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Abstract 

In the classical data envelopment analysis (DEA) models, inputs and outputs are assumed as known variables, and these models cannot deal 
with unknown amounts of variables directly. In recent years, there are few researches on handling missing data. This paper suggests a new 
interval based approach to apply missing data, which is the modified version of Kousmanen (2009) approach. First, the proposed approach 
suggests using an acceptable range for missing inputs and outputs, which is determined by the decision maker (DM). Then, applying the 
least favourable bounds of missing data along with using the proposed range is suggested in estimating the production frontier.  A data set 
is used to illustrate the approach. 
Keywords: Data envelopment analysis, Missing inputs, Missing outputs, Range. 

1. Introduction 

Data envelopment analysis (DEA) is an approach, which 
is used for measuring the relative efficiency of a set of 
decision-making units (DMUs), which convert the same 
inputs to the same outputs (Charnes et al., 1978). DEA 
provides efficiency scores and efficient projections for 
inefficient DMUs. One of the most important 
qualifications of DEA is that inputs and outputs are 
known exactly. However, in the real-world DEA 
applications, there are many cases, in which there are no 
complete input/output quantities, and data contain some 
missing values. As a result, the classical DEA models are 
weak at efficiency evaluation of these kinds of systems. 
In recent years, there have been a few studies in the DEA 
literature dealing with missing data. Kao and Liu (2000) 
proposed an extended DEA model based on fuzzy theory 
to handle missing data. They suggested replacing the 
missing values with a fuzzy number and using the 
observed data to estimate membership functions of fuzzy 
efficiency scores. Smirlis et al., (2006) suggested an 
approach to estimating the amount of missing values. 
Kuosmanen (2009) in a systematic fashion proposed a 
method to handle missing data, in which the missed 
outputs are replaced with zero and missed inputs with a 
sufficiently large number. This approach will be discussed 
in the next section in more details, and our new interval 
data version of this work will be introduced. Azizi (2013) 
showed some drawbacks of Smirlis (2006) and replaced it 
by a new approach. Zha et al. (2013) introduced modified 
DEA models to calculate proper amounts of missing 
values. 

 
 
 
 
In this paper, after reviewing some approaches to missing 
data, a connection among some technologies, which can 
handle missing data, is presented and finally, by using 
decision makers (DMs) knowledge about the production 
system, an acceptable range for missing data is assumed, 
and missing inputs and outputs will be replaced by the 
worst case in the interval, respectively. The suggested 
approach can eliminate some of the disadvantages of 
other approaches.  
The rest of the paper is organized as follows. Section 2 is 
devoted to introducing the required models and notations. 
In section 3, three approaches in DEA in dealing with 
missing data will be discussed. The first technique 
eliminates DMUs with missing values. The second is 
based on eliminating outputs and inputs with missing 
values, and the last one is based on taking zero for 
missing outputs and taking high value for missing inputs. 
Afterward, we will present our approach based on having 
a range for missing data in section 4. Some features of 
this new approach are explored in this section. Section 5 
is devoted to presenting some numerical examples. 
Conclusions are given in section 6. 

2. Models and Assumptions 

There are some models and notations, which are required 
in our discussion about missing data.  
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2.1 Notations 

In general, the production possibility set (PPS) in a 
specific technology could be stated as 

 canproduce( , ) m sT 
 x y x y

.  
To present the required background, assume that there are 
n DMUs to be evaluated. Each DMU consumes varying 
amounts of m different inputs to produce s different 
outputs. Specifically, DMUj consumes amount xij of 
input i and produces amount yrj of output r. In the 
classical DEA models, non-negative data is assumed and 
further it is assumed that each DMU has at least one 
positive input and one positive output value. Under 
constant returns to scale (CRS) technology and complete 
data, the underlying production set could be represented 
based on data set as 

 ( , ) , , ; 0m s
j jDEA j j j j jT j  

      x y x x y y  

                 (1) 
Furthermore, TDMUo be the production possibility set, 
obtained by eliminating DMUO from the observe set 
(DMUO is a unit with missing input and/or output), and 
TXY be the production possibility set, obtained by 
eliminating output r’ and input i’ for all units. These 
technologies can be introduced as follows: 
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2.2 CCR model 

The following table represents envelopment and 
multiplier forms in both input and output orients of the 
CCR DEA model introduced by Charnes, Cooper, and 
Rhodes (1978) when the unit “o” is under evaluation to 
get its Farrell (1957) radial efficiency score. 
In all the original DEA models, a fundamental assumption 
is that the inputs and outputs are measured exactly with 
non-negative values on a ratio scale, and all the data are 
available. Suppose the value of a specific input/output for 
at least one unit is unknown, and it is impossible to collect 
and register complete data set. As a result, using those 
developed approaches is necessary to deal with missing 
values in the literature. The next section is devoted to 
presenting the main approaches in this area and discusses 
their potential pitfalls in dealing with missing data. 
 
