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Abstract 

Model building is a fragile and complex process especially in the context of real cases. Each real case problem has its own 
characteristics with new concepts and conditions. A correct model should have some essential characteristics such as: being 
compatible with real conditions, being of sufficient accuracy, being logically traceable and etc. This paper discusses how to build an 
efficient model for a real case production planning problem. This process is reinforced by providing the proofs confirming the special 
characteristics of the final model such as proving its NP-Completeness. Also, the extremes of both objective functions – production 
smoothing versus cost minimizing – are calculated analytically. Finally, the case study and its solution methods are discussed briefly.  
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1. Introduction 

Production managers usually seek to use an ideal 
production plan for their plants with some of critical 
features such as: 
1- Clearance 
2- Flexibility and robustness 
3- Cost saving 
4- Monotonicity 
5- Reliability 
6- Customer focused, and 
7- Feasibility  
Certainly, there are many other parameters that can be 
listed above but we think that they are not as general and 
important as those above-mentioned features. On the 
other hand, there are lots of conditions in production 
plans belonging to the other extreme of desirability for 
production managers. Clearance refers to the degree of 
vagueness of the production plan and the amount of total 
numbers needed to construct a comprehensive plan. Of 
course, clearance itself is a fuzzy concept in some  
 

 
 
Respects. Generally, more important data in a plan makes 
it clearer and more comprehensive.  
Flexibility is, of course, a factor of importance. This 
refers to how a production plan could be adapted in 
emergency working changes such as the increase of 
customer demand. On the other hand, robustness means 
how insensitive a production plan is to the changing 
parameters and conditions of the environment. There are 
also some differences and similarities between these 2 
features in terms of modeling process and in the use of 
the final plan. Up to now, cost saving has been the most 
desired feature of all production plans. All cost 
optimizing models in production planning are of almost 
less complexity than the models of costs depending on 
other variables such as production volume, or demand, 
etc. Most managers prefer to experience fewer changes in 
their working environment. To this end, some production 
managers desire to produce in a monotone rate in 
different periods [1]. This amounts to characteristic no 4. 
One pitfall of common production models is that they do 
not take account of this requirement, and ,consequently, 
their optimal solutions are characterized by lots of 
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variations in batch size of different periods [3], [22]. In 
most cases, these variations make managers not accept 
the production plan [2].  
Reliability is another feature most production mangers 
seek to include in their plans. This refers to how many 
factors, constraints, etc and in which manner are 
considered to obtain the production plan. This 
characteristic of the plans is a bit fuzzy and vague to 
evaluate too. When a production plan is called "customer 
focused", it means that it is obtained while considering 
customer's need among other parameters. Some of the 
well-known production philosophies such as JIT are 
concerned with this critical feature in the production 
plans as far as possible. 
Feasibility of production plan is obtained only when all 
working constraints are met. Producing an arbitrary 
product type will result in many other constraints such as 
governmental constraints, customers' willing, etc. 
As this paper focuses on modeling a real case problem in 
Iran, related topics are discussed in the rest of the work.  
In recent years, various models have been proposed to 
solve this problem in order to satisfy managers. Most 
existing models seek a way to determine an ideal 
production level around which the variations of batch 
sizes are as small as possible in the form of a narrow 
band as depicted in Fig. 1 [23]. This band is usually 
labeled as the ideal production band. Some models in the 
literature attempt to impose some dummy objectives on 
the classic batch sizing models [3], [8]. Due to conflicts 
between different goals of an existing model, a number of 
solution methods, such as goal programming, game 
theory, etc. have been proposed in the literature [23]. 
Some researchers tried to obtain the narrowest ideal band 
as far as possible. A few studies are aimed at forcing their 
models to obtain an ideal production band limited to the 
maximum production capacity [25]. Fig. 1 shows an 
example of the ideal level and ideal production band. The 
dashed line in the ideal band is the ideal production level. 
In Fig. 1, the forecasted demand (Dt), and smoothed 
batch size (xt*) of periods t = 1, 2, ..., 12 are plotted. It is 
worth noting that a fundamental assumption is that values 
of demands in each period is given or forecasted by a 
good method. The upper dot line indicates the maximum 
production capacity. Another fundamental assumption in 
the literature is that the maximum production capacity of 
all periods is constant. One concern in the current 
literature is the relation between JIT and production 
smoothing approaches. For example, it is asked whether 
to use production smoothing models via production in the 
framework of JIT. If so, how should this be done so that 
it is not far from the philosophy of JIT [24]? In quick 
prompt, we can say that JIT requires that demands of 
different periods be forecasted in a reasonable interval, 
such as week/ day/ hour, or to be taken from customers 
[14]. Now if demand data vary strongly from one period 
to another period, or at least one piece of data exceeds the 

