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Abstract  

In this paper, an efficient extension of network simplex algorithm is presented. In static scheduling problem, where there is no change in 
situation, the challenge is that the large problems can be solved in a short time. In this paper, the Static Scheduling problem of Automated 
Guided Vehicles in container terminal is solved by Network Simplex Algorithm (NSA) and NSA+, which extended the standard NSA. The 
algorithms are based on graph model and their performances are at least 100 times faster than traditional simplex algorithm for Linear 
Programs. Many random data are generated and fed to the model for 50 vehicles. We compared results of NSA and NSA+ for the static 
automated vehicle scheduling problem. The results show that NSA+ is significantly more efficient than NSA. It is found that, in practice, 
NSA and NSA+ take polynomial time to solve problems in this application. 
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1. Introduction 

The Minimum Cost Flow (MCF) problem is the 
problem of flowing resources from a set of supply nodes, 
through the arcs of a network, to a set of demand nodes at 
minimum total cost, without violating the lower and upper 
bounds on flows through the arcs (which represent the 
capacities of the arcs). This problem arises in a large 
number of industries, including agriculture, 
communications, defence, education, energy, health care, 
manufacturing, medicine, retailing, and transportation[1]. 
This paper has been motivated by a need to schedule 
Automated Guided Vehicles (AGVs) in container 
terminals. The container terminal components that are 
relevant to our problem include quay cranes (QC), 
container storage areas, rubber tyred gantry crane (RTGC) 
or yard crane, and a road network [5], [39]. A 
transportation requirement in a port is described by a set 
of jobs, each of which being characterized by the source 
location of a container, the destination location and its 
pick up or drop-off times on the quay side by the quay 
crane. Given a number of AGVs and their availability, the  
Task is to schedule the AGVs to meet the transportation 
requirements. 

 

 
 
 

 
Network Simplex Algorithm (NSA) is the fastest 
algorithm to tackle the MCF model [1]. Pricing scheme is  
certainly an important step in NSA since the total 
computational effort to solve a problem heavily depends 
on its choice. This step does two things. It checks whether 
the optimality conditions for the non-basic arcs are 
satisfied, and if not it selects a violated arc to enter the 
spanning tree structure [1]. The selected arc has a 
potential of improving the current solution. According to 
the theory [1] the NSA terminates in a finite number of 
iterations regardless of which profitable candidate is 
chosen if degeneracy is treated properly.  Some well-
known schemes in NSA are the steepest edge scheme (by 
Goldfarb and Reid [21]), the Mulvey’s list (by Mulvey 
[21]), the block pricing scheme (by Grigoriadis [15]), the 
BBG Queue pricing scheme  (by Bradley, Brown and 
Graves [21]), the clustering technique (by Eppstein [11]), 
the multiple pricing schemes  (by Lobel [24]),  the general 
pricing scheme (by Istvan [20]). In this paper we present a 
new pricing scheme, which significantly reduces the 
CPU-time required to tackle the MCF model. By using the 
new pricing scheme, we obtain an efficient extension of 
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NSA, which called Network Simplex plus Algorithm 
(NSA+).  

The structure of this paper is as follows. Section 2 
reviews the scheduling problem of Automated Guided 
Vehicles (AGV) in container terminals. Section 3 presents 
two algorithms to tackle the MCF-AGV model, namely 
Network Simplex Algorithm (NSA) and Network Simplex 
plus Algorithm (NSA+). Experimental results from 
applying the two algorithms to tackle the model are 
compared in Section 4. Section 5 is considered to 
summary and conclusion.  

2. The scheduling problem of Automated Guided 
Vehicles (AGV) in Container Terminals 

In order to test that the new extension of Network 
Simplex Algorithm is efficient, we choose the most 
challenging problem in container port. The problem is the 
AGV scheduling problem in the container terminals and it 
is the same as the problem presented in [37]. Here, we 
have an overview on the problem. For more detail, readers 
can refer to [36]. The most important reason for choosing 
this problem is that the efficiency of a container terminal 
is directly related to use the AGVs with full efficiency.  

