers are operating in 
distinctive markets and there is not any competition against 
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each other. In order to facilitate the VMI contract, the 
retailers allow the manufacturer to access their inventory 
data. For having their managed inventory by the 
manufacturer, each retailer pays to the manufacturer a cost 
of 휉  per unit consumed per time unit. The manufacturer’s 
decisions are included in its replenishment cycle of the 
finished products, wholesale prices and fraction of 
backlogging. On the other hand, the retailers’ decisions are 
included their retail prices. The following basic 
assumptions are made for the proposed models: 
1. The demand function for every retailer and every 

product is constant over time and convex function 
with respect to its retail price. 

2. Lead-time of the each product at each level of the 
supply chain is zero. 

3. The production setup cost occurs at every beginning of 
the common replenishment cycle. 

4. The whole production process is continuous without 
any production setup cost. 

5. Planning horizon is infinite. 

3. Mathematical Model of the Problem 

In order to develop the mathematical model of the 
problem, let us introduce the notations. 
 
3.1. Indices 
 
푐    Index for retailers (푐 = 1,2,… , 푛) 
푖     Index for product types (푖 = 1,2,… , 퐼) 
 
3.2. Input Parameters 
 
휉    Inventory management cost of the product 푖 for retailer 
푐 ($/unit/time) 
푐푚	  Production cost per unit for finished product ($/unit) 
훷  Transportation cost per unit for finished product shipped 
from the manufacturer to retailer ($/unit) 
푟      Production rate of the finished product 
푆      Setup cost for a common cycle time for product 푖 ($) 
푆푅   Fixed order cost paid by the manufacturer to retailer 푐 
($) 
휋    Backorder cost paid by the manufacturer to retailer 푐 
for product 푖 ($/unit/time) 
퐻      Holding cost at the manufacturer’s side ($/unit/time) 
ℎ    Holding cost paid by the manufacturer at retailer c’s 
side for product 푖 ($/unit/time) 
 
3.3. Decision Variables 
 
푤   Wholesale price of the finished product 푖 for retailer 푐 
($/unit) 
푝   Retail price charged by retailer 푐 for product 푖 ($/unit) 
푏   Fraction of backlogging rate of product 푖 in a cycle for 
retailer 푐 ($/time) 

퐶   Common replenishment cycle time for the finished 
product 푖 
 

The demand faced by each retailer for the each product, 
which is controlled through the VMI setting, is assumed a 
Cobb–Douglas demand function that characterized by a 
constant elasticity demand function of the following 
 
퐷 = 푘 푝 						∀푖 = 1,… , 퐼, 푐 = 1,… , 푛   (1) 
  

 In which 푘  and 푒 > 1 represents the market scale of 
retailer 푐 and the demand elasticity of retailer	푐 with respect 
to its retail price respectively.  
 
3.4. Mathematical Model 
 
The manufacture-retailers model is formulated as follows: 
 
푚푎푥 푧 = ∑ ∑ 퐷 (푤 − 푐푚 −훷)  

        −∑ − ∑ 퐻 [∑ ( )] − 푇퐶 		, 

(2) 

푚푎푥 푧 = ∑ ∑ 퐷 (푝 −푤 − 휉 )		,  (3) 

Subject to:  
푇퐶 =
∑ ∑ +∑ ∑ ℎ ( ) +

∑ ∑ 휋 ( ) − ∑ ∑ 휉 퐷 			 ,  

(4) 

∑ ∑ 퐷 ≤ 푟,  (5) 
푝 > 푤 + 휉 			 ,									∀푖 = 1, … , 퐼, 푐 = 1, … , 푛,  (6) 
0 ≤ 푏 ≤ 1		,												∀푖 = 1,… , 퐼, 푐 = 1, … , 푛,  (7) 
퐶 ,푤 ,푝 	≥ 0,					∀푖 = 1,… , 퐼, 푐 = 1,… , 푛,			  (8) 

