
Journal of Industrial Engineering 3(2009)33-37

33

An Iterated Greedy Algorithm for Flexible Flow Lines with Sequence
Dependent Setup Times to Minimize Total Weighted Completion Time

Bahman Naderia, Mostafa Zandieh b,*, Seyed Mohammad Taghi Fatemi Ghomia
aDepartment of Indusrial Engineering, Amirkabir University of Technology, Tehran, Iran

bDepartment of Industrial Management, Shahid Beheshti University,G.C., Tehran, Iran

Received 5 Oct., 2008; Revised 2 Dec., 2008; Accepted 9 May., 2009

Abstract

This paper explores the flexile flow lines where setup times are sequence- dependent. The optimization criterion is the minimization of total
weighted completion time. We propose an iterated greedy algorithm (IGA) to tackle the problem. An experimental evaluation is conducted
to evaluate the proposed algorithm and, then, the obtained results of IGA are compared against those of some other existing algorithms.
The effectiveness of IGA is demonstrated through comparison.

Keywords: scheduling, flexible flow line, sequence dependent setup time, iterated greedy algorithm.

1. Introduction

Flexible flow line (FFL) is one of the well-known
scheduling problems. In FFL, a set of n jobs is to be
processed at a set of g production stages, each of which
has several identical machines in parallel [3]. Some stages
may have only one machine, but for the plant to be
qualified as an FFL, at least one stage must have several
machines. Each job is processed at only one machine in
each stage. These machines are identical. In a FFL, all n
jobs need to be processed at all g stages in the same order,
starting at stage 1 and ending up at stage g. The jobs also
might not undergo all stages (i.e. they can skip some
stages). FFL has numerous applications in real industrial
settings; including automobile manufacturing [9] and
printed circuit board manufacture [16]. Each job i requires
a fixed and pre-determined amount of processing time in
each stage j. This amount is represented by Pij.
Additionally, we assume that all the tasks and jobs are
independent and available for being processed at time 0.
The m machines are continuously available.
 Each machine j can only process a job i at a time. Each
job i is processed on maximumally one machine at each
stage j. The process of a job i on a machine j cannot be
Interrupted. There are infinite buffers between all stages;
if a job needs a machine that is occupied, it waits

Indefinitely until it is available again. There is no
transportation time between stages.

Many papers have considered a variety of practical
and impractical assumptions. However, there always
exists a feeling of a gap between theory and practice in
the literature. Recently, however, sequence dependent
setup times have become popular among researchers who
intend to investigate the scheduling decisions in real
manner. We consider that between the processing of two
consecutive jobs on the same machine, some setup must
be performed depending on the ordering of these two
jobs. In many real-life situations such as chemical,
printing, pharmaceutical, and automobile manufacturing
[10], the setup operations, such as cleaning up or
changing tools, are not only often required between jobs
but they are also strongly dependent on the immediately
preceding process on the same machine [3]. The hybrid
flowshop is regarded as an NP-hard problem [6]. Due to
the difficulties inherent in flexible flow line scheduling,
no exact method has been introduced so far to be able to
tackle these problems within reasonable amount of time.
Hence, a variety of algorithms dividable into two main
groups, namely heuristics and metaheuristics, have been
applied to solve these problems as well as to find optimal
or near optimal schedules [3, 4 and 10]. In this work, we
intend to apply an iterated greedy algorithm. It is common
in the scheduling literature to look for a sequence of jobs

* Corresponding author. Telfax.: +98-21-29902382; e-mail: m_zandieh@sbu.ac.ir

 Bahman Naderi, et al/ An iterated greedy algorithm for flexible flow lines with sequence dependent setup times ...

34

that minimizes the maximum completion time (or
makespan) which coincides with the time at which the last
job in the sequence is finished at the last machine.
Another frequently considered criterion is the
minimization of total weighted completion time (TWCT),
denoted as ∑ wi × Ci, Ci and wi being the completion time
of job i at the shop and the relative priority of job i.
TWCT is regarded as a more realistic case of makespan
[10].

Given the above explanation, in this paper we explore
flexible flow line problems with sequence dependent
setup times to minimize the total weighted completion
time. An iterated greedy algorithm is presented to solve
the problem.