2.1. The Assumptions 

The following assumptions are considered to define the 
AGV scheduling problem in the container terminals:  
Assumption-1: It is assumed that the problem involves 
only one ship. For the ship, n containers jobs must be 
transported from the quay-side to the year-side or vice 
versa. The source and destination of the containers jobs as 
well as their appointment time on the quay-side are given. 
To load/unload the containers from a vessel or in the yard, 
a QC or RTGC is used.  
Assumption-2: The RTGCs or yard crane resources are 
always available, i.e., the AGVs will not suffer delays in 
the storage yard location or waiting for the yard cranes. 
Assumption-3: There is a predetermined crane job 
sequence, consisting of loading jobs, or 
unloading/discharging jobs, or a combination of both for 
every QC. Given a specified job sequence, the 
corresponding drop-off (for loading) or pickup  
(for discharging) times of the jobs on the quayside 
depends on the work rate of the quay cranes. After the 
ship docked at the quay-side, the appointment time of the 
jth job is calculated by the following expression :  

ATj = Ship-docked-time + j × W. 
The Ship-docked-time is the time at which the ship is 
ready for discharge/loading on the quay-side. The time 
window W is the duration of discharging/loading a 
container.  

Assumption-4: We are given a fleet of V={1,2,..,│V│} 
vehicles. Each vehicle transports only one container. At 
the start of the process, the vehicles are assumed to be 
empty.  
Assumption-5: It is assumed the vehicles move with an 
average speed so that there are no Collisions, Congestion, 
Live-locks, Deadlocks 0[35] and breakdown problem.  
Assumption-6: We assumed the container jobs are 
distributed in the terminal so that each pickup/drop-ff) 
point is visited once only by a vehicle. In other word, a 
QC and RTGC are not busy in each node by different 
container jobs at the same time. 
Assumption-7: In this scheduling problem, our goal is to 
deploy the AGVs such that all the imposed appointment 
time constraints are met with minimum cost. Our 
objectives are to minimize (1) the total AGV waiting time 
on the quay side; (2) the total AGV traveling time in the 
route of port; (3) the total lateness times to serve the jobs.  

2.2. The formulation 

Since the vehicles are Single-Load AGVs (see the 
Assumption-4), the problem can be converted to a 
Minimum Cost Flow (MCF) problem. For more details on 
the MCF problem and the scheduling AGV problem, 
readers can refer to [37], [36]. The MCF is a well-known 
problem in the area of network optimisation, i.e. the 
problem is to send flow from a set of supply nodes, 
through the arcs of a network, to a set of demand nodes, at 
minimum total cost, and without violating the lower and 
upper bounds on flows through the arcs. The problem for 
two vehicles and four jobs is demonstrated in the Figure-2. 
In the figure the supply nodes are denoted by A1 and A2. 
Each of these nodes has a one unit supply. There is only a 
demand node in the MCF problem. This node has -2 units 
demand. The directed arcs from A1 and A2 to the demand 
node must be added to the network model. These arcs 
show that an AGV can remain idle without serving any 
job. Therefore, a cost of zero is assigned to these arcs. The 
lower bound, upper bound and cost of each arc are noted 
by the triplex [Lower Bound, Upper Bound, Cost].  

Solving the MCF problem generates 2 paths 
 (the number of vehicles), each of which commences from 
a vehicle node and terminates at the demand node. Each 
path determines a job sequence of every vehicle. Suppose 
that for some values of arc costs, the paths given by a 
solution are A1→1→5→4→8→9 and 
A2→2→6→3→7→9. This states that AGV 1 is assigned 
to serve jobs 1 and 4, and AGV 2 is assigned to serve jobs 
2 and 3, respectively. 
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3. The Algorithms  

In this section, two algorithms to tackle the problem, 
Network Simplex Algorithm (NSA) and Network Simplex 
plus Algorithm (NSA+) are presented. NSA+ is an 
extended NSA with three enhanced features. 

3.1. Network Simplex Algorithm (NSA) 

Every connected graph has a spanning tree [1]. The 
network simplex algorithm maintains a feasible spanning 
tree at each iteration and successfully goes toward the 
optimality conditions until it becomes optimal. At each 

iteration, the arcs in the graph are divided into three sets; 
the arcs belong to the spanning tree (T); the arcs with flow 
at their lower pound (L); the arcs with flow at their upper 
bound (U). A spanning tree structure (T, L, U) is optimal 
if the reduced cost for every arc (i,j)∈L is greater than 
zero and at the same time the reduced cost for every arc 
(i,j)∈U is less than zero [3]. With those conditions, the 
current solution is optimal. Otherwise, there are arcs in the 
graph that violate the optimal conditions. An arc is a 
violated arc if it belongs to L (U) with negative (positive) 
reduced cost. The algorithm in Figure-2 specifies steps of 
the method [21].  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. The MCF model for 2 AGVs and four container jobs. 
 