 
It is clear that the above model is nonlinear with two 

conflicting objective functions. The first objective function 
given in Eq. (2) is net profit for manufacturer consisting of 
the revenue from sale of finished products to retailers at 
wholesale prices, production and transportation costs, setup 
costs, holding cost and inventory costs paid by the 
manufacturer, due to VMI system. Eq. (3) is net profit for 
all retailers. Eq. (4) is total inventory cost incurred by the 
manufacturer to manage all retailers’ inventory, consist of 
the difference between all the inventory costs he realizes 
and the revenue he receives from the retailers for managing 
their inventory. The inventory costs at each retailer’s side 
are the fixed inventory costs, variable inventory costs, and 
back-ordering costs. Eq. (5) satisfies that total demand 
faced by the manufacture does not exceed his production 
capacity. Eq. (6) shows the least acceptable price in order to 
assurance at least positive net profit for all retailers. Eq. (7) 
is to set the limits for the fraction of backlogging rate and 
Eq. (8) guarantees positive value for each decision 
variables. Fig. 1 shows how we can obtain average holding 
costs and backorder costs for retailers. Also, Fig. 2, shows 

Journal of Optimization in Industrial Engineering 15 (2014) 37-45

39



the total inventory level of manufacture for product 푖 per 
common replenishment cycle. 

 
Fig. 1. Inventory level of retailer 푐 for product 푖 per common 

replenishment cycle 

 Fig. 2. Inventory level of the manufacture for product 푖 per common 
replenishment cycle 

3.5. Weighted sum method 

Many scalarzing methods exist for transforming a multi-
objective optimization problem to a single objective 
optimization problem. One of the most popular scalarizing 
methods is to combine the multiple objectives using a 
weighted sum method (Hawe & Sykulski, 2008): 
푀푎푥푖푚푖푧푒	푓	(푥) = ∑ 푤 푓 (푥)   (9) 
  

where 푓  is the normalized value of objective 푓  and the 
weights of the objectives 푤 > 0,  are the parameters of the 
scalarization. Therefore, Eq. (10) is objective function in 
the manufacture-retailers model as follows: 
푧 = 푤 푧 + 푤 푧    (10) 

4. Genetic Algorithm 

 
The proposed manufacture-retailers model is a NLP 

problem; obviously, solving the NLP problems are hard 
with exact methods because the NLP is an NP-complete 
problem (Kuk, 2004). Exact methods are complex and are 
not very affective for solving the NLP models. In recent 
years, genetic algorithms (GAs) are developed to solve the 
NLP problems. GAs are strong tools for solving the NLP 
models (Yokota et al., 1996). Therefore, a GA is utilized to 
solve the presented model.  

The fundamental principle of GAs was first introduced 
by Holland, 1992, encode the features of a problem by 
chromosomes, where each gene represents a feature of the 
problem. In GA, the crossover and mutation operators are 
used with the given probabilities. In general, GA consists of 
the following steps (Ramezanian et al., 2012): 
Step 1: Initialize a population of chromosomes. 
Step 2: Evaluate the fitness of each chromosome. 
Step 3: Create new chromosomes by applying genetic 
operators such as reproduction, crossover and mutation to 
current chromosomes. 
Step 4: Evaluate the fitness of the new population of 
chromosomes. 
Step 5: If the termination condition is satisfied, stop and 
return the best chromosome; otherwise, go to Step 3. 

 
4.1 Chromosome Representation 
 

In a GA, a chromosome is a string or trail of genes, 
which is considered as the coded figure of a solution 
(appropriate or none appropriate). Designing a suitable 
chromosome is the most important stage in applying the GA 
in the solution process of the problem (Ramezanian et al., 
2012). In this research, the chromosomes are provided by a 
퐼 × (3푛 + 1)	matrix. Fig. 3 illustrates the general form of a 
chromosome. 

C1  w1n w12 w11  b1n  b12  b11  p1n  p12  p11 

…  … … …  …
   …  …  …  …  …  

CI  wIn wI2 wI1  bIn  bI2  bI1  pIn  pI2  pI1 

Fig. 3. The chromosome presentation 

4.2 Evaluation and Initial Population 

When GA is employed for an optimization problem, a 
fitness value, which is the value of the objective function 
(which is defined in Section 3), is needed to be assigned for 
a chromosome, as soon as it is generated. An initial 
population (or a batch of chromosomes) is generated 
randomly. Some of the generated chromosomes may not be 
feasible, so the generation of the chromosomes is controlled 
via penalty method to generate feasible chromosomes.  

4.3 Selection 

The selection provides the opportunity to deliver the 
gene of a good solution to next generation. Various 
selection operators can be used to select the parents. In this 
study, the roulette wheel selection is employed where 
chromosome selection in mating pool is based on their 
probability selection. The probability selection of each 
chromosome is evaluated based on its fitness value. 