maximum production capacity, how should the 
production manager   

 
Fig. 1. Ideal production band 

 Plan? For example, consider the data set of 200, 300, 
800, 15, 2, 350, 238, 645, 700, 46, 582, and 212 for 
demands of 12 planning periods by the maximum 
production capacity of 550. Sometimes the maximum 
production capacity is forced by total available time. As 
we know, a JIT framework requires the production to 
have few variations in market demands [14]. To solve 
this dilemma and to comply to the philosophy of JIT, 
some techniques can be wielded. For example, a part of 
customers’ demand can be met in maximum one period 
delay. In the literature, there are two main approaches 
that can be summarized as follows: (a) if the demand of a 
period is less than the maximum production capacity, that 
period should produce as JIT dictates, else the customer 
is to be lost, or (b) the difference between demand and 
maximum production capacity can be produced in the 
adjacent periods [4]. Some reasons for using JIT are high 
shortage and low holding costs. The high shortage costs 
are due to the importance / attentions paid to customers. 
So the above-mentioned approaches depend on holding / 
shortage / delay /… costs considered in the model [19]. 
Furthermore, factories producing in the framework of JIT 
should not be worried about using the proposed model. 
These problems make us use a mathematical model 
instead of decision making based on simple conditions 
which consider different scenarios of production 
planning. Most of the times, the constructed model is so 
complex and full of many integer variables that even 
finding a feasible solution becomes so critical [7]. Yavuz 
and Tufekci [24] extended the previous research work on 
the batch production smoothing problem and introduced 
a bounded dynamic programming approach for medium 
sized problems. Minner [17] provided a comparison of 
simple heuristics for multi-product dynamic demand lot-
sizing with limited warehouse capacity and proposed a 
heuristic for single-item uncapacitated lot-sizing that 
successively improves an initial lot-for-lot schedule by 
combining replenishments according to a cost savings-
based priority rule to the multi-item capacitated problem. 
Zhou et al. [26] presented a general time-varying demand 
inventory lot-sizing model with waiting-time-dependent 
backlogging and a lot-size-dependent replenishment cost. 
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McMullen [15] presented a technique which addresses a 
JIT production-scheduling problem where two objectives 
were as (a) minimization of setups between different 
products and (b) optimization of schedule flexibility, and 
employed an efficient frontier approach to address the 
situation, where the most desirable sequences in terms of 
both objectives are found. Kovacs et al. [12] presented a 
novel mathematical programming approach to the single-
machine capacitated lot-sizing and scheduling problem 
with sequence-dependent setup times and setup costs. 
Biskup and Jahnke [6] analyzed the problem of assigning 
a common due date to a set of jobs and scheduling them 
on a single machine such that the processing times of the 
jobs are assumed to be controllable. Jaber et al. [11] 
extended the classical economic manufacture / order 
quantity (EMQ/EOQ) model and the lot sizing problem 
with learning and forgetting by including the entropy cost 
concept. Merce and Fontan [16] proposed two heuristics 
based on an iterative procedure that is an MIP-based 
algorithm within a rolling horizon framework. Haral et 
al. [10] investigated bicriteria scheduling with 
nontraditional requirements using an experimental 
approach and a random keys genetic algorithm to find 
Pareto-optimal solutions. Bylka and Rempala [5] 
considered the problem of finding the optimal schedule 
of production runs of single machine to meet all discrete 
multi-product demands which are required at discrete 
points of time. Mollick [18] investigated physical data 
from the Japanese vehicle industry, covering monthly 
observations from 1985:1 to 1994:12, across nine goods, 
ranging from bicycles to large buses and concluded that 
the production smoothing model of inventories depends 
on a convex short-run cost function and adjustment costs 
that induce firms to maintain inventories for dampening 
the effects of demand fluctuations. Schaller [20] 
considered the problem of scheduling on a single 
machine when family setup times exist and showed that 
in most of the cases the total tardiness is minimized as 
well. Tang [21] provided a brief presentation of 
simulated annealing techniques and their application in 
lot sizing problems. 

2. The Proposed Model  

In this section, the proposed model is presented. We are 
seeking a model that: (I) determines the volume of 
production for each product type in each planning period, 
(II) considers the following conditions that are stated by 
the customers, working conditions, desires of the 
managers, etc. Now each condition of the case problem 
will be explained in mathematical language gradually. 
The schedule of the machine should be determined such 
that by considering controllable processing times, the 
production time becomes less than available time. Surely 
this feature increases the complexity concerned with 

analyzing the model. Because of imperfect knowledge 
about the trade-off between cost and time, their relation is 
assumed linear as shown in Fig 2. There are two critical 
points in Fig. 2 as (Pn, C(Pn)) and (Pc, C(Pc)) 
corresponding to (normal process time, cost of normal 
process time) and (crash process time, cost of crash 
process time) respectively. 
  