The rest of this paper is organized as follows: Section
2 reviews the literature on the problem. Section 3
describes the iterated greedy algorithm. Section 4
evaluates the proposed algorithm. Finally, Section 5
provides some conclusions and future research.

2. Literature review

Since Johnson’s pioneering work [5] on the two
machine regular permutation flowshop, a lot of research
has been conducted in both exact and heuristic methods
for the flowshop and its other extensions. Salvador [14]
first considered scheduling hybrid flowshops with no
buffers between stages and no sequence dependent setup
times. Branch-and-bound techniques were applied to
determine the optimal permutation schedule in terms of
makespan. Wittrock [15] presented a heuristic for the
HFFS for the minimization of the work-in-progress (WIP)
criterion. An adaptable space-based problem search
method for the HFFS was proposed by Leon and
Ramamoorthy [7]. Kurz and Askin [2] studied dispatching
rules for flexible flow lines with identical machines and
sequence dependent setup times. They explored three
classes of heuristics. The first class of heuristics (cyclic
heuristics) is based on the simplistic assignment of jobs to
machines with little or no regard for the setup times. The
second class of heuristics is based on the insertion
heuristic for the traveling salesman problem (TSP). The
third class of heuristics is based on Johnson’s rule. They
proposed eight heuristics (CH, RCH, SPTCH, FTMIH,
CTMIH, MMIH, 1, g Johnson’s rule, g/2, g/2 Johnson’s
rule) and compared the performances of those on a set of
test problems.

Moreover, Kurz and Askin [3] formulated the
sequence- dependent setup times (SDST) flexible flow
lines as a mixed integer programming (MIP) model. Due
to the difficulty in directly solving the MIP model, they
developed a random keys genetic algorithm (RKGA).
Problem data is generated to evaluate the RKGA with
other dispatching rules, which they proposed aforetime.
Zandieh et al. [16] proposed an immune algorithm for the

same problem and showed that its algorithm outperforms
the RKGA of Kurz and Askin [3] through the same
benchmark. Ruiz and Stützle proposed an iterated greedy
algorithm for permutation flowshop to minimize
makespan [12] and SDST flowshop to minimize
makespan and total weighted tardiness [13]. They
compared IGA with other exiting methods to evaluate the
algorithm. The effectiveness of IGA is shown in these two
papers. Ruiz and Maroto [9] investigated hybrid
flowshops with sequence-dependent setup times and
unrelated machines. A complete survey of scheduling
problems with setup times was given by Allahverdi et al
[1]. Recently, Ruiz et al. [11] considered a realistic case
of hybrid flexible flowshops with unrelated machines and
some applied assumptions. They presented a mixed
integer programming model and some heuristics for the
problem.

3. Iterated greedy algorithm

Iterated greedy algorithm (IGA) is a metaheuristic
approach to solve combinational optimization problems
by iterating over greedy constructive heuristics. This
algorithm is well-known in the computer science
literature due to their simplicity with promising results.
the use of a straightforward extension of an iterated local
search to the context of greedy construction heuristics is
the main advantage of using the IGA. It also provides
very good results in a variety of applications. Jacobs and
Brusco [4] applied the IGA to the set covering problem
successfully. And in field of scheduling, Ruiz and Stützle
[13] proposed an IGA for SDST flowshops and show that
their algorithm is very effective. Therefore, we have been
thinking of utilizing an iterated greedy algorithm for our
problem.

The IGA generates a sequence of solutions by iterating
over greedy constructive heuristics using two main
phases, namely destruction and construction. In the
destruction phase, some solution components are removed
from a previously constructed complete candidate
solution. The destruction procedure is applied and chosen
randomly to a permutation S of n jobs without repeating d
jobs. These jobs are then removed from S in the order
they were chosen. This
procedure results in two subsequences: 1) the partial
sequence SD with n–d jobs; and 2) the sequence of d jobs
denoted as SR. SR contains jobs that have to be reinserted
into SD to yield a complete candidate solution in the order
they are removed from S. The construction procedure
applies a greedy constructive heuristic to construct a
complete candidate solution. We start with SD and insert
the first job of SR, SR (1), into all possible n–d+1
positions of SD. The best position for SR (1) in the
Augmented SD sequence is the one that yields the smallest
objective function. This process is iterated until SR is