4.4 Crossover 

Crossover is a process in which chromosomes exchange 
genes through the breakage and reunion of two 
chromosomes to generate a number of children. In this 
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study, to explore solution space an arithmetic crossover is 
chosen. Arithmetic crossover generates an offspring by 
linear combining two selective parents. Let 푋 =
(푥 , 푥 ,…푥 ) and 푋 = (푥 ,푥 ,…푥 ) be two selected 
parents. Therefore, two offspring are obtained based on the 
following equations: 

 
푦 = 훼 푥 + (1 − 훼 )푥 ,				푖 = 1, … , 푛, (11) 
푦 = 훼 푥 + (1 − 훼 )푥 ,				푖 = 1, … , 푛,  

 
where 훼 ∈ (0,1). 

 
4.5 Mutation 

 
Mutation generates an offspring solution by randomly 

modifying the parent’s features. It helps to keep a 
reasonable level of diversity in the population, and serves 
the search by jumping out of local optimal solutions. In this 
research, an exchange mutation is chosen. This mutation 
swaps the value of the two random selected genes of current 
solution together. 

  
4.6 Stopping criterion 
 

The search process stops if the number of generations is 
greater than a maximum number of generations or the some 
specified number of generations without improvement of 
best-known solution is reached. 
 

5.  Parameter Tuning 

 
In this section, the Response Surface Methodology 

(RSM) is utilized to optimize GA parameters. RSM is a 
collection of mathematical and statistical techniques that is 
useful in the modeling and analyzing of problems. A 
response of interest is influenced by several variables, and 
the objective is to optimize this response (Najafi et al., 
2009). Usually, the first step is to fit a first-order model and 
conduct a test of lack of fit. However, because the first-
order model was inadequate, a second-order model is used. 
The most popular second-order model is the central 
composite design (CCD) (Najafi et al., 2009). In this 
research, there are 2  factorial points (fractional 
factorial), 푛  central points, and 2푘 axial points. The 
second-order model that is used in the CCD is: 

퐸(푌) = 훽 + 훽 푋 + 훽 푋

+ 훽 푋 푋  

(12) 

 
where 퐸(푌) is the expected value of the response variable, 
훽 , 훽 , 훽  are the model parameters, 푋  and 푋  are the input 
variables that affect the response 푌, and 푘 is the number of 
factors being studied. In this research, 푘 factors that affect 
the response are population size (PopS), the maximum 
number of generations (MaxG), the crossover probability 
(Pc), the mutation probability (Pm) and the problem size 
(ProS). Three levels values of these parameters are listed in 
Table 1. 

Table 1    
The GA parameter levels 

Factors Range Min Medium Max 
ProS 3-7 3 5 7 
PopS 20-100 20 60 100 
MaxG 200-700 200 450 700 

Pc 0.5-0.8 0.5 0.65 0.8 
Pm 0.1-0.2 0.1 0.15 0.2 

 
In order to evaluate the GA parameters, three different 
problem sizes 3, 5, 7 products with two retailers are 
considered. We chose 푤 =0.5 and	푤 =0.5 in which 
	푤 + 푤 = 1. The values of model parameters are 
generated from second column in Table 2.  
 

Table 2           
Data generation 

Parameters Values in RSM Values in examples 
푘  3500 푈(2000 , 5000) 
푒 	  1.9 푈(1.4 , 2.4) 
휉  2.45 푈(1.5 , 3.4) 
푐푚 3 3 
훷 2 2 
푃 2000 2000 
푆  30 푈(20 , 40) 
푆푅  27.5 푈(10 , 45) 
휋  150 푈(100 , 200) 
퐻  3.75 푈(2.5 , 5) 
ℎ  1.75 푈(0.5 , 3) 

 
In Table 2, term “푈” is related to the uniform distribution. 
These examples are coded with MATLAB 7.8 (R2009a) 
software. The design matrix of the selected central 
composite design along with the experimental results is 
shown in Table 3. 
The PTYPE column of Table 3 represents the type of the 
design points (‘‘−1” for the axial points, ‘‘0” for the central 
points and ‘‘1” for the factorial points). The last column of 
Table 3 represents the best fitness value for each problem. 
The experimental results are analyzed with Minitab 16.2.2 
software. Second-order coefficients (P < 0.05) are listed in 
Table 4.   
The ANOVA is presented in Table 5. 
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Table 3                                                                                            
Design matrix of the central composite design 

