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ABSTRACT 

There are some problems with estimating  the time required for the  manufacturing process of products, especially when there is a variable 
serving time, like control stage. These problems will cause overestimation of process time. Layout constraints, reworking constraints and 
inflexible product schedule in multi product lines need a precise planning to reduce volume in particular situation of line stock. In this 
article, a hybrid model has been presented by analyzing real queue systems with layout constraints as well as by using concepts and 
principles of Markov chain in queue theory. This model can serve as benchmark to assess queue systems with probable parameters of 
service. Here, the proposed model will be described drawing on the findings of a case study. Thus, production lines of a home application 
manufacturer will be analyzed. 
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1. INTRODUTION 

    Queuing theory is one of the oldest and best-
developed analysis techniques that are daily used in 
waiting line [5]. The main purpose of manufacturers 
and service providers is to satisfy customer [18]. This 
satisfaction is manifested by customer-desired 
characteristics. Gaining goods or services as soon as 
possible is a characteristic desired by   the customer 
[19]. To optimize decisions and to reduce waiting time 
for customers, manufacturers and service providers 
have to use queuing theory. This will help them to 
specify the essential resource level, that should be 
allocated and to gain customers satisfaction as much as 
possible [9]. Resource allocation and customer 
satisfaction are very important for companies 
especially in a highly competitive environment. 
Therefore, investigating and describing queuing 
systems' performance in different environments is an 
essential issue. Queuing systems layout [16], servers' 
allocation [26], customer allocation to optimize the use 
of servers [4] and serving type [7] are all but some of 
factors that should be considered in real condition 
analysis. A layout that is not optimized can make long 
queues and consequently increase the waiting time.  

 
 
 
 
Markov chain connection, with time and its correlation 
with Exponential distribution on the other has caused  
these stochastic models to be applied in real 
circumstances [10]. That is why the exponential 
distribution is usually a good fitness for real life 
problems linking process movements in time to 
Markov chains [13]. 
Next, different systems of physical layout of the 
performance assessment by line systems of Markov 
chains in the description of serving systems is 
investigated. Then, the situation of proposed line 
system regarding the complexity and constraints of the 
model in the present situation will be analyzed by using 
Markov chains. 
Some new studies on the fields in which the Markov 
chain is used include: a single-server multi-station 
alternating queue where the preparation times and the 
service times are auto- and cross-correlated [15], the 
algorithmic development of the full busy period for the 
model under consideration [2], analysis of MAP/G/1 
G-queues with possible preemptive resumption service 
discipline and multiple vacations wherein the arrival 
process of negative customers is Markovian arrival 
process [27]. Some studies on manufacturing systems 
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field include Markov decision models for the optimal 
maintenance of a production unit with an upstream 
buffer [1], A semi-Markov decision algorithm  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For the maintenance of a production system with buffer 
capacity and continuous, repair times in 2008 year 
[23]. We will first look at queuing systems based on 
layout, performance appraisal and Markov chains in 
service systems, and then given the complexity and 
limitations of the purposed model, it is discussed for a 
system with two servers and a system with servers 
using Markov chain model.  

2. THEORETICAL CONCEPS 

    Queuing theory began in 1909 by studies of a Danish 
engineer, A.K.Erlang [4]. Studying and doing 
experiments on increasing and decreasing demand for 
telephone systems, he discussed factors and relations in 
this system. Eight years later, he published the studies 
details about telephone systems automation and the 
results of relations. This became the base of queuing 
theories. At the end of World War II, he developed the 
usage of queuing models in public sections and 
business [6]. Queuing theory is one of the oldest and 
best-developed techniques that can be used to analyze 
waiting lines [14]. 

2.1 Types of queuing systems based on layouts 

    In this classification, queuing systems are analyzed 
based on the type of Terms Channel and servers [9]. 
At simplest system, there is one terms channel and one 
server. This system is called Single channel and Single 
server system. At the most complicated system, there 
are several terms channels and several servers. This 
system is called multi- channel and multi- server 
queue. Fig. 1 shows types of queuing systems 
categorized by physical layout. 