 
 

3. Measuring the efficiency score of DMUs with 
missing data 

Several approaches are proposed for dealing with missing 
data. Here, a classified summary of these approaches is 
presented.  

3.1 Eliminating DMUs with missing values 

 One of the common strategies in DEA to handle missing 
data is eliminating DMUs including missing data; see, for 
example, Neal, Ozcan and Yanqiang (2002) among 
others. Although this approach is used in some DEA 
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Fig. 1. CCR models for measuring radial efficiency 

applications, it is not a good solution for a small sample 
size or cases with a large number of DMUs with missing 
values. When a considerable number of DMUs is 
eliminated from the sample, it may influence the 
efficiency scores of the remaining DMUs badly. In other 
words, the efficiency score of the remaining DMUs 
almost increases; this approach causes some inefficient 
DMUs to become efficient, and bias results are obtained. 
And finally, in this approach performance of those DMUs 
including missing data cannot be evaluated. 
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3.2 Eliminating outputs and inputs with missing values  

Another way to handle missing data is eliminating outputs 
or inputs variables, including missing data in evaluation. 
This technique is a common method in statistical science, 
especially in using SPSS software for data analysis. 
Again, in the presence of a considerable number of 
eliminated input/output variables, this approach also 
yields bias efficiency scores for all units. In this case, the 
efficiency score of DMUs almost decreases and this 
approach causes some efficient DMUs to become 
inefficient. The other problem of this approach, which 
occurs in rare cases, will happen if each input and output 
of all DMUs includes at least one missing value; then all 
the inputs and outputs need to be discarded from the 
sample, and one may not be able to evaluate the relative 
performance of the units. 

3.3 Assignment value approach 

Among the other novel approaches to handling missing 
data in DEA literature, Kuosmanen (2009) technique is 
notable, in which missing values are suggested to be 
replaced by some pre-specified values. Under constant 
returns to scale (CRS) technology, this approach proposes 
to replace missing outputs by zero, and missing inputs by 
a large positive number and then using the classical CCR 
DEA model for the new data setting. 
In the next section, this approach will be discussed in 
more details and by following its main idea, a new 
improved technique to handling missing data under DEA 
framework is proposed. 

4. Interval Data Instead of Missing Data 

As mentioned earlier, Kuosmanen (2009) suggests the use 
of dummy entries and replacing missing outputs by zero 
and missing inputs by sufficiently large positive numbers. 
This is the first systematic approach to dealing with 
missing data in the literature. Here, by acknowledging his 
work, we suggest some points to improve its domain of 
applicability in the real-world applications. The following 
discussion shows that Kuosmanen (2009) approach may 
show some DEA model infeasible.  
Taking zero for missing outputs and taking large number 
for missing inputs is not a proper choice for all production 
systems. As an instance, let assume all the outputs of 
DMUO are missed, so by using Kuosmanen method, we 

need to set ( 1,..., ); 0ror r s y   . Now, in the output-
oriented envelopment form of the CCR model, there will 
be a redundant constraint associated with output variables 
as 0 0.  jj

 This yields to an unbounded objective 

function value and it is equal to infeasibility of the 
multiplier form of the CCR model; both are unacceptable. 
This simple and of course rare case shows that 
Kuosmanen (2009) approach in handling missing data 

needs some modifications in order to increase its 
applicability.  
In general, even with preserving feasibility, such assessed 
dummy values may lead to misleading efficiency scores 
due to sensitivity problems in DEA as frontier technique 
based on extreme points. For a set of efficient units with 
missed inputs/outputs, accepting these values changes the 
efficient frontier and leads to bias efficiency estimation 
for all the units even for those with complete data. 
To modify Kuosmanen approach and increase its 
applicability, we suggest using an acceptable range as an 
interval value for missing data. In real-world applications, 
there are some estimation techniques to achieve such 
intervals; for example, by using decision makers (DMs) 
information on missed values. 
To introduce the modified approach, let’s assume xi’j and 
yr’j’ are missed in data set for some i’, r', j’ and j. Based 
on the decision maker’s experience, the following 
acceptable intervals for these missing data can be 
presented: 

'
 

i j
a x b and 

' ' 
r jc y d , where the 

constant bounds a, b, c, and d are real and positive 
numbers and depending the application could be selected 
using statistical or experimental techniques. 
Now, in constructing the production set based on 
estimated interval data, the most pessimistic values for the 
missing items within their intervals are used in our 
approach, i.e.

