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Abstract 

In this paper, absorbing Markov chain models are developed to determine the optimum process mean levels for both a single-stage and a 
serial two-stage production system in which items are inspected for conformity with their specification limits. When the value of the 
quality characteristic of an item falls below a lower limit, the item is scrapped. If it falls above an upper limit, the item is re-
worked.Otherwise, the item passes the inspection. This flow of material through the production system can be modeled in an absorbing 
Markov chain characterizing the uncertainty due to scrapping and reworking. Numerical examples are provided to demonstrate the appli-
cation of the proposed model. 
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1. Introduction 

The determination of optimum process mean is one 
of the most important decision-making problems encoun-
tered in industrial applications. Consider a certain pro-
duction process, where an item is reworked if the value 
of its quality characteristic falls above an upper specifi-
cation limit and it is scrapped when it falls below a lower 
specification limit.  

A dimension in the surface finishing processes of 
metals is an example of this scenario. In this situation, on 
the one hand if the process mean is set too low, then the 
proportion of non- conforming items becomes high and 
the decision maker experiences high rejection costs as-
sociated with non- conforming items. On the other hand, 
if the process mean is set too high, then the proportion of 
reworking items becomes high, resulting in a higher re-
working cost. This justifies the determination of the op-
timum process mean [1]. 

Al-Sultan and Pulak [2] proposed a model considering 
a production system with two stages in series to find the 
optimum mean values with a lower specification limit 
and application of a 100% inspection policy. Ferrell and 
Chhoker [4] proposed a method to determine the optimal 
acceptance sampling plans economically. Their Ap-
proach is based on the Taguchi loss function to quantify 
deviations between a quality characteristic and its target 
 
  
 

 
 
 

Level. Bowling et al [1] employed a Markovian model in 
order to maximize the total profit associated with a mul-
ti-stage serial production system. They tried to determine 
optimal process target levels, in which lower and upper 
specification limits are given at each stage. In addition, 
they assumed each quality characteristic is governed by a 
normal distribution and screening (100%) inspection is 
performed. Further, Pillai and Chandrasekharan [3] mod-
eled the flow of material through the production system 
as an absorbing Markov chain considering scrapping and 
reworking. Their model promises better system design in 
material requirement planning, capacity requirement 
planning, and inventory control.  

In the present research, similar to Bowling et al[1], 
the flow of a discrete production process is modeled into 
an absorbing Markov chain. 

 In other words, in this process, not all items reach 
the final stage due to scrapping and reworking. Hence, 
the absorbing Markov chain stochastic process model 
will be adopted. The data required for such a model are: 
(i) the probability which an item goes from one stage of 
production to the next, and (ii) the probability of rework-
ing and scrapping items at various stages. At every stage 
of production, the item is inspected; if it does not con-
form to its specifications, it is either scrapped or re-
worked. The reworked item will be inspected again. 
However, there are two main differences between the 
current work and the one in Bowling et al [1]. The first 
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relates to the assumption that in the present work the 
nonconforming items are repaired in a separate station. In 
other words, while in Bowling et al [1] the 
nonconforming items are repaired in the main station, in 
the current research they are repaired in a separate repair 
station. The second difference is the incorrectness of the 
objective function of the two-stage process in Bowling et 
al. (2004), where they multiplied the selling price of an 

item (SP ) by 14 24(1 )(1 )f f  . Knowing that in the 

derived Markovian model the 14(1 )f  coefficient shows 

the percentage of conforming items, it is not necessary to 

multiply 14(1 )f SP  by 24(1 )f  again. In this 

research, we revise the objective function of Bowling et al 
[1], trying to offer a better solution. 
The rest of the paper is organized as follows. We first 
present the required notations in section 2. The model 
development comes next in section 3. The numerical 
demonstration on the application of the proposed 
methodology is given in section 4. Finally, we conclude 
the paper in section 5. 