Run PTYPE ProS PopS MaxG Pc Pm Fitness 
1 -1 7 60 450 0.65 0.15 6247.26 
2 1 7 100 200 0.80 0.10 6345.54 

3 1 7 100 200 0.50 0.20 6112.45 
4 0 5 60 450 0.65 0.15 1238.43 
5 1 7 100 700 0.80 0.20 6331.24 
6 0 5 60 450 0.65 0.15 1009.22 
7 0 5 60 450 0.65 0.15 1235.65 
8 -1 5 20 450 0.65 0.15 1126.28 
9 -1 5 60 450 0.50 0.15 1135.25 
10 -1 5 60 450 0.80 0.15 1106.65 
11 -1 3 60 450 0.65 0.15 1198.55 
12 1 3 100 700 0.80 0.10 2001.65 
13 1 7 100 700 0.50 0.10 6159.78 
14 -1 5 100 450 0.65 0.15 1113.67 
15 0 5 60 450 0.65 0.15 1235.35 
16 1 3 100 200 0.50 0.10 987.64 
17 1 3 20 700 0.50 0.10 978.00 
18 0 5 60 450 0.65 0.15 998.34 
19 1 3 20 200 0.80 0.10 1234.80 
20 1 3 20 200 0.50 0.20 1005.65 
21 1 7 20 700 0.80 0.10 6223.15 
22 0 5 60 450 0.65 0.15 1235.64 
23 1 7 20 200 0.50 0.10 5948.65 
24 -1 5 60 700 0.65 0.15 1135.38 
25 -1 5 60 450 0.65 0.10 1256.98 
26 1 3 100 700 0.50 0.20 931.32 
27 1 7 20 200 0.80 0.20 6897.14 
28 -1 5 60 450 0.65 0.20 1298.88 
29 0 5 60 450 0.65 0.15 1254.54 
30 1 3 100 200 0.80 0.20 956.56 
31 -1 5 60 200 0.65 0.15 1465.44 
32 1 7 20 700 0.50 0.20 6100.50 
33 1 3 20 700 0.80 0.20 904.66 

 

Table 4                                                                                            
Multiple regression analysis for fitness 

Term Coef SE Coef T P 
Constant 9756.100 1325.200 7.362 0.000 

ProS -5165.400 202.200 -25.547 0.000 
PopS 19.600 7.100 2.768 0.017 
MaxG -1.100 1.300 -0.867 0.003 

ProS*ProS 616.600 18.400 33.547 0.000 
ProS*Pc 318.200 96.100 3.310 0.006 
ProS*Pm 812.300 288.400 2.817 0.016 
PopS*Pc -10.700 4.800 -2.223 0.046 
PopS*Pm -38.000 14.400 -2.635 0.022 

S = 115.365    R-Sq = 99.91%    R-Sq (adj) = 99.75% 

Table 5                                                                                            
Analysis of variance for fitness 

Source DF Seq SS Adj SS Adj MS F P 
Regression 20 172115701 172115701 8605785 646.61 0 
    Linear 5 122013254 10307990 2061598 154.9 0 
    Square 5 49599610 49599610 9919922 745.35 0 
    Interaction 10 502836 502836 50284 3.78 0.016 
Residual error 12 159709 159709 13309   
    Lack-of-fit 6 79714 79714 13286 1 0.502 
    Pure error 6 79995 79995 13333   
Total 32 172275410     

 
The level of significance is 5%. The (R2) value of 99.91% 
and the F-value for the regression was significant at a level 
of 5% (P < 0.05), while the lack of fit was not  
 

 
significant at the 5% (P > 0.05), indicating the good 
predictability of the model. The estimated regression of the 
model fitness is given in Eq. (13) 
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푓푖푡푛푒푠푠 = 9756.1	 − 	5165.4 ∗ (푃푟표푆) + 19.6 ∗ (푃표푝푆)

− 	1.1 ∗ (푀푎푥퐺) + 616.6 ∗ (푃푟표푆)

+ 318.2 ∗ (푃푟표푆) ∗ (푃푐) 

+812.3 ∗ (푃푟표푆) ∗ (푃푚) − 10.7 ∗ (푃표푝푆) ∗ (푃푐) 

−38 ∗ (푃표푝푆) ∗ (푃푚) 

(13) 

Furthermore, the optimal values of GA parameters are 
presented in Table 6 where the problem size (ProS) is five 
products. 