 
 
 
 
 
 
 
 

Fig. 2. The linear trade-off between cost and time 

Before presenting the proposed model, it is worthy 
formulating the relation between cost and time of 
process. As it is clear from Fig. 2, the linear relation 
between points (Pn, C(Pn)) and (Pc, C(Pc)) could be 
written as (1) for Pc ≤ P ≤ Pn: 
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Because the line slope is assumed to be non-positive and 
for simplicity the absolute value of the line slope is 
shown with CS as (2), then after some of simplifications 
from (1) and (2) the followings are obtained: 
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C(P)=-CS.P+(CS.Pn+C(Pn)) (Pc ≤ P ≤ Pn) (3) 
As it is clear CS.Pn + C(Pn) is always constant for every 
Pc ≤ P ≤ Pn , then from now the term k = CS.Pn + C(Pn) 
is called as the fixed cost of processing and (3) could be 
re-written as (5) below:  
k = CS.Pn + C(Pn)  (4) 
C(P) = -CS.P + k (Pc ≤ P ≤ Pn) (5) 
Now the proposed model is constructed according to the 
following assumptions: 
There are some of independent products that should be 
produced during finite number of planning periods. 
There are two main objectives as (1) obtaining a 
smoothed production plan as possible and (2) minimizing 
the total cost of the corresponding production plan. 
- There is a single machine operating on all products. 
- The machine could process each product in an interval 

of time by trade off with cost such that the more 
process time, the less process cost linearly as Fig. 2. 
The optimal process time of machine on each product 
type should be the same in all planning periods as 
manager desires so. Because of preventive 
maintenance works, the available time in each planning 
period could be different from the others. 
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- Each product type has its own demand in every 
planning period that is a finite, deterministic and 
integer value. 

- There is no initial stock of inventory for each product 
type. 

- Products should be produced in a way that there would 
be no lost sales until the end of the last planning 
period, but backorder is allowed in every period except 
the last period. In the other words, the sum of the 
amounts produced during all periods should not be less 
than the sum of demands over all of periods. 

- Unit shortage cost and unit inventory holding cost are 
deterministic values that could vary from a period to 
another period. 

- Setup consists of some activities for each product type 
such as adjusting the machine speed, changing the tool, 
brushing and cleaning the machine, etc. And cost of 
changing the setup is so high. So for each product type, 
only one setup time is needed regardless of the amount 
of the given product type produced. Consequently all 
of amounts that should be produced in a period of each 
product type are produced consecutively once the 
corresponding setup is done as well. 

- Pre-emption is not allowed and amount of each product 
type that should be produced in every planning period 
is to be a non-negative integer value.  

After defining some of parameters and variables in Table 
1, the proposed model is presented as Model 1. 

Table 1  
 Parameters and variables of the model 
Parameters 

T total number of planning periods  
t index of planning period 
n number of product types 
i index of product type 

di,t demand of product type i in period t 
ATt available time in period t 
Pi

n normal processing time on product type i  
Pi

c crashed processing time on product i  
Si setup time of machine for product type i 

SCi setup cost of machine for product type i 
i,tπ unit shortage cost 

hi,t unit inventory holding cost 
CSi cost slope of processing product i on machine  
ki fixed cost of processing product i on machine  

Variables 
Bi,t amount of shortage for product type i in period t 
Ii,t amount of inventory for product i in period t 

yi,t  
⎩
⎨
⎧
0
1

 
if product type i in period t faces shortage 

else 

ri,t 
⎩
⎨
⎧
0
1

 
if product i is produced in period t 

else 
Pi  processing time of product type i  
xi,t  amount of product type i that should be produced in 

period t 
 

Model 1 

2
,

1

1

1
1,1 )(min ti

n

i

T

t
ti xxZ −= ∑∑

=

−

=
+ (6) 

2 , ,
1 1 1

, , , ,
1 1

min ( )
T n n

i i t i i i i t
t i i

n n

i t i t i t i t
i i

Z sc r k cs p x

B h Iπ

= = =

= =

⎧
= + −⎨

⎩
⎫+ + ⎬
⎭

∑ ∑ ∑

∑ ∑

  
(7) 

s.t.   

t

n

i
ititii ATpxrs ≤+∑

=1
,, )(  ( )t∀

 
(8) 

∑ ∑
= =

≥
T

t

T

t
titi dx

1 1
,,  )( i∀

 
(9) 

c n
i i ip p p≤ ≤  ( )i∀

 
(10) 

titi rMx ,, .≤  ),( ti∀ (11) 

)1.(1 ,, titi rMx −−≥  ),( ti∀ (12) 

titititi yMdIx ,,1,, .−≥−+ −  ),( ti∀  (13) 

)1( ,,1,, titititi yMdIx −≤−+ −  ),( ti∀ (14) 

( ) )1( ,,1,,, tititititi ydIxI −−+= −  ),( ti∀  (15) 