' ' '
, 

i j r jx b y c  then the classical CCR 

DEA models for efficiency evaluation of the new data set 
will be used. 
To show the results of this setting formally, let TRD 
denote the production possibility set determined by “range 
data” that uses the higher bound of the range for missing 
inputs and the lower bound of the range for missing 
outputs. We introduce TRD as follows: 
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(3) 
 
TRD, TDMUo, TDEA and TXY are related according to 
the following theorem. 
Theorem 1: Production possibility sets TRD, TDEA, 
TDMUo, and TXY are nested as: 

   DMUo
RD DEA

XY

T
T T

T

 


                   (4)  

Proof: Under constant returns to scale assumption, TDEA, 
TRD, TDMUo, and TXY could be defined through the 
following formulas: 
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Let the r’th output of DMUo is missed. 
1) First we show that 

RD DEA
T T : Due to the formulation 

of technologies in section 2.1, the only difference between 
sets 
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T and 
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T is in rth output of DMUo. For 
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constraint reads as
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Thus, the amount of acceptable 
'r o

y  in 
RD

T  must always 

be less than or equal to the corresponding value of 
'r o

y in 

DEA
T . Since the two sets are otherwise identical, it is 

proved that 
RD DEA

T T . 

2) In the second step, it will be shown that 
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T T : 

The constraint for output r’ in XYT  reads as 

'
1

0 0
n

r o j
j

y 
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So, the acceptable amounts of output r’ in set 
RD

T  are 

greater than or equal to the zero value implied by 
XY

T . 
Since the two sets are otherwise identical, the two sets 
position are related as 

XY RD
T T . 

3) And finally let show 
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Thus, the amount of acceptable 
'r o

y  in 
DMUo

T  must 
always be less than or equal to the corresponding value of 

'r o
y in 

RD
T  for any output. So, it is proved that 

DMUo RD
T T . 
The similar proof can be presented for missing inputs or 
for the case that missing inputs and outputs are existed.  

5. Numerical Examples 

In this part of the paper, through three numerical 
examples, a comparison on the results of the above- 
mentioned approaches in dealing with missing data will 
be made, and it will be shown that our proposed approach 
is more applicable than the other ones. The same data set 
as example 1 was analyzed in Kuosmanen (2009) paper. 
Data set of examples 2 and 3 are similar to the data set of 
some examples in research of Kuosmanen (2009). 
For simplicity of presentation, let 

I  be used to show the 
efficiency score of units when all the data are available; 

II for the efficiency score of units when the DMUs with 

missing values are omitted from the observation; 
III
 shows 

the efficiency score of units when the missing outputs or 
missing inputs are omitted from the data set; 

IV
 also 

shows the efficiency score of DMUs obtained by 
Kuosmanen (2009) approach and finally 

V
 denotes the 

efficiency score of DMUs, which are obtained by our 
interval approach. The data, which are in parentheses, are 
supposed be the exact values of the missing inputs or 
outputs. 
Example 1. Table 1 shows data for 5 hypothetical DMUs 
with one input X, and two outputs Y. The three last 
columns show an acceptable range of the missing items. 
Table 1 
 Five units including missing output values 
DMU X Y1 Y2 Missing X Missing  Y1 Missing  Y2 

A 1 15 45 - - - 

B 1 (20) 60 - [15,30] - 
C 1 35 40 - - - 

D 1 (45) 30 - [30,50] - 
E 1 50 10 - - - 
 

Table 2 reports efficiency score of the units computed by 
the five approaches by using output orientation of the 
CCR model. 