To create the initial or Basic Feasible Solution (BFS), 
an artificial node 0 and artificial arcs are appended to the 
graph. The node ‘0’ will be the root of spanning tree (T) 
and the artificial arcs, with sufficiently large costs and 
capacities,  connect the nodes to the root. The set L 
consists of the main arcs in the graph, and the set U is 
empty [1]. Appending the entering arc (k, l), which is a 
violated arc, to the spanning tree forms a unique cycle, W, 
with the arcs of the basis. In order to eliminate this cycle, 
one of its arcs must leave the basis. The cycle is 
eliminated when we have augmented flow by a sufficient 
amount to force the flow in one or more arcs of the cycle 
to their upper or lower bounds. By augmenting flow in a 
negative cost augmenting cycle, the objective value of the 
solution is improved. The first task in determining the 
leaving arc is the identification of all arcs of the cycle. 
The flow change is determined by the equation θ = min 
{ fij for all (i, j) ∈ W}.  The leaving arc is selected based 
on cycle W. The substitution of entering for the leaving 
arc and the reconstruction of new tree is called a pivot. 
After pivoting to change the basis, the reduced costs for 
each arc (i, j) ∉  T is calculated. If the reduced costs for 
all (i, j) ∈ {L + U} satisfy the optimality condition, then 
the current basic feasible solution is optimal. Otherwise, 

an arc (i, j) where there is a violation should be chosen 
and operations of the algorithm should be repeated.  

Different strategies are available for finding an 
entering arc for the basic solution. These strategies are 
called pricing rules. The performance of the algorithm is 
affected by these strategies. The standard textbook [1] 
provided a detailed account of the literature on those. 
Grigoriadis [15] describes a very simple arc block pricing 
strategy based on dividing the arcs into a number of 
subsets of specified size. At each iteration, the entering 
arc is selected from a block with most negative price. 
Andrew [4] studied practical implementation of minimum 
cost flow algorithms and claimed that his/her 
implementations worked very well over a wide range of 
problems [4].  

Masakazu [25] used a primal-dual symmetric pivoting 
rule and proposed a new scheme in which the algorithm 
can start from an arbitrary pair of primal and dual feasible 
spanning tree [25]. Eppstein [11] presented a clustering 
technique for partitioning trees and forests into smaller 
sub-trees or clusters [11]. This technique has been used to 
improve the time bounds for optimal pivot selection in the 
primal network simplex algorithm for minimum-cost flow 
problem. Lobel [24] developed and implemented the 
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multiple pricing rules to select an entering arc, a mixture 
of several sizes for the arc block [24]. A general pricing 
scheme for the simplex method has been proposed by 
Istvan [20]. His pricing scheme is controlled by three 
parameters. With different settings of the parameters, it 
creates a large flexibility in pricing and applicable to 
general and network simplex algorithms. Ahuja et al. [3] 

developed a network simplex algorithm with O(n) 
consecutive degenerate pivot [3]. He presented an anti-
stalling pivot rule, based on concept of strong feasible 
spanning tree. The basis structure (T, L, U) is strongly 
feasible if we can send a positive amount of flow from 
any node to root along arcs in the spanning tree without 
violating any of the flow bounds.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      
 

 
Fig. 2. The Network Simplex Algorithm (NSA) 

 
Istvan reviewed a collection of some known pricing 
schemes in the original simplex algorithm [20]. They are 
First improving candidate, Dantzig rule, Partial pricing, 
Multiple pricing and Sectional pricing. These schemes can 
be applied to NSA. First improving candidate chooses the 
first violate arc as the entering arc. It is cheap but it 
usually leads to a very large number of iterations. In 
Dantzig rule all non-basic arcs are checked (full pricing) 
and one which violates the optimality condition the most 
is selected. This rule is quite expensive but overall is 
considerably better than the previous method. The Partial 
pricing scans only a part of the non-basic arcs and the best 
candidate from this part is selected. In the next step, the 
next part is scanned, and so on. In Multiple pricing, some 
of the most profitable candidates (in terms of the 
magnitude) are selected during one scanning pass. They 
are updated and a sub-optimization is performed 
involving the current basis and the selected candidates 
using the criterion of greatest improvement. The Sectional 
pricing behaves as a kind of partial pricing, but in each 
iteration sections or clusters of arc are considered. 