Journal of Industrial Engineering 3(2009)33-37

35

Procedure Iterated greedy

S := NEH_heuristic;
S := IterativeImprovment_Insertion(S);
Sb := S;
while termination criterion not satisfied do

S′ := S; % Destruction phase
for i :=1 to d do

S′ :=remove one job at random from S′ and insert it in S′R;
endfor
for i := 1 to d do % Construction phase

S′ := best permutation obtained by inserting job SR (i) in all possible positions of S′;
endfor
S″ := Local search
if TWCT(S″) < TWCT(S) then % Acceptance Criterion

S := S″;
if TWCT(S) < TWCT(Sb) then % check if new best permutation

Sb := S″;
endif

elseif (random* ≤ exp{–(TWCT(S″)–TWCT(S))/Temperature}) then
S := S″;

endif
endwhile
return Sb

end
 * "random" is a random number distributed uniformly in [0, 1].

Fig. 1. General outline of the proposed IGA.

empty. By having done these two phases in order to
improve each solution, we define a local search for the
iterative greedy algorithm. There are many different
alternatives for a local search algorithm to be considered. In
this paper, we use a local search proposed by Ruiz and
Stützle [12]. Finally, we consider whether the new
sequence is accepted as an incumbent solution for the next
iteration. We have two stopping criteria. The first one is the
simplest acceptance criteria in order to accept new
sequences, namely, if they provide a better mean
completion time value. The second one is based on the
simple SA-like acceptance criterion with a constant
temperature. This constant temperature depending on the
particular instance is computed by the formula below: ܶ݁݉݁ݎݑݐܽݎ݁ ൌ ∑ ∑ ୀଵୀଵ݊ ൈ ݃ ൈ 10 . ܶ

Where T is a parameter that needs to be tuned.

3.1 Encoding scheme and initial solution

We use job-based representation to encode a solution. In
job-based representation, the permutation of jobs is
determined, and then by a dispatching rule the jobs are
assigned to the machines. For example the first available
machine. In FFL problems without considering SDST, the
first available machine results in the earliest completion
time, but while taking into account SDST FFL, this
approach is not effective [9]. If setup times are considered
in FFL, the way in which we assign the jobs to machines is

modified accordingly, meaning that each job is assigned to
the machine that accomplishes the job at the earliest time in
a given stage. Our algorithm starts form NEH algorithm
[8].

3.2 Local search

We applied a very simple local search. The procedure of
this local search can be described as follows: The first job
(x1) in the sequence of current solution x is relocated to all
possible positions in sequence. If any of these sequence v
results in better makespan, current solution x is replaced by
the new sequence v. This procedure iterates at most for all
the subsequent jobs in sequence. If we include all the
improvements in i-th < n, the local search for the current
solution finishes. Figure 1 shows the general outline of the
proposed IGA.

4. Experimental evaluation

In this section, the performance of the proposed IGA is
evaluated by being compared with RKGA proposed by [3],
SPT cyclic, FTMIH and (g/2, g/2) Johnson’s rule from [2]
and NEHH of [9]. We conduct an experimental evaluation.
The algorithms are implemented in MATLAB 7.0 and run
on a PC with 2.0 GHz Intel Core 2 Duo and 1 GB of RAM
memory. We use relative percentage deviation (RPD) as

 Bahman Naderi, et al/ An iterated greedy algorithm for flexible flow lines with sequence dependent setup times ...

