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Abstract 

Planning robot trajectory is a complex task that plays a significant role in design and application of robots in task space. The problem is 
formulated as a trajectory optimization problem which is fundamentally a constrained nonlinear optimization problem. Open-loop 
optimal control method is proposed as an approach for trajectory optimization of cable parallel manipulator for a given two-end-point 
task in point-to-point motion. Dynamic equations are organized in a closed form and are formulated in the state space form. A 
computational technique is developed for obtaining optimal trajectory to maximize dynamic load carrying capacity. By solving the 
corresponding nonlinear TPBVP, the problem of optimal path and maximum carrying for a 6 DOF spatial cable robot is studied. Finally, 
dynamic modelling in ADAMS is presented and to validate the optimal control method, optimal trajectory concerned with dynamic 
motion is compared with the software results. 
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1. Introduction 

Parallel link manipulators are in general known for the 
simplicity of their mechanical design and their high 
strength and stiffness-to-weight ratios, because their 
actuators bear no moment loads but act in simple tension or 
compression. They are also known for their high force and 
moment capacity since their actuators act all in parallel. 
Such manipulators with solid adjustable length beams in 
the place of the cable ropes are fit used for the design of 
tyre test machines.  

Cable-based parallel manipulators are structurally 
similar to traditional parallel manipulators but the former 
has some advantages over the latter. Large workspace, high 
payload-weight ratio, transportability and economical 
construction are the most important advantages of Cable-
based parallel manipulators. These machines may be 
ideally suited for large scale manufacturing applications. 
These robots consist of a fixed base and a centrally-located 
end-effector, attached to a moving payload, which connects 
to cables whose tension is maintained along the tracked 
trajectory. One of the early works in Robocrane is  

 
 

Developed by NIST in  order to automate a crane for lifting 
operations (Albus et al. [1]). 
     The large payload capacity of Cable-based parallel 
manipulators allows their application to a large variety of 
tasks on lift systems. Dynamic Load Carrying Capacity 
(DLCC) of a manipulator is defined as the maximum 
payload that the manipulator can repeatedly carry in a 
defined trajectory.  

Several studies have been done about the payload 
capacity of robots. Wang and Ravani [7] offered a method 
for determining the maximum load capacity of fixed base 
robots, and treated the problem as the optimization of 
trajectory. Korayem and Nikoobin [6] employed an indirect 
approach based on the open loop optimal control for 
obtaining the optimal trajectory of robot manipulators to 
maximize the load carrying capacity for a given point-to-
point task. Recently, Korayem and Bamdad [4] determined 
the dynamic load carrying capacity of a typical cable 
suspended manipulator regarding tensile capacity of cables 
and actuators torque capacity for a given trajectory in a 
specified time, and Korayem et al. [5] have introduced a 
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procedure for finding optimal path of maximum load for a 
cable planar robot with new constraints. 

In this paper, dynamic equations are derived using 
combined Euler–Lagrange formulation and assumed modes 
method. To solve the optimal control problem, an indirect 
method via establishing the Hamiltonian function and 
deriving the optimality condition from Pontryagin’s 
minimum principle is employed. The obtained equations 
provide a two-point boundary value problem which is 
solved by numerical techniques.  

The optimal solutions with bang-bang controls are found 
by solving the corresponding nonlinear TPBVP (Two Point 
Boundary Value Problem). Open-loop optimal control 
approach is solved by direct and indirect approaches. 
However, direct method leads to the approximate solution 
and this approach is time consuming and quite ineffective 
due to the large number of parameters involved (Chettibi et 
al. [3]). 

Since the problem is very sensitive to the unknown 
initial costates, a strategy is proposed and used 
successfully. This strategy leads to a bang-bang control in 
which the motors operate with the maximum torques 
changing directions at the switch time. The main advantage 
of this method is obtaining various optimal trajectories with 
different characteristics by changing the penalty matrices 
values which able the designer to choose the best trajectory. 
Finally, a 6DOF manipulator is simulated to illustrate the 
performance of the method. The results of open loop 
optimal control method for maximum payload are applied 
to ADAMS model and the dynamic response is compared.  