2.2. Utilization factor 

In a single server system G/G/1 with an arrival rate λ  
and mean service rate E(B), the work arrived in time 
unit is λΕ(B). If customers arrival rate is bigger than 

service. 
rate, λΕ(B) >1, then the system’s capacity would not be 
enough for all demands and the queue will go longer 
through infinity until λΕ(B) equals to 1. So the 
equation λΕ(B) <1 is steady state of most of the 
queuing systems. Unlike, D/D/1 system, non-stochastic 
state Systems and non-group systems do not need this 
condition. The usage of the equation is as follows [20]: 

E(B)λρ =  
If ρ<1 then ρ is Occupation rate or Utilization factor. 
This ratio is equal to the arrival rate into system to 
maximize   the capacity of system to do the work. 

2.3. The factors for appraising   Queuing systems 
performance  

To evaluate the performance of queuing systems, these 
factors are used [11]: 
- The distribution of arrival time of people into system 
and the waiting time of customers in system. The 
waiting time for each customer in system will be the 
waiting time to get service plus time of serving. 

n
n

l
n

s STT += )()(

 
- The distribution of the number of customers that are 
in system (involving people who are being served). 
-  The distribution of service time which  involves 
service time for customers who are already serving 
plus serving time of other people who are in waiting 
line. Finally, we can evaluate the system’s performance 
by using these parameters as well as mean waiting time 
and mean sojourn time now given the G/G/C model, if 
the random variable L(t) stands for the number of 
customers existing in system in time t and Sn stands for 
waiting time of n customers in system, it can be shown 
that the random variable L(t) has a limiting distribution  
by assuming utilization factor 1<ρ , for ∞→n and, 

∞→t  [8]. 
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Type 1 
Server 

Type 2 
Server 

Type 2 
Server 

d. Multi channel and multi server system  
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Fig.1. Queuing system types 
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Assuming that L and S random variables have limiting 
distributions which are called L(t) and Sn , then the PK, 
probability of existence of  k people in system for long 
time  will be shown in equation(1): 

))((lim)( KtLPKLPp tk ==== ∞→        (1) 
F(x) is the probability that waiting time for a customer 
is less than x time units: 

)(lim)()( xSPxSPXF nns ≤=≤= ∞→  
Also as can be seen below [23], mean number of 
customers in system for time period of [0,t] and also 
mean service rate in long time  are E(L) and E(S) . 
These will be shown in equation (2, 3): 

∫
=

∞→ =
t

x
t LEdxXL

t 0

)()(1lim                    (2) 

)(1lim
1

SES
n

n

k
Kn =∑

=
∞→

                       (3) 

These two parameters have basic applications in 
analyzing queuing systems [20]. Also according to 
Little’s law, there is a very important relationship 
between E (L) (mean number of customers in system), 
E(S) (mean waiting time) and λ (mean arrival rate), 
that is shown in equation (4) below [24]: 

)()( SELE λ=                                                  (4) 

2.4- Markov chains with continuous time 

To analyze queuing models, we need to formulate them 
as Markov chains. Therefore, we will first define 
stochastic processes and basic concepts of Markov 
chains. A stochastic process [21] is a set of random 
variables X(t), if  for each Tt ∈ , there is a random 
variable, then X(t) can be considered as stochastic 
process state in time[10]. Stochastic process with 
continuous time   0≥t  takes integer and non-negative 
values. Process [ ]0),( ≥ttN  is a Markov chain with 
continuous time, if we have the equation as below (5) 
[6]. 
{ }
{ }isXstXp

suuxuXisXjstXp
==+

≤≤===+
)()(

0),()(,)(|)(     (5) 

For all 0, ≥ts and non negative i, j, X(u), 0 < u < s. 
It follows that given the   present state; X(t) and past 
state; X(u),   a Markov chain with continuous time is a 
stochastic process with Markov characteristics whose  

future state conditional probability, )( stX + , depends 
on present state which  have no relation to past state of 
process. If in a Markov chain, the below term is 
independent of s, then the Markov chain is called 
homogeneous. In other word if we have the equation 
(6) below [22]. 

{ } { }iXjtXPisXjstXptPij =====+= )0(|)()(|)()(     (6) 
Then the Markov chain is a homogeneous Markov.  
Note that Pij(t) is the probability of system’s transition 

from i state to j state in t time. The relation between 
Markov chain and time on one hand and exponential 
distribution on the other hand were  made in real life 
problems[24]. This is because the Exponential 
distribution is usually a good estimation for real 
conditions and connects process changes in time to 
Markov chains. 