36

performance measure to compare the methods. When the
TWCT of each algorithm has been obtained for its
instances, the best solution obtained for each instance
(which is named Minsol) is calculated by all the algorithms.
Relative Percentage Deviation (RPD) is obtained by the
given formula below:

RPD = 100 • (Algsol – Minsol) / Minsol (1)

where Algsol is the TWCT obtained for a given algorithm
and instance. Obviously, lower values of RPD are
preferable. The stopping criterion is n2×g×1.5 milliseconds
computational time. This stopping criterion not only
permits for more time as the number of jobs or machines
increases, but also is more sensitive toward a rise in
number of jobs than number of stages.
Parameter tuning: It is known that the great choice of
parameters of an algorithm can influence the performance
of that algorithm. Our proposed IGA has two parameters, d
and T. Initial instances show us that the value of d = 2 and
T = 0.5 could be the best value for these parameters.
Data generation: Data required for a problem consist of the
number of jobs (n), range of processing times (pt), number
of stages (g) and whether all stages have the same number
of machines or not. Each stage requires data defining how
many machines exist at that stage (m(t)), range of the
sequence dependent setup times (SDST), and the ready
times. The ready times for stage 1 are set to 0 for all jobs.
The ready times at stage t + 1 are the completion times at
stage t, so this data need not be generated. We have n =
{20, 50, 80, 120} and g = {2, 4, 8}. The processing times
are generated by the uniform distribution over range (1,
99). The duration of sequence-dependent setup times is
defined as 25%, 50%, 100%, and 125% percent of
processing time. The probability of skipping (Sp) a stage
for each job is set at 0.10, or 0.40. The relative weights of
the jobs are randomly generated from a uniform
distribution over the range (1, 10). Therefore, there are 192
combinations of n, g, m(t), pt, SDST and Sp, and for each
combination we generate 5 instances. Factors and their
levels are shown in Table 1.
Table 1
Factors and their levels
Factors Levels
Number of Jobs 20, 50, 80, 120
Number of stages 2, 4, 8
Machine distribution Constant: 2
 Variable: U (1,4)
Processing Time U (1, 99)
SDST U (1, 25), U (1, 50), U (1, 99), U (1, 125)
Skipping probability 0.10, 0.40

4.1 Experimental results

We evaluate the algorithms in term of the selected
objective function with the set of instances generated in
previous subsection. The results of the experiments,
averaged for each combination of n and g (80 data per
average) are shown in Table 2. IGA outperforms the other
algorithms with RPD (Eq. 1) of 0.63%. The worst
performing algorithms are FTMIH and SPT cyclic with
RPD of 31.4% and 25.58%.

Table 2
Average RPD for the algorithms grouped by n and g
Instance SPT FTIMH John. NEHH IGA RKGA

20×2 37.90 40.32 27.92 6.86 0.29 5.77
20×4 29.43 37.04 21.29 9.73 0.52 3.48
20×8 23.98 29.56 18.45 9.84 0.59 2.78
50×2 30.64 35.07 26.85 5.36 0.14 3.16
50×4 23.63 35.42 23.63 6.38 0.98 3.45
50×8 21.90 26.19 16.59 7.03 1.10 1.44
80×2 31.60 37.88 27.68 2.84 0.31 4.97
80×4 20.44 28.53 18.79 3.23 0.72 2.38
80×8 19.33 23.07 15.40 4.73 0.81 2.18
120×2 29.41 33.25 27.73 1.45 0.59 5.13
120×4 22.31 28.17 19.48 2.65 0.67 2.45
120×8 16.35 22.32 13.70 3.26 0.88 1.99

Average 25.58 31.40 21.46 5.28 0.63 3.26

For further precise analysis of the results, we carried out

an analysis of variance (ANOVA). It is necessary to note
that due to the considerable difference between SPT,
FTMIH and (g/2, g/2) Johnson’s rule and the other
algorithms; we exclude them from our ANOVA. Means
plot and LSD (Least Significant Difference) intervals at the
95% confidence level for the type of methods factor are
shown in Figure 2. As could be seen, IGA statistically
supersedes the other algorithms. To analyze the possible
effects of number of jobs factor on the algorithms, we
computed the performance of the algorithms in the different
value of jobs. Figure 3 depicts the interaction between
factors type of algorithm and number of jobs. Our IGA
keeps a robust performance on various range of jobs, while
NEHH outperforms RKGA in the case of n = 120.