2. Modeling of cable parallel robot 

The force and/or torque which can be exerted along the 
various directions of motion under specified conditions of 
velocity and acceleration should be calculated. The load is 
a function of mass, moment of inertia, and static and 
dynamic forces supported by the robot. Below, the 
kinematics, dynamic modelling and a method for load 
carrying capacity calculation based on positive cable 
tensions are presented.  

2.1. Kinematic modeling  

A 6 DOF model of a cable-suspended with the 
coordinate system and geometric parameters is shown in 
Fig. 1 in which the end effector is connected to the base 
through 6 cables. These cables can extend or retract. It is 
particularly a cable manipulator based on a modification of 
the 6 degrees of freedom Gough–Stewart platform where 
the linear actuators have been replaced by cables (Alp and 
Agrawal [2]). In the design, the end effector platform can 
translate and rotate in the inertial frame. 3 transitional 
movements along the Cartesian coordinate and 3 rotational 
movements around the coordinated are supported. 

The position/orientation vector of the end effector 
relative to the world coordinate system is denoted by six 
variables in [ , , , , , ]T

x y zx y z θ θ θ=x  and the vector of cable 

lengths can be expressed as 1 2[ , ,..., ]Tml l l=q  and cables’ 
elongation can be obtained from end-effector movement by 
the aid of inverse kinematics: 
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where m m mx , y , z& & &  are the end-effector transitional 

velocities and , ,ψ θ ϕ&& &  the angular velocities of the end-
effector. Also, J is the Jacobian matrix that can be defined 
in this way: 
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2.2. Dynamic modeling  

The dynamics of a robot is used to produce motions that 
extend the payload capability. Since dynamic modeling of 
cable robot is concerned with relating the motion end-
effector to the required active actuator torque, the forces in 
the cables are derived using the dynamic equations of end-
effector and actuators.  

Fig.  1. A caption is positioned left-justified below the figure or scheme. 
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In the next stage, the actuator dynamics is applied. The 

combined dynamic effects of the motor, the cable pulley 
and the end-effector result in a manipulator dynamic 
modelling: 
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where ( )D x  is the inertia matrix, ( , )C x x&  is the vector 
of velocity terms and ( )g x  is the gravity vector JA and CA 
are diagonal matrices with rotational inertia and rotational 
viscous damping coefficients on the diagonal. The vector of 
pulley angles with pulley radii r is denoted by β. 

3. Formulation of the optimal control problem 

Let Ω  be the set of the admissible control torques. The 
optimization problem is to find control Ω∈)t(U  and 
payload mp, so that the manipulator can carry maximum 
payload from an initial configuration to a final motion 
target in final time tf. Therefore, the objective function that 
must be minimized is defined as 
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The optimal control problem is controlling all active joints 
so as to achieve the best dynamic coordination of joint 
motions while minimizing the actuating inputs together 
bound the velocities. The control forces are bounded as 

+− ≤≤ iii UUU  
(5) 

 
The indirect methods are difficult to converge but easy to 
determine the optimality condition. Thus, necessary 
conditions for optimality are mentioned to find the optimal 
path for a specified payload and then maximum payload is 
obtained via an iterative algorithm in terms of the state 
variables. The performance index now looks like 
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Integrand L (.) is a smooth, differentiable function in the 
arguments, 2|| || T

KX X KX=   is the generalized squared 
norm, W1 and W2 are symmetric, positive semi-definite 
(m×m) weighting matrices and R is symmetric, positive 
definite (m×m) matrices.  
Pontryagin’s minimum principle calls for a Hamiltonian 
state equation; a dynamic model is thoroughly derived 
using canonical variables and an optimal path is designed 
in order to achieve the predefined objective. By 
implementing Pontryagin's minimum principle for solving 

optimization problems, the necessary conditions for 
optimality are obtained on the basis of variational calculus. 
The Hamiltonian function of the problem is determined and 
then PMP derives the optimality conditions and the 
Hamiltonian function is defined as: 

Η(X, U, , , ) ( , , ) ( , , , ).T
p pY m t Y f X U t L X U m t= +  

(8) 
 