2.  Notations 

The required notations are: 

iU : The upper specification limit in the thi stage of the 

production, 1, 2i   

iL : The lower specification limit in the thi stage of the 

production, 1, 2i   

ijp :  The probability of going from state i to state j in a 

single step 

ijf : The long run probability of going from a non-

absorbing state (i) to another absorbing state (j) 
( )E PR : The expected profit per item 

( )E RV : The expected revenue per item 

( )E PC : The expected processing cost per item 

( )E SC : The expected scrapping cost per item 

( )E RC : The expected reworking cost per item 

SP : The selling price of an item 

iPC : The processing cost of the thi stage 

iSC : The scrapping cost of the thi stage 

iRC : The reworking cost of the thi stage 

P : The transition probability matrix 
Q : The transition probability matrix of going from a 
non-absorbing state to another non-absorbing state 
R : A matrix containing all probabilities of going from a 
non-absorbing state to another absorbing state (i.e., 
accepted or rejected item) 

I : The identity matrix  
O : A matrix with zero elements  
M : The fundamental matrix  
F : The absorption probability matrix  

3.  Model Development 

Consider a serial production system in which items are 
100% inspected in all stages. The item is then reworked, 
accepted or scrapped. As raw materials come into the 
production system and finally go out of it, a state in the 
Markovian model represents different conditions of the 
raw materials, i.e., reworking, scrapping, and accepting. 
In other words, an item can be in one of its three states 
modeled by a discrete random variable X . As time ( )t  

goes on, the random variable X generates a random 

process   :   0X t t  . This stochastic process with 

discrete state space and discrete values of the parameter t
becomes a discrete time (first order) Markov chain when 
transition from one state to the next depends only on the 
current state. Among the states, some are transient and the 
others absorbing. A Markov chain with one or more 
absorbing states is known as absorbing Markov chain. 
When an item is in an absorbing state, it never leaves the 
state (Pillai and Chandrasekharan [3]). 
The expected profit per item in the system under 
consideration can be expressed as follows: 

     
               

E PR E RV E PC

E SC E RC

 

 
                 (1) 

Then, in what follows a single-stage production system is 
first modeled. The two-stage modeling comes next. 

3.1. The single-stage system 

Consider a single-stage production system with the 
following states: 
State 1: An item is being processed by the production 

system 
State 2: An item is being reworked 
State 3: An item is accepted to be finished work 
State 4: An item is scrapped. 
Then, the single-step transition probability matrix can be 
expressed as: 

1        2              3          4

1 12 13 14

2
23 24

3

4

0

0 0

0 0 1 0

0 0 0 1

p p p

p p


 
 
 
 
 
 

P                        (2) 

where 12p is the probability of reworking an item, 13p is 

the probability of accepting an item, and 14p  is the 
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probability of scrapping an item. Assuming that the 
quality characteristic of an item follows a normal 

distribution with mean 1  and standard deviation 1 , 

these probabilities can be expressed as (Bowling et al. 
2004): 

 

2
1 1

1

1

1

2
12 1

1

1

1

2

     1

x

U
p e dx

U




 

 
  

 

 

                  (3) 

   

2
1 1

1
1

1

1

2
13 1

1

1 1

1

2

     

x
U

L
p e dx

U L




 

 
  

 

  

                  (4) 

 

2
1 1

1
1

1

2
14 1

1

1

1

2

     

x
L

p e dx

L




 

 
  

 

 

                 (5) 

Moreover, 23p  and 24p  denote the probabilities of 

accepting and scrapping a reworked item, respectively 
and the historical data from the production system can be 

used to determine the value of 23p  and 24p . Note that in 

order to analyze the transition probability matrix P  in an 
absorbing Markov chain, we rearranged it  in the 
following form: 

 
 
 

I O
P =

R Q
                    (6) 

By determining the fundamental matrix M  as: 

 
1

12 121 1

0 1 0 1

p p
   

    
   

-1
M = I - Q             (7) 

the absorption probability matrix F  can then be obtained 
as follows (Bowling et al. 2004): 

13 1412

23 24

1

0 1

p pp

p p

  
    
   

F = M× R  

13 12 23 14 12 24

23 24

13 14

23 24

  

  

p p p p p p

p p

f f

p p

  
  
 
 

  
 

                 (8)                                                                                                                              

where 13f  and 14f  are the probabilities of accepting and 

scrapping an item. 
Now, the expected profit per item of equation (1) will be:  

  13 1

14 1 12 1            

E PR f SP PC

f SC p RC

 

 
                 (9)     