3.2. The Network Simplex plus Algorithm (NSA+) 

NSA+ is an efficient extension of NSA. Compared 
with the standard version of NSA by Grigoriadis’s 
blocking scheme [15] and maintaining the strongly 
feasible spanning tree [1], NSA+ has three new features. 
These features are concerned with the starting point/block 
for scanning violated arcs, the memory technique and the 

scanning method. The pricing scheme of NSA+ is 
designed based on these features.  

There is a function for the pricing scheme to find out 
an entering arc. The pseudo-code for this function is 
illustrated in Figure-3. The arcs in the graph of MCF 
model are divided into several blocks with the same size 
and each block is identified by a specific number, known 
as Block-Number. For each problem, the number of 
blocks is calculated by dividing the number of arcs in the 
graph into the block’s size.  

At first iteration, when the initialization is needed and 
the packet is empty, the number of blocks is calculated 
and the first one to be scanned for the optimality condition 
is chosen (see the lines 2-5).  The function selects the first 
block randomly or by a heuristic method (based on 
location of the biggest cost, for example). Note that at first 
iteration the lines 6-9 don’t perform anything because the 
packet is empty (these will be activated from the second 
iteration and when the packet is not empty). Scanning of 
the arcs for violation among different blocks is chosen 
circularly. At each scan one violating arc (at most) from 
each block is put into the packet as long as it has empty 
place and there is any violated arc (see the lines 10-14). 
The capacity of the packet is more than the block’s size 
and the most violating arcs are kept at the top of the 
packet. At the end of function, if the packet is empty, the 
current solution is optimal (see the lines 15-17). 
Otherwise the packet will be sorted in descending order, 
based on the absolute value of the reduced costs, and the 
most violated arc will be chosen as the entering arc (see 
the lines 18-19). 

1: Algorithm Network Simplex Method 
2: Begin    
3:         Create Initial BFS; (T, L, U) 
4:          (k, l)          entering arc ∈ {L + U } 
5: While (k, l) <> NULL Do 
6: Find Cycle W ∈ {T +  (k, l) } 
7: θ        Flow Change 
8: (p, q)        Leaving Arc ∈ W  
9:  Update Flow in W by θ 
10: Update BFS; Tree T 
11: Update node potentials 
12: (k, l)  entering arc∈ {L+ U} 
13: End while 
14: End Algorithm 

Step 2: Determine the leaving arc 

Step 3: Exchange the entering and leaving arc  

Step 1: Select an entering arc 

Step 0: Create a Basic Feasible Solution 
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The memory technique will be activated from the 
second iteration. It uses a few elements at the top of the 
packet of the last iteration. The size of this memory may 
be a percentage of the block’s size. The reduced costs of 
the most violated arcs in the previous iteration are 
recalculated (see the line 6). If they violate the optimality 
conditions again, they are kept in the packet. Otherwise 
they must be removed from the packet, which can be 
replaced by new violating arcs (see the lines 7-9). The 
reaming part of the function acts as before.  

As we mentioned, there are two options to choose the 
first block to be scanned; Randomly and Heuristically. 
Hence, NSA+ has two extensions: (a) NSA+R: The 
entering arc function chooses the first block by Random 
selection; (b) NSA+H: The entering arc function chooses 
the first block by a Heuristic method (based on location of 
the largest cost in the graph). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3. Pseudo-code of selecting an entering arc in Network Simplex plus Algorithm 

 

3.3 The differences between NSA and NSA+ 

The main difference between NSA and NSA+ are in 
the pricing scheme and the entering arc procedure. As we 
mentioned, the role of the pricing scheme is that how the 
entering arc to be selected from the violated arcs in the 
graph. The differences between NSA and NSA+ are as 
flows: 
• At each iteration, a packet of violated arcs from 

different blocks is collected in NSA+ and the most 
violated arc is selected as the entering arc, whereas 
NSA selects the most violated arc from one block. 

• There is no memory technique in NSA while 
NSA+ uses a few elements at the top of the packet 
for the next iteration. It benefits from the current 
violated arcs for the next iteration.  

• The first block is selected Randomly or by a 
Heuristic method in NSA+, whereas NSA always 
chooses the first block for scanning the violated 
arcs. 