3. RESEARCH  PROBLRM  DELINEATION 

There are some problems with estimating time on the 
serviced manufacturing process of products, especially 
when there is variable serving time like control stage. 
These problems will cause overestimation of process 
time. For instance, a home application manufacturer 
can be used as a case. In production processes like that, 
products will be put on conveyers in vacuum and gas-
charge station after assembling. Now after quality 
inspection, products will be delivered to cooling test 
station. Here if the workstation is not idle, then the 
products should be stocked. The flow process chart of 
production line is shown in figure 2. 
The layout of cooling test machines has been designed 
in a way that the products (but those products that are 
served in the first row) cannot leave the system after 
test operation. These products will wait for the first 
product to leave the system and then will leave one by 
one. This will increase the product test mean time and 
therefore increases operation’s mean waiting time. 
Queue model of this system involves a line stock that is 
overloaded (because of space limitation).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. The flow process chart of production line 
After a time in this stock, products will enter the 
cooling test station. It should be mentioned that in this 
station, there are two test machines in each row, which 
work in parallel channels. In such a system if both 
machines are idle, then the product will be referred to 
first server in row. If the first machine is busy, the 
product will be referred to second server for cooling 
test operation. In this system while serving the first 
product is not finished, the second one cannot leave the 
system. Also in this system, since the second server is 
busy and the first server is idle, the next product in 
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waiting line cannot use the first server (because of 
physical limitations). In figure below, a schematic plan 
of layout of cooling test station is presented.  
 

 
Fig.  3. A schematic plan of cooling test station 

 
For this system, it is obvious that because of variable 
service rate and physical limitations, we cannot use 
available queuing models to analyze it. So we assume 
that product’s arrival is based on Poisson process with 
λ  parameter and two servers in each row as series (in 
special conditions) in which serving time is an 

exponential random variable with iµ  parameter. 
Considering fact that the performance of each row is 
independence of others in practice, so firstly we will 
model the exits queuing system based on two servers in 
a row with 1µ and 2µ  parameters and will develop 
M/M/C model using Markov chain concepts. At last, 
we will find out the ultimate model by developing the 
proposed model with i rows. 

3.1 Modeling the exits queuing system based on one 
row with two servers 

To model the proposed queuing system as shown in 
figure 4, we will define parameters, variables and 
assumptions as below: 
 
 
 
 
 
 
 

Fig.  4.  Plan of a two server with one row system 
 

- Products’ arrival is based on Poisson process with λ  
parameter. 

- Serving time for first product is considered, 1t and 
serving time for second product is considered, 2t . 
- Just a one-row queue is possible. 
- Two servers are serving as series in special 
conditions. 
- If both servers were idle, the product would be 
referred to first server and if the first server were busy 
then the product would be referred to the second server.  
- While serving to the first product is not finished, the 
second product cannot leave the system. 
 

 
Fig. 5. Serving system for first situation 

 
- In this system if the second server is busy and the first 
server is idle, then the product in queue cannot be 
referred to first server. To model this queuing system, 
we will divide it in two classes based on serving time: 
o The conditions in which, serving time of server 1 is 

equal or more than serving time of server 2. It 
means product 1 is served in a time that is equal to 
or more than second product’s time. 

o The conditions in which serving time of server 2 is 
more than that of server 1. It means product 2 is 
served in a time that is more than first product’s 
time. 

3.2 Modeling queuing system based on first assumption 

In this condition, serving time of server 1, t1 is equal or 

more than that of server 2, t2. It means 21 tt ≥ and so 
21 µµ ≤ . In fact, it is a variable serving system and 

serving rate of servers is not equal. If there is no 
limitation for departure from this system, then in T∆  
period, the first server will serve ][ 1µ  products and 
second server will serve ][ 2µ  products. It means that in 

T∆  we expect ][][ 21 µµ +  products to leave system. 
Nevertheless, in practice because of limitation of space 
to departure, the second server’s product cannot leave 
the system until the first product leaves it. As it can be 
seen in figure 4, in T∆  period, the first server can at 
most serve n products whereas Tnt ∆≤1 . So n is the 
same as 1µ or first serving rate. The maximum products 
that second server can serve in ∆T period is n, whereas