Table 2 
Efficiency scores for five units 

DMU 
I  II

 III
 IV

 V  
A 0.75 1 0.75 0.89 0.8 

B 1 - 1 1 1 
C 0.98 1 0.67 1 1 

D 1 - 0.5 0.5 0.82 

E 1 1 0.17 1 1 
Based on the results, when all data are known, the first 
approach shows DMUs B, D, and E are efficient. The 
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results in the second column show the strategy of omitting 
units, including missing data from the observation is 
beneficial for remaining units, for example, DMU A, 
which is not efficient in the original data set, becomes 
efficient. In contrast with the first approach, the results in 
the third column show when the output variable 
concluding missing value (Y2) is omitted, some of the 
efficient units, like D and E become inefficient in the new 
data set. It is caused by neglecting their good output 
performance in comparison with the other units. The 
fourth column shows efficiency scores computed by the 
Kuosmanen (2009) approach. In comparison with the 
second column, this approach suggests efficiency scores 
for all the units, and the results are more accurate in 
comparison with the previous approaches. The results of 
the new interval approach are reported in the last column 
of Table 3. The results show that the new approach gives 
a more accurate efficiency score in comparison with the 
original data results, as well as the Kuosmanen (2009) 
approach. However, there is a notable difference; DMU 
D, which is an efficient unit regarding the complete data 
set, gets a better rank in the interval approach compared to 
its score in Kuosmanen (2009) approach. 
The differences could be even more in real data set when 
more accurate approximations are used in the form of 
intervals, in which the unknown missing values are likely 
to belong, and the computed results of the modified 
approach will be more reliable. 
Example 2. Table 3 shows data for five hypothetical 
DMUs with two inputs X, and two outputs Y. The four 
last columns are used to show a selected range of missing 
inputs and outputs. 

Table 3 
Data for five units 

DMU X1 X2 Y1 Y2 

A 20 15 45 30 
B (35) 20 60 20 
C 30 35 (40) 15 

D (40) 45 30 50 
E 25 50 (10) 45 

DMU Missing X1 Missing X2 Missing Y1 Missing Y2 
A - - - - 
B [25,40] - - - 
C - - [30,45] - 
D [30,50] - - - 
E - - [5,15] - 

 
The computed efficiency scores for this data setting in the 
five models are summarized in the table 4. 
 
 
 
 
 
 
 

Table 4 
Efficiency scores for five units 

DMU 
I  II  III  IV  V  

A 1 1 1 1 1 
B 1 - 0.5 1 1 
C 0.59 - 0.21 0.31 0.44 
D 0.79 - 0.56 0.56 0.65 

E 1 - 0.45 1 1 
 
As it can be seen, scores in the last column computed 
using the new approach, gives the best approximation of 
the original efficiency scores among the other techniques. 
Example 3. As the last illustration example, consider the 
table 5, which shows data for five hypothetical DMUs 
with one input X, and one output Y. The two last columns 
of the table shows suggested ranges for missing data. 

Table 5 
the data of five units 

DMU X1 Y1 Missing X1 Missing Y1 
A 20 45 - - 
B (35) 60 [25,40] - 
C 30 (40) - [30,45] 
D (40) 30 [30,50] - 
E 25 (10) - [5,15] 

 
The computed efficiency scores using five approaches are 
included in Table 6. 

Table 6 
Efficiency scores for five units 
DMU 

I  II  III  IV  V  
A 1 1 - 1 1 

B 0.76 - - 0.27 0.67 
C 0.59 - - Infeasible 0.44 

D 0.33 - - 0.13 0.27 
E 0.18 - - Infeasible 0.09 

 
As the results show, two approaches are failed in 
computing efficiency scores for the units, including 
missing data. In addition, the method proposed by 
Kuosmanen (2009) cannot suggest an efficiency score for 
units C and D, and the new approach is the only 
technique, which finds feasible efficiency scores near to 
the original values. 

6. Conclusion 

One of the basic assumptions of the original DEA is that 
inputs and outputs are known on a ratio scale for all units. 
However, in many DEA applications, it is practically 
impossible to collect complete data sets, and missing 
values in some input/output variables are inevitable. In 
DEA literature, there have been few approaches, which 
are introduced for dealing with missing data. 
Through some simple numerical examples, it has been 
shown that the previous works like eliminating DMUs 
with missing values or eliminating missing inputs or 
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outputs may destroy the true classification of the units 
into efficient and inefficient ones. Also, these approaches 
may fail in measuring the efficiency scores of some units. 
One attempt in using missing data was done by 
Kuosmanen (2009), which may make infeasible solution 
for some DMUs. The current paper follows and extends 
the way proposed by Kuosmanen (2009) by assigning 
appropriate values as an acceptable interval for the 
missing data applying decision maker’s information. Then 
the worst bounds of the suggestion interval for variables 
with missing data are used to estimate the performance of 
DMUs. With some numerical examples, it was shown that 
the new approach is more applicable than the others in the 
existing literature.  
To address the many practical problems encountered in 
settings such as these, we suggest that more extensive 
research be done on evaluating economical efficiencies 
such as cost efficiency or profit efficiency for units with 
missing prices. 
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