4. Experimental Results from the implementation and 
running the algorithms 

We implemented the standard version of Network 
Simplex Algorithm (see Figure-2). As we mentioned, the 
pricing rule or scheme to choose the entering arc in Step 1 
determines the speed of algorithm. In the literature, we 
reviewed the pricing rules. Actually, there is the trade-off 
between time spent in pricing at each iteration and the 
‘goodness’ of the selected arc in terms of reducing the 
number of iterations required to reach the optimal solution. 
The First improving candidate and Dantzig rule represent 
two extreme choices for the entering arc. Other pricing 
schemes strike an effective comprise between these two 
extremes and have proven to be more efficient in practice 
[1]. Kelly and Neill [21] implemented several pricing 
schemes and ran their software for different classes of 
minimum cost flow problems. In their results,  

the block pricing scheme provided a better 
performance compared with others. We therefore chose 
the block pricing scheme. This scheme is based on 
dividing the arcs of the graph into a number of subsets of 
specified size. A block size of between 1% and 8.5% of 
the size of the arcs in the graph has been recommended by 
Grigoriadis [21], for large MCF problems. We set the 
number to 5% by the try and error.  

To test the model and make a comparison between 
NSA and NSA+, a hypothetical port was designed. The 
parameters in Table-1 were used to define the port.  

1: arc  Entering_Arc_Function 
2:               If Initialization is needed Then  // the packet is empty 
3:                  Calculate the number of blocks 
4:     Choose the Block-Number  // Randomly or by a Heuristic method 
5: End if 
6:               Recalculate the Reduced Costs of the most violated Arcs in the Packet 
7:  If the most violated elements satisfy the optimality conditions Then 
8:      Remove the elements from the packet 
9: End if 
10:  While the Packet has empty place AND there is any violated arc in the graph Do 
11:       Calculate the reduced cost of an arc from the block associated with the Block-Number. 
12:          Put the arc into the Packet if it violates the optimality condition. 
13:             Increase the Block-Number circularly. 
14:  End While 
15:  If the Packet is Empty Then 
16:      Return Null         // The Current Solution is Optimal 
17: End If 
18: Sort the Packet Descending   // Based on the absolute value of the reduced costs by Quick Sort 
19: Return the first element of the Packet 
20:  End Function 
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Table1 
 Value of Parameters for the simulation 

Description of the 
Parameters Values 

Number of Vehicles in the port 50 
Number of Quay Cranes 7 
Number of Blocks in the yard 
(Storage area inside the port) 32 

Time Window of the Cranes 120 seconds 
Travelling Time between every 
two points in the port (see 
Assumption 1)  

Random between 1 
and 100 seconds 

 
We implemented our the software in Borland C++. Then, 
has been run to solve several random problems. The 
sources and destinations of jobs were chosen randomly. 
The CPU-Time required to solve the problems by the two 
algorithms has been drawn in Figure-4 and Figure-5, 
according to the number of jobs and the number of arcs, 
respectively. Also the power estimation for those two 
curves has been shown on the figures. 

All experiments were run on a Pentium 2.2 GHz PC 
with 1 GMB RAM. From the figures, we can observe that: 
Observation 1: NSA and NSA+ are run in polynomial 

time to solve the MCF-AGV model, in practice. 
Observation 2: NSA+ is fast and more efficient than 

NSA.  
There are two different types of iteration in NSA, 

degenerate and non-degenerate [1]. In every non-
degenerate iteration, the value of the objective function is 
decreased whereas degenerate iterations do not change the 
objective function’s value. In the degenerate iterations, a 
flow change of zero causes cycling. In the literature, 
Grigoriadis experienced that cycling is rare in practical 
application [15]. Observation 1 confirms the experience. 

In order to confirm that NSA is run in polynomial time 
to solve the MCF-AGV model (Observations 2), we 
estimated complexity of the algorithm. The result shows 
that the CPU-Time required to tackle the problem, is a 
function with degree 3 of the number of jobs in the 
problem [36].  

4.1. The percentage of improvement in CPU-Time 
required to tackle the problem 

In order to calculate the average CPU-Time required to 
solve the problems and to compare performance of the 
algorithms in this application, we introduce the following 
terms: 
Ti

NSA: The CPU-Time used to solve the problem i by 
NSA. 
 
Ti

NSAH
 : The CPU-Time used to solve the problem i by 

NSA+H. 
 

Ti
NSAR: The CPU-Time used to solve the problem i by 

NSA+R. 
PIHi: The Percentage of Improvement in CPU-time used 

to solve the problem i by NSA+H compared with 
NSA. 

 
PIRi: The Percentage of Improvement in CPU-time used 

to solve the problem i by NSA+R compared with 
NSA. 