Tttn ∆≤+− 21)1( . Therefore, n is µ2 or real second 
serving rate. Considering these two equations, it can be 
said; if )( TX ∆′  would be maximum products that can 
be served in ∆T period and leave the system, then we 
have: 12)( µ=∆′ TX  
In figure 4, although the second server can serve more 
products, but because of limitation of space, the next 
product cannot arrive into system until the first 
product's serving is finished and should be idle until 
then. As equation below shows, the total idle time of 
second server in ∆T period is: 121 )()( µttTI −=∆  
It can be concluded that if first server would spend t1 
time to serve each product, then the second server 
spends the same time. That is why their real serving 
time is not equal but considering product waiting, 
serving time of previous product is the time it spends 

Arrival  
Exit2 1 

λ Being served
Waiting
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on serving system. Therefore, if first product is been 
served with t1 time, the second product’s serving time 
is also t1. Here t1 for first product is his total serving 
time whereas for second product, t1 is t2, time for 
serving, plus β which is waiting for first product’s 
leaving; it is shown in equation(7): 

β+= 21 tt                                                   (7) 
Therefore as equation (8) shows, serving rate for both 
of them is µ1. 

1
1 :

t
T∆µ                                                         (8) 

1
12

2 : µ
β

µ =
∆

=
+
∆

t
T

t
T  

This makes the explained model as an M/M/C=2 model 
in which serving rate of both servers is µ1. Therefore, 
we have equation (9) as below: 

 
To explain this model, we will define possible 
conditions as table 1. Being so in this system, always  
t1 > t2, so this (0, 1) condition* will never happen. 
 
Table1 
 Possible situations for system in first condition 
State State description 
0 System is empty 
(1,0) There is a product in system and this product is 

being served by server 1 
(0,1) There is a product in system and this product is 

being served by server 2* 
(1,1) There are two products in system and they are 

being served by server 1 and 2 
n > 2 There are n products in system 

 
Based on model assumptions, limitations and transition 
matrix, the transition rate diagram will be as follows: 
 

 
Fig. 6. The transition rate diagram for first situation 

 
Moreover, by using this diagram and equality of arrival 
rate and departure rate for each state, the equilibrium 
equation set  will be as follows in equation (10): 
 
state equilibrium equation set 
0  
(1,0)  
(1,1)  
… … 
… … 
… … 
n > 2  
As it can be seen in transition rate diagram (figure 5) 
for each state of n, except zero state, there are two 

transition possible states: (n+1) and (n-1). Therefore, it 
is easy to use one of variables to solve these equations. 
Here P0 is a good base to solve equations. We also have 
equation (11) as below: 

 
Considering this definition, for n > 1, we will have: 

0. PCP nn =  

To calculate P0, by assuming∑
∞

=

=
0

1
n

nP  we have 

equation (12) as below: 
1

11

2

1
0 )2(

1
−









−

++=
λµµ

λ
µ
λP                         (12) 

Therefore, to calculate the probability of existence of n 
people in system for long time (equation 13): 

 
To calculate integrative criteria like averages number 
of products in queue (Lq) and expected number of 
products in system (L), considering little’s relations 
and steady state condition of system that is: 

1
2 1

<=
µ
λρ   Then we have equation (14, 15) as below: 

2
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Also to calculate time criteria like, expected waiting 
time in queue (Wq) and expected waiting time in 
system (W), considering Little’s relations and 
definitions, we have equation (16,17) as below: 

22
1

0

)1(
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2 ρ
ρ

µ
λπ

λ −
== q

q

L
W  

1
22
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2

1
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ρ
µ
λπ

µ
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−
=+= qWW  

3.3 Queuing system modeling based on second 
assumption 

Here, unlike the previous assumption, it is assumed 
that   the serving time of server 2 t2 is more than 
serving time of server 1, t1. That is, t1 ≤ t2 and µ1 ≥ µ2. If 
there is no departure limitation in the fore mentioned 
system, then in ∆T period, the first server will serve 
[µ1] products and second server will serve [µ2] 
products. It means in ∆T we expect [µ1] + [µ2] products 

(11)
1=n
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to leave system, but because of space Limitation for 
departure, if the first product would leave the system, 
the product waiting in line cannot be replaced. It is so 
because the second server is busy and so the whole 
system is busy. As it can be seen in fig. 6, in ∆T period, 
the first server can serve at most n products whereas 
(n-1)t2 + t1 ≤ ∆T .Therefore n is µ1