In addition, costate time vector-function Y(t) that verifies 
the costate vector-equation (or adjoint system) is obtained 
as: 

.TY H X= −∂ ∂&  (9) 
 

Moreover, the minimality condition for the Hamiltonian 
formulation is obtained by differentiating the Hamiltonian 
function with respect to control and costates as follows: 

0H U
X H Y
∂ ∂ =⎧

⎨ = ∂ ∂⎩ &
(10) 

 

By defining U as a set of admissible control torque over the 
time interval, the imposed bound of torque for each motor 
can be expressed. The bounds on the control input, −U and 

+U  in the optimization problem limit the motor torques. 
The objective function specified by Eq. (18) and Eq. (19) is 
minimized over the entire duration of the motion. Finally, 
the optimization problem is completed by applying the 
boundary conditions: 

202101 X)0(X,X)0(X ==  
(11) 

 
must reach the terminal conditions 

f2f2f1f1 X)t(X,X)t(X ==  
(12) 

 
which represent the characteristics of states at initial and 
final times. The aforementioned equations lead to 
transforming the problem of optimal control into a 
nonlinear two-point boundary value problem. There are 
numerical techniques for solving such problems; e.g. 
available commands in some softwares such as MATLAB 
are good candidates for this issue. 

4. The optimal trajectory constraint 

In general, robotic manipulators are used at their limited 
capacities for obvious reasons of productivity. The 
tensionability is a necessary and sufficient condition for 
designing spatial cable-suspected robots . The dynamics of 
manipulator can be used to extend its payload capability 
while taking into account joint torque as realistic 
constraints. This leads, however, to quite significant joint 
torque and velocity magnitudes which can be harmful to 
the system. If the torque speed characteristic curves of the 
actuator are available, the load carrying capacity for any 
given end-effector motion trajectory can be determined.  

The permanent magnet D.C. motors are commonly used 
for the actuators. The torque speed characteristic of such 
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D.C. motors may be represented by a linear equation and 
the bounds on the control input, so −U and +U  in (5) are 
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221
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Where [ ]Tsm2s1s1K τττ= L , [ ]msm11s2 digK ωτωτ= L , sτ  
is the stall torque and ω  is the maximum no load speed of 
the motor (Korayem & Bamdad [4]).  

5. The Algorithm for maximum payload calculation  

The trajectory optimization includes dynamical 
constraints (controls, states), boundary constraints 
(conditions that the initial and final states must satisfy) and 
path constraints (conditions which must be satisfied at all 
points of the trajectory). The algorithm iterates on the 
initial values of the costate until the final boundary 
conditions are satisfied in the desired degree of accuracy in 
TPBVP solving: 

ε≤−+− 2
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2
1X)t(X

2
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The component of Wp and Wv can be changed to achieve 
the relative importance of position and velocity errors of 
end-effector during the trajectory. The final error obtained 
of (14) must be less than the desired accuracyε .  

The payload value is known and the solution of optimal 
control problem is obtained. The solution method is based 
on increasing the minimum value of payload until its 
maximum value is found. For a known payload, the 
obtained equations are in the standard form of TPBVP 
which bvp4c command in MATLAB is used to solve it. 
Desired accuracy ε  in TPBVP solution for maxpp mm ≤  is 
achievable thus 22 is satisfied and payload increases in 
each step until the payload value becomes lager than its 
maximum value ( maxpp mm > ). At this condition (14) will 
not be satisfied, because for carrying the payload more than 
mpmax, the torque more than their limits is required and on 
the other hand, the torque constraints are satisfied in 
TPBVP solution. 

6. Simulation 

In this section, a simulation study is presented to 
investigate the application and efficiency of the proposed 
algorithm. A typical cable suspended robot is considered 
for the simulation study. Its suspended movable platform 
and the overhead support are typically two equilateral 
triangles. The side lengths of base and movable platforms 
are 0.47 m and 0.14 m respectively. The problem is to find 
optimal path for moving between the point (-0.15, -0.25, 
1.6) and point (0.15, 0.25, 1.9) in XYZ coordinate.All the 
linear and rotational velocities and rotation angles are 
supposed to be zero in these two boundary points. The 
overall time is tf=1s for this trajectory. 