 
TPIH: The Total Percentage of Improvement in CPU-

Time used to solve the problems by NSA+H 
compared with NSA. 

 
TPIR: The Total Percentage of Improvement in CPU-

Time used to solve the problems by NSA+R 
compared with NSA 

. 
Wi: The Weight of improvement for the problem i. In this 

experiment we consider the number of arcs in the 
MCF-AGV model for the weight. Given N jobs 
and M AGVs in the problem, the number of arcs 
is M+M×N+N×(N-1)+2×N. 

 
Now we calculate the percentage of improvements in 

the CPU-Time used for problem i by the following terms: 

 

 )(*100 PIR

   )(*100PIH

i
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i
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The total percentages of improvement in the CPU-
Time used to solve the problems by NSA+H and NSA+R, 
compared with NSA, are calculated by the following 
expressions: 

%28.21
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4.2. Statistical test for the comparison 

The CPU-time required to solve the problems by the 
two algorithms, NSA and NSA+, were analysed 
statistically. We tested the null hypothesis that the means 
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produced by the two algorithms were statistically 
indifferent. Since we cared the change (the difference 
between the two means) was positive or negative, ‘One-
tail’ test was chosen. The result of Paired T-test along 
with the critical values of T-distribution for the particular 

degree of freedom are shown in Table-2. The T-test 
confirms that NSA+ is significantly better than NSA with 
95% degree of confidence.  
 

CPU-Time required to solve the MCF-AGV Model
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Fig.  4. CPU-Time to solve the static problem by NSA and NSA+, based on the number of jobs 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. CPU-Time to solve the static problem by NSA and NSA+, based on the number of arcs 
 

Table 2 
The result of T-Test for the comparison between both algorithms, NSA 
and NSA+  

Statistical Parameters NSA+H 
vs. NSA   

NSA+R 
vs. NSA  

Number of 
Samples/Observations 32 32 

T-Test (Paired Two 
Sample For Means  ) -4.1799 -3.3617

Degree of Freedom 31 31 
Critical T-Value -1.6955 1.6955 

 4.3. Complexity of NSA+ 

Given N jobs and M AGVs in the problem (N>>M), 
the complexity of the NSA+ is calculated as follows: 
Assume that the maximum flow, MF, in each of the m 
arcs, at maximum cost, C, for the minimum cost flow 
model. So there is an upper bound on the value of the 
objective function. This upper bound is given by m•C•MF. 
There are two different types of pivots in the algorithm, 
non-degenerate and degenerate pivots. The former is 
bounded by m•C because the number of non-degenerate 
pivots in the algorithm is bounded by m•C•MF (MF=1 in 

CPU-Time required to solve the MCF-AGV Model
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80

0 1000 2000 3000 4000 5000 6000 7000
ThousandsNumber of Arcs in the MCF-AGV
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the MCF-AGV model). The number of degenerate pivots 
is determined by the sum of nodes potential and 
maintaining the strongly feasible spanning tree. Given n 
as the number of nodes in the graph model, the sum of 
nodes potential is bounded by n2•C. It is decreased at each 
iteration when the spanning tree is strongly feasible [ 2]. A 
series of degenerate pivots may occur between each pair 
of non-degenerate pivots, and thus a bound on the total 
number of iterations is m•n2•C2. Find the entering arc is 
O(m) and sorting the packet is O(K•LogK) operation (K is 
size of the packet, K=225 ). Finding the cycle, amount of 
flow change, leaving arc and updating the tree are O(n) 
operations. Hence the complexity of each pivot is O((m + 
n) K•LogK). Based on the complexity of the number of 
iterations and the complexity of each pivot, the total 
complexity of this algorithm is determined by the 
following equation:  

))(( 22 KLogKCmnnmO +  
 Since m=O(N2) ; n=O(N), the total complexity of NSA+ 
to tackle the MCF-AGV model is O(N6). 

5. Concluding Summary  

In this paper, two algorithms, NSA and NSA+, were 
applied to the automated guided vehicles scheduling 
problem in container terminals. Our experimental results 
suggested that NSA could find the global optimal solution 
for 2,600 jobs and 7 millions arcs in the graph model 
within 70 seconds by running on a 2.2 GHz Pentium PC. 
NSA+ has enhanced features over NSA and it is faster. 
The most effective feature of NSA+ is a memory 
technique and scanning method, which can be applied to 
Original Simplex Algorithm in Operation Research.  
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