’ or real serving rate 
of first server. Also in ∆T period, the second server can 
serve at most n products whereas nt1≤ ∆T. Here n is the 
same as µ2 serving rate of second server. Considering 
these two relations, it can be concluded that if 
maximum products, which can be served and leave the 
system, would be )( TX ∆′  in  ∆T  period, then we 
have: 22)( µ=∆′ TX  
In this figure, although the first server can serve more 
products, because of limitation of space, the next 
product cannot arrive into system until the second 
product’s serving is finished and therefore server 2 
should be idle until then. As below equation, the total 
idle time of server 1 in T∆  period is: 
 
 212 )()( µttTI −=∆  
  From the viewpoint of product waiting at line, it can 
be concluded  that if second product has been served 
with t2 time, the first product’s serving time is also t2,  
is totally several to the second product total serving 
time whereas for first product, t2 is t1, time for serving, 
plus α which is the time of the second product 
departure. 
Therefore α+1t  is serving time of product 1 and t2 is 
serving time for product's departure 2. So serving rate 
for both of them will be µ2 equation (18): 
 

2
21

1 : µ
α

µ =
∆

=
+
∆

t
T

t
T                    (18) 

 
 

Fig. 7. Serving system for second situation 
 
At last, the model with assumption 2 will be as 
equation (20): 

 

 
 
To explain model we will define possible conditions as 

table 2. Since in this system always 21 tt < , so this (1,0) 
condition* will never happen 
 
 

Table2 
 Possible situations for system in second condition 

State State description 

0 System is empty 

(1,0) There is a product in system and this product is 
being served by server 1* 

(0,1) There is a product in system and this product is 
being served by server 2 

(1,1) There are two products in system and they are being 
served by server 1 and 2 

n > 2 There are n products in system 

 
Based on model assumptions, limitations and transition 
matrix in arrival and processes departure , the transition 
rate diagram will be as follows: 

 
Fig . 8. The transition rate diagram for second situation 

 
Moreover, drawing on this diagram and equality of 
arrival rate and departure rate for each state, the 
equilibrium equation set will be as follows in equation 
(21): 

state equilibrium equation set 
0  
(1,0)  
(1,1)  
… … 
… … 
… … 
n > 2  

 
By solving this equations set and considering, 
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We have equation (22) as follows: 

 
 
Considering this definition (equation 23) for n = 1,2,…  

0. PCP nn =    
 
To calculate P0, we have equation (24) as follows: 
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Therefore, to calculate the probability of existence of n 
people in system for long time, we have equation (25): 
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Considering Little’s relations and steady state condition 
of system ,to calculate integrative criteria like expected 
number of products in queue (Lq) and expected number 
of products in system (L),  we have equation (26,27) as 
follows: 
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Also considering Little’s relations and definitions ,to 
calculate time criteria like, expected waiting time in 
queue (Wq) and expected waiting time in system (W), 
we have equation(28,29) as follows: 
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3.4- The proposed hybrid model by assuming two 
servers 

In this article, we first modeled the queuing system 
with two servers in one row with µ1 and µ2 parameters 
by developing M/M/C model and Markov chain 
concepts. However, in practice, these conditions do not 
occur one by one, but almost a combination of both 
states is possible. To have a hybrid model we need two 
new variables. We define ө1 as probability of state one 
occurring and ө2 as probability of state two occurring 
in ∆T period. To calculate variables in hybrid 

conditions, )2( =cZ
we assume that the first condition 

will happen and then the second condition will happen 
and considering probability values ө1 and ө2 we will 
use weighted average in equation (30) as follows: 
 

21

21
)2(

.
θθ
θθ

+
+

==
YXZ c                          (30) 

X: decision variables if state one occurs 
Y: decision variables if state two occurs 

3.5 Developing proposed hybrid model by assuming C 
servers: 

The results of two server's conditions can be used to 
analyze the performance of whole system. As it can be 

seen in figure 8, unlike M/M/C mode, when the 
product arrives at point A, it does not have the 
possibility of choosing one of C servers. Here he 
should choose one of serving rows i. therefore after 
arriving into one of rows; the product has nothing to do 
with other branches and just can choose one of two 
servers in his row. Therefore C server model will 
become a special kind of hybrid serving system with 
two servers. 
 