 Table 6                                                                                            
Optimal values of GA parameters 

Parameters Value 
PopS 100 

MaxG 200 
Pc 0.78 
Pm 0.2 

6.  Numerical Examples 

In order to assess the applicability of proposed model, 
10 numerical examples with different size of retailers, 
different finished products and randomly generated data are 
considered. These random data are generated according to 
the information provided in Table 2 (the third column). 
Both objectives are equally important. In order to evaluate 
the performance of the proposed GA, the numerical 

examples are solved using GAMS 23.5 software on an 
Intel(R), core (TM) i7, 3.23 GHz lap top with 512 Mb 
RAM. The GA is implemented for 10 independent runs for 
each instance. The best objective function values of these 
examples and related the CPU times are considered. Then, 
the obtained solutions of GA and GAMS are compared 
together, and results are reported in Table 7. 

To compare objective values obtained by GA with the 
results of the GAMS, a quality measure, the percent 
deviation of solution, is defined according to the following 
equations set: 

 
%퐷푒푣푖푎푡푖표푛 . =

푧 − 푧
푧 × 100	 (14) 

 
The performance of the GA is illustrated in Fig. 4, with 

respect to the solution deviance with the objective values 
obtained by GAMS. 

In the Table 7 and Fig. 4, the comparisons focused on 
the objective values, and CPU times reveal that increasing 
the size of retailers, increases 푧 and CPU times. 
Nevertheless, it can be seen that the quality of solutions 
obtained by GA is near to the GAMS results. Therefore, 
these comparisons prove the effectiveness of our approach. 
Table 8 shows the computational results by GA for an 
example with two products and three retailers.  

 
 

 
 
Table 7 
Comparison of GAMS and GA results 

products Retailers 
GAMS 

GA 

푧 ($) CPU time(s) Best ($) CPU time(s) % Dev. obj. 

3 2 2481.864 0.098 2434.130 46.13 1.923 

2 3 1872.378 0.086 1831.001 44.11 2.210 

3 3 3350.679 0.120 3154.794 58.39 5.846 

5 3 2789.081 0.190 2660.450 38.59 4.612 

3 5 2017.491 1.228 2003.650 39.82 0.686 

5 5 7284.784 1.929 7198.001 40.66 1.191 

3 7 6052.431 2.301 5994.210 48.77 0.962 

5 7 12339.969 2.877 11385.200 63.20 7.737 

3 9 6885.329 5.457 6611.547 41.45 3.976 

5 9 13341.413 8.721 12984.780 51.19 2.673 
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Fig. 4. Percent deviance of objective values obtained by GA and GAMS 

Table 8 
Computational results by GA 

Retailer 
Product 1 Product 2 

푤 푝 푏 퐷 푤 푝 푏 퐷 

1 7.654 10.738 0.007 39.254 5.548 11.257 0.008 35.649 

2 11.986 17.395 0.014 49.849 11.262 16.087 0.006 56.315 

3 4.588 14.922 0.017 27.660 12.122 14.277 0.007 29.754 

Replenishment cycle 0.914 1.067 

7. Conclusion  

Previous research on this topic mainly included a 
single objective optimization model where the objective 
was to minimize the total supply chain cost or maximize 
the total supply chain benefits. This paper developed a bi-
objective mathematical model to solve a VMI problem in 
a two-echelon supply chain that was formulated with a 
single manufacturer and multiple retailers. This model is a 
non-linear mathematical model that maximizes 
manufacture profit and retailer’s profit. The manufacturer 
and its retailers determine wholesale prices, retail prices, 
replenishment cycles and backorder quantity to maximize 
their profits. It is assumed that the demand is a function of 
retail price. Then, bi-objective problem was converted to 
single-objective using weighted sum method. Since the 
model of the problem was NP-hard, a GA was developed 
to solve it and RSM is applied to tune the GA parameters. 
Finally, several numerical examples were presented to 
describe the sufficiency of the proposed strategy. It can be 
seen that the implemented algorithm obtains good 
solutions within a reasonable computational time. In 
future research, this work can be expanded by addressing 
the problem in variation of the common replenishment 
cycle. 
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