Substituting for 13f we have: 

   
 

  

13 12 23 1

1 13 12 23 1 12

1 13 12 23

1 12 1 1

       1

        =

       

E PR SP p p p PC

SC p p p RC p

SP SC p p p

RC p PC SC

  

   

 

  

             (10) 

Further, substituting for 12 13 14, ,  and p p p  the expected 

profit can be written in terms of the cumulative normal 
distribution as follows: 

           
  

11 1 1 1 23

            11 1 1 1

E PR SP SC U L U p

RC U PC SC

     

                  (11)            

The terms  1U  and  1L  are functions of the 

decision variable 1  and we desire to determine the 

optimal value of the process mean so that the objective 
function in (11) is maximized. This can be obtained using 
an ordinary numerical search algorithm, in which the 
intervals are first partitioned to some sub-intervals for 
each of which the objective function value is determined. 
Then, the maximum of these values is the near-optimal 
solution. 

3.2. The Two-stage system 

Consider a two-stage serial production system with the 
following states, 
State 1: An item is being processed in the first stage of the 

production process 
State 2: An item is being reworked in the first stage of the 

production process 
State 3: An item is being processed in the second stage of 

the production process 
State 4: An item is being reworked in the second stage of 

the production process 
State 5: An item is accepted to be finished work 
State 6: An item is scrapped 
Then, assuming the quality characteristic of an item in the 

second stage follows a normal distribution with mean 2  

and standard deviation 2 , the single-step transition 

probability matrix can be expressed as follows: 
1            2             3           4            5            6

12 13 16

23 26

34 35 36

45 46

1 0 0 0

2 0 0 0 0

3 0 0 0

4 0 0 0 0

5 0 0 0 0 1 0

6 0 0 0 0 0 1

p p p

p p

p p p

p p

 
 
 
 

  
 
 
 
 

P            (12) 

where, 
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 

2
1 1

1

1

1

2
12 1

1

1

1

2

     1

x

U
p e dx

U




 

 
  

 

 

                (13) 

   

2
1 1

1
1

1

1

2
13 1

1

1 1

1

2

     

x
U

L
p e dx

U L




 

 
  

 

  

                (14) 

 

2
1 1

1
1

1

2
16 1

1

1

1

2

     

x
L

p e dx

L




 

 
  

 

 

                (15) 

 

2
2 2

2

2

1

2
34 2

2

2

1

2

     1

x

U
p e dx

U




 

 
  

 

 

                (16) 

   

2
2 2

2
2

2

1

2
35 2

2

2 2

1

2

     

x
U

L
p e dx

U L




 

 
  

 

  

                (17) 

 

2
2 2

2
2

1

2
36 2

2

2

1

2

     

x
L

p e dx

L




 

 
  

 

 

                (18) 

Moreover, 23p  and 45p  denote the probabilities of 

accepting a reworked item in stage one and two, 
respectively. Once again, the historical data available in 
the production system can be used to determine the values 

of 23p  and 45p . The terms  1U ,  1L ,  2U , and 

 2L  are functions of the decision variables 

1 2and    that are the process means in stages 1 and 2, 

respectively. 
Rearranging the P  matrix and applying the method used 
for the single-stage system results in the following 
fundamental and absorption matrices: 

 

 

1

12 13

23

34

12 12 23 13 34 12 23 13

23 23 34

34

1 0

0 1 0

0 0 1

0 0 0 1

1

0 1
   

0 0 1

0 0 0 1

p p

p

p

p p p p p p p p

p p p

p

  
  
 
 
 

  
 
 
 
 
 

-1
M = I - Q

 

  1612 12 23 13 34 12 23 13

2623 23 34

35 3634

45 46

01

00 1

0 0 1

0 0 0 1

pp p p p p p p p

pp p p

p pp

p p

    
   
     
   
   
    

F = M × R

 

       35 12 23 13 34 45 12 23 13 16 12 26 36 12 23 13 34 46 12 23 13
23 35 23 34 45 26 23 36 23 34 46

35 34 45 36 34 46
45 46

p p p p p p p p p p p p p p p p p p p p p

p p p p p p p p p p p

p p p p p p

p p

         
    
 

  
 
  

  

15 16

25 26

35 36

45 46

f f

f f

f f

p p

 
 
 
 
 
 

  

  (19)                   

where 15f  and 16f  are the probabilities of accepting and 

scrapping an item, and 36f  is the probability of scrapping 

an item in stage 2. 