All the other used parameters relative to the robot 
actuators consisting of motors and pulleys are presented in 
Table 1.  
The dynamic model is completed for end-effector motion 
analysis by Eqs. (1-3). By applying the derived equations in 
the previous sections, mpmax is obtained. Desired accuracy in 
TPBVP solution is considered as ε =0.01, and the matrices 
are considered to be Wp=Wv=diag(1).  
 

Table 1  
Actuator parameters in simulation 

Parameter Value Unit 

Max. no load 
speed 

330 RPM 

Stall torque 2.84 N.m 

Pulley radius 0.05 m 

Pulley-motor 
rotational inertia 

8 10-4 Kg.m2 

Motor shaft 
viscous damping 
coefficient 

0.02 N.m.s 

6.1. Simulation Software 

The software package used to develop, simulate, and 
analyze the dynamic models is ADAMS by MSC Software. 
It has a 3D environment for modeling mechanical problems 
and it uses its own solver to formulate and solve problems. 
Because of high capability of ADAMS/view software, it is 
used to simulate the six- cable robot in order to have a 
second opinion on the results from Matlab codes.  

A model is developed by defining all parts of a system 
including masses and inertial properties, defining forces 
acting on or between these parts, and constraining the 
motions of the parts to each other (or totally). ADAMS 
develops the equations of motion of the system from the 
model and then solves the equations numerically in the 
time frame. The output of the program is the solution of the 
equations, from which any force acting through the system 
or motion of any part in the system can be obtained.  

6.2. Verification of Optimal Trajectory  for Cable robot  

As mentioned before, using the indirect method, the 
optimization problem is converted to a two-point boundary 
value problem as by solving that, we can have a precise 
solution of problem. This method could be used for any 
kind of systems that state space form of equations is 
achievable. It is used as a successful tool for analyzing 
nonlinear systems and path planning of different types of 
systems. For capacity prediction, optimality conditions are 
obtained using the Pontryagin's minimum principle (PMP) 
which leads to the bang-bang control in a two-point 
boundary value problem (TPBVP) solution. 
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By increasing the payload from mp to mpmax, the 
required torque increases and torque curves lay on their 
own limits, until the payload reaches to its maximum value, 
i.e. mpmax=25.9 kg  that  is the maximum payload for the 
considered penalty matrices, while by choosing the other 
penalty matrices, the other optimal trajectories with 
different specifications can be obtained. 

The tracking point is initially at the center of the 
triangular end-effector. The displacement, velocity, and 
acceleration between the two points can be used to compare 
their relative motions. Fig. 2 shows the optimal trajectory 
between the two given points including the time variation 
of six states. The relative motion is examined by comparing 
two points in space. 

As always there must be a positive torque in the system 
of cable driven robots, the lower bound must be larger than 
zero. 
Fig. 3 shows the required motor torques over a segment of 
the 2-second simulation to carry the maximum payload. 

The upper and lower limits of motor torques are presented 
with dashed lines. As the figure indicates, the motor 
torques stay in a relatively narrow upper band.  
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Fig.  2. The optimal trajectory with payload 25.9 Kg. 
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Fig.  3. The motor torques to carry the maximum payload. 
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7. Conclusion 

In the present paper, open loop optimal control method 
is used and the optimization problem is converted to TBVP 
as by solving that, a precise solution for maximum payload 
with considering the Kinematics and Dynamics of cable 
robot is obtained. The efficient optimal control scheme has 
the capacity to incorporate multiple criteria in the 
formulation, and the designer is allowed to add some terms 
to the objective function. The solving strategy makes it 
possible to get any possible objective functions for the 
optimality solution such as energy consumption, actuating 
torques, travelling time or bounding the velocity magnitude 
or maximization of payload. The procedure is capable to 
determining the states, costates, and the switching functions 
with a high numerical accuracy. This method could be used 
for any kind of systems that state space form of equations is 
achievable. It is used as a successful tool for analyzing 
nonlinear systems and path planning of different types of 
systems.  
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