Fig. 2. Means plot and LSD intervals for the type algorithm

0
1
2
3
4
5
6

R
PD

NEHH IGA RKGA

Journal of Industrial Engineering 3(2009)33-37

37

Fig. 3. Means plot for the interaction between factors type algorithm and

number of jobs

5. Conclusion and future research

In this paper, we investigated flexible flow line
scheduling problems where setup times were sequence
dependent. Our optimization criterion was total weighted
completion time. An effective iterated greedy algorithm
was applied to tackle the problem. To evaluate the
performance of IGA, we compared it with some existing
algorithms in the literature using a standard. The results
supported the effectiveness of our IGA.

As future research, it could be interesting to work on a
population-based IGA for the problem and to compare its
performances with the IGA proposed here. Another
direction is to apply the IGA to other scheduling problems
like job shops and open shops.

Reference

[1] A. Allahverdi, C.T. Ng, T.C.E. Cheng, Y.M. Kovalyov, A survey of
scheduling problems with setup times or costs, European Journal of
Operational Research, vol. 187(3), 985–1032, 2008.

[2] M. E. Kurz, R.G. Askin, Comparing scheduling rules for flexible
flow lines. International Journal of Production Economics, vol. 85,
371–388, 2003.

[3] M. E. Kurz, R.G. Askin, Scheduling flexible flow lines with
sequence-dependent setup times, European Journal of Operational
Research, vol. 159(1), 66–82, 2004.

[4] L.W. Jacobs, M.J. Brusco, A local search heuristic for large set-
covering problems, Naval Research Logistics Quarterly, vol. 42(7),
1129–1140, 1995.

[5] S.M. Johnson, Optimal two and three-stage production schedules
with setup times included, Naval Research Logistics Quarterly, vol.
1, 61–67, 1954.

[6] Z. Jin, Z. Yang, T. Ito, Metaheuristic algorithms for the multistage
hybrid flowshop scheduling problem, International Journal of
Production Economics, vol. 100: 322–334, 2006.

[7] V.R. Leon, B. Ramamoorthy, An adaptable problem space-based
search method for flexible flow line scheduling, IIE Transactions,
vol. 29, 115–125, 1997.

[8] M. Nawaz, E.E. Enscore Jr, I. Ham, A heuristic algorithm for the m-
machine, n-job flowshop sequencing problem, Omega, vol. 11(1):
91–95, 1983.

[9] R. Ruiz, C. Maroto, A genetic algorithm for hybrid flowshops with
sequence dependent setup times and machine eligibility, European
Journal of Operational Research, vol. 169: 781–800, 2006.

[10] R. Ruiz, A. Allahverdi, Some effective heuristics for no-wait
flowshops with setup times to minimize total completion time,
Annals Operations Research vol. 156: 143-171, 2007.

[11] R. Ruiz, F. Sivrikaya Serifoglu, T. Urlings, Modeling realistic hybrid
flexible flowshop scheduling problems, Computers and Operations
Research, vol. 35 (4), 1151–1175, 2008.

[12] R. Ruiz, T. Stützle, A simple and effective iterated greedy algorithm
for the permutation flowshop scheduling problem, European Journal
of Operational Research, vol. 177, 2033–2049, 2007.

[13] R. Ruiz, T. Stützle, An Iterated Greedy heuristic for the sequence
dependent setup times flowshop problem with makespan and
weighted tardiness objectives, European Journal of Operational
Research, vol. 187(3), 1143-1159, 2008.

[14] M.S. Salvador, A solution to a special case of flow shop scheduling
problems, In: S.E. Elmaghraby (Ed.), Symposium on the Theory of
Scheduling and its Applications, 83–91, 1973.

[15] R.J. Wittrock, Scheduling algorithms for flexible flow lines, IBM
Journal of Research and Development, vol. 29(4), 401–412, 1985.

[16] M. Zandieh, M., S.M.T. Fatemi Ghomi, S.M. Moattar Husseini, An
immune algorithm approach to hybrid flow shops scheduling with
sequence-dependent setup times, Applied Mathematics and
Computation, vol. 180, 111–127, 2006.

0

3

6

9

20 50 80 120

NEHH
IGA
RKGAR

PD

number of jobs

 Bahman Naderi, et al/ An iterated greedy algorithm for flexible flow lines with sequence dependent setup times ...

38