The expected profit is obtained by determining the terms 
in equation (1) as follows.  

 16( ) 1E RV f SP                   (20) 
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 
 

1 2

1 12 23 13 2

( )

Pr item is processed in stage 2

E PC

PC PC

PC p p p PC

 

  

 
 

1

2

( )

Pr item is scrapped in stage 1

Pr item is scrapped in stage 2

E SC

SC

SC




 

 
 

1 16 12 26

2 12 23 13 36

SC p p p

SC p p p f

 

 
 

 
 

 

1

2

12 1 34 12 23 13 2

( )

Pr item is reworked in stage 1

Pr item is reworked in stage 2

E RC

RC

RC

p RC p p p p RC





  

 

Therefore, the expected profit per item for a two-stage 
serial production system is obtained as  

   
 
 
 

 

16 1

12 23 13 2

16 12 26 1

12 23 13 36 2

1 12

34 12 23 13 2

1

            

            

            

            

            

E PR f SP PC

p p p PC

p p p SC

p p p f SC

RC p

p p p p RC

  

 

 

 



 

 (24)                                                                                                         

As stated in the introduction, to determine the expected 
profit of a two-stage serial production system, Bowling et 
al. (2004) multiplied the selling price per item (SP ) by 
the long-term probability of accepting items in stage 1 
multiplied by the probability of accepting items in stage 2. 
This is not correct because the long-term probability of 
accepting items in stage 1 denotes the overall proportion 
of the items that have been accepted in all stages of the 
process. As a result, it is not required to multiply it by the 
probability of accepting items in stage 2.    
 

4. Numerical Examples 

In this section, we provide two numerical examples to 
illustrate the applications of the proposed model in both 
single-stage and two-stage processes.  
 

4.1. A Numerical Example for a Single-Stage System 

Consider a single-stage production system with the 

following characteristics: $120SP  , 1 $40PC  ,

1 $35RC  , 1 $15SC  , 1 1  , 23 0.95p  , 1 8L   

and 1 12U  . Note that 45p  does not exist in a single 

stage model and the other probability terms are 
determined by equation (3), (4), and (5) using a numerical 
search method. Then, the expected profit per item is 
maximized at 9.9   with a value of ( ) $73.1E PR 
The function ( )E PR  defined in equation (11) is plotted 

for different values of the decision variable  . Figure (1) 

shows the expected profit as a concave function of the 
process mean. 
 

Process mean
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Figure (1): The expected profit per item versus the process mean 

 

4.2. A Numerical Example for a Two-Stage System 

Consider a two-stage production system and the following 

parameters: $120SP  , 1 $35PC  , 2 $30PC  , 

1 $30RC  , 2 $25RC  , 1 $15SC  , 2 $12SC  , 

1 1.0  , 2 1.0  , 23 0.95p  , 45 0.95p  , 

1 8L  , 2 13L  , 1 12U  , and 2 17U  . The other 

probability terms are first determined using equation (13) 
and through a numerical search method. Then, the 
expected profit is maximized at 

1 29.8 and 15    with an expected profit per 

item of ( ) $19.06E PR  . The function ( )E PR  that 

is defined in equation (15) is plotted for different decision 

variables 1 2and    in Figure (2). Once again, Figure 

(2) shows that the expected profit is a concave function of 
the process mean. 

17.5
16.0

Expected Profit

-90

-60

-30

0

14.5 Process mean 28
10 13.012

Process mean 1

 
Figure (2): The expected profit per item versus the process mean 
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 (22) 

 

 

 (23) 
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5. Conclusion 

In this paper, absorbing Markov chain models 
were developed to determine the optimal process 
means that maximize the expected profit per item of 
both single-stage and two-stage production systems 
in which the items are %100 inspected to be 
classified as accepting, scrapping, and reworking 
ones. Two numerical examples were provided to 
illustrate the applications of the proposed models. 
The relationships between the process means and the 
expected profit per item have been given at the end.  
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