 
Fig. 9. Schematic plan of queuing system 

 
If the number of products in the main queue (before 
decision point A) would be n and number of people in 
each branch (from point A to serving position) would 
be  ni,  then , to calculate probabilities we need number 
of people in system, N, so we have: 
 
Table 3 
 Number of people in system 

Number of 
production in 
system (N) 

System state 

n+n1 The production choose branch number 1 
n+n2 The production choose branch number 2 
n+ni-1 The production choose branch number i-1 
n+ni The production choose branch number i 

 
To calculate parameters like L̂  and Ŵ  for queuing 
system, because of the similarity between serving 
conditions in all rows, we can modify product arrival 
rate (λ ) and introduce λ̂  as below and generalize the 
results to a C server system as equation (31). 

i
λλ =ˆ                         (31) 

4. CASE STUDY 

To study the relation between stock time in queue and 
number of servers (cooling test), data of a home factory 
was gathered as table 4. It should be mentioned that 
there are some factors related to time study and 
sampling that affect formation of waiting line. 
Therefore, by determining these factors and the design 
of experiments, the sample size and number of 
sampling were specified. 
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Table 4 
 Gathered data of production line 

Description parameter 
State 
1 

State 
2 unit 

value 
Mean service rate 
of server 1 1µ  17 18 production 

per hour 
Mean service rate 
of server 2 2µ  19 18 production 

per hour 
Mean interracial 
time λ  33 production 

per hour 
Probability of 
events 21 ,θθ  45 55 percent 

Number of 
cooling test 
(servers) 

C 10 Numbers 

Number of 
branches i 5 Row 

Maximum 
capacity of each 
branch 

in  1 Numbers 

Station area S 200 square 
meters 

 
Considering this information and by using hybrid 
model, system analysis results in a two-server row for 
long time below: 
Table 5 
 Information of production line 

Description parameter State 1 State 2 unit value 
utilization factor ρ  87 86 percent 

Probability of 
existence of no 
production in 

system 
0P  2.23 2.38 percent 

Expected number 
of production in 

queue 
qL  15 7 production 

Expected number 
of production in 

system 
L 17 9 production 

Expected waiting 
time in queue qW  20 10 Minutes 

Expected waiting 
time in system W  23 13 Minutes 

At last by using table 5 and multiplying probability 
factors θ1 and θ2 and modified arrival rate of λ̂  the 
results of total analysis for a six servers system are as 
follow. 
Table 6 
 Total analysis results 

Description parameter value unit 

Modified arrival rate λ̂  7 production 
per hour 

Total expected number of 
production in queue qL̂  3 production 

Total expected number of 
production in system L̂  5 production 

Total expected waiting time 
in queue qŴ  240 seconds 

Total expected waiting time 
in system Ŵ  440 seconds 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10.  Sensitivity analysis of number of productions in system 

based on 1θ  

5. CONCLUSION 

The close connection of Markov chain with time and 
its correlation with Exponential distribution has caused 
these stochastic models to be applied in real 
circumstances. The Exponential distribution is usually 
suitable for real life problems linking process 
movements in time to Markov chains. Here by 
analyzing a real queuing system with layout limitations 
in specific conditions and applying Markov chain 
concepts, a queuing model was developed. To model 
this queuing system, we divided it in two classes based 
on serving time. The conditions in which  serving time 
of server 1 is equal or more than serving time of server 
2 and the conditions in which serving time of server 2 
is more than serving time of server 1. However, in 
practice, these conditions do not occur one at a time, 
but almost a combination of both states is possible. To 
have a hybrid model we need two new variables. We 
define θ1 as a probability of occurring of state one and 
θ2 as a probability of occurring of state two in ∆T 
period. The results of last part for the two servers can 
be used to analyze whole system performance. This 
model can be a base for appraisal of queuing systems 
with probability parameters. By explaining a case 
study, we tried to describe the purposed model. To do 
this, production lines of a home application 
manufacturer will be analyzed. By analyzing the 
sensitivity on the occurrence probability of θ1, θ2 on the 
average number of people in system and queue. As 
diagram 1 shows, the increase of the first θ1 results in 
the increase of the second one in long time. 
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