( ) tititititi yIxdB ,1,,,, −−−=  ),( ti∀ (16) 

}1,0{, ,, ∈titi ry  ),( ti∀ (17) 

}0{,, ,,, ∪∈ +ZIBx tititi  ),( ti∀ (18) 

Objective (6) and is seeking a smoothed production plan 
while objective (7) is aiming at minimizing the total cost 
of the production plan, consisting of setup cost, 
production cost, shortage and inventory holding cost as 
well. Constraints (8), (9), (10) and (18) are checking the 
feasibility of the production plan, since they construct the 
feasible solution space while constraints (11) to (17) aim 
to determine some of penalty values in Z2. Constraint (8) 
is satisfied when in every period t the sum of setup time 
and production time are less than available time. 
Constraint (9) ensures that in every feasible production 
plan, no lost sales could occur but backorder could. 
Constraint (10) states that production time of each 
product type should be in its permissible interval. 
Constraints (11) and (12) are intended to determine 
whether in period t product type i needs setup or not. 
Constraints (13) through (16) determine the amount of 
inventory or shortage for product type i in period t. 
Constraints (17) and (18) state the type of decision 
variables.    

2.1. Model Modification 

In this section, Model 1 is modified for purpose of easier 
analysis. These modifications do not violate basic 
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assumptions of Model 1. As it could be simply shown the 
feasible solution space of both models are the same, but 
Model 2 has less constraints and variables. This is 
because the omitted variables and constraints were not 
independent. In more details, by omitting two linear 
constraints (13), (14), a new linear constraint (19) is 
appended, and by omitting two nonlinear constraints 
(15), (16), a new simple nonlinear constraint (20) is 
added. Then, n×T number of binary variables (yi,t) are 
omitted from the original Model 1. So Model 2 is more 
efficient regardless of what solution method chosen. 
 
Model 2 

2
,

1

1

1
1,1 )(min ti

n

i

T

t
ti xxZ −= ∑∑

=

−

=
+    (19)   
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1 1
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∑ ∑ ∑

∑ ∑
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s.t.   

t

n

i
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,, )(  ( )t∀ (21) 

∑ ∑
= =

≥
T

t

T

t
titi dx

1 1
,,  )( i∀ (22) 

c n
i i ip p p≤ ≤  ( )i∀ (23) 

)1.(1 ,, titi rMx −−≥  ),( ti∀  (24) 

titi rMx ,, .≤  ),( ti∀ (25) 

( )tititititi dIxBI ,1,,,, −+=− −  ),( ti∀ (26) 

0. ,, =titi BI  ),( ti∀ (27) 

}1,0{, ∈tir  ),( ti∀ (28) 

}0{,, ,,, ∪∈ +ZIBx tititi  ),( ti∀ (29) 

On the other hand, the followings are correct for 
recursive relation between Ii,t and Ii,t-1,: 
Ii,1-Bi,1=Ii,0+xi,1-di,1  
Ii,2-Bi,2=Ii,0+xi,1+xi,2-di,1-di,2  

M  

∑
=

−+=−
t

q
qiqiititi dxIBI

1
,,0,,, )( 

  (30)  

Where Ii,0 is the initial stock of inventory for product type 
i. Moreover, as previously mentioned in problem 
assumptions, should Ii,0 be zero for each product type i. 
Then (22) shows the above-mentioned assumption as 
well: 

∑
=

−=−
t

q
qiqititi dxBI

1
,,,, )( (31) 

Then re-writing (7) as below and considering (22) 
simultaneously, the followings are obtained:  
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As (23) shows, Ii,t could be omitted from Z2. 
Furthermore, again by using yi,t, it is possible to omit Ii,t 
from constraints such that (19) and (20) could be 
replaced by (24) and (25) easily.  

∑
=

+−≤
t

q
tiqiqiti yMdxB

1
,,,, .)( 1,...,1; −=∀ Tti (33) 

)1.()( ,
1

,,, ti

t

q
qiqiti yMxdB −−−≥ ∑

=
1,...,1; −=∀ Tti (34) 

In this way, Model 3 is more efficient than Model 2. This 
is because two simple linear relations (24) and (25) have 
been appended and both the linear relation (19) and the 
nonlinear relation (20) have been omitted. Encountering 
shortage of product type i in the planning period t, Z2 will 

select ∑ =
−

t

q qiqi xd
1 ,, )(  as Bi,t by yi,t=1. This behavior 

comes from the minimum seeking characteristic of Z2. 
After all of the above, the number of required yi,t in 
Model 3 is less than needed Ii,t in Model 2 as n. As it has 
been shown in lemma 2, this fact originates from (9) that 
only back order is allowed not lost sales. So Bi,T = 0 and 
yi,T = 0 are always true without solving the model. Then, 
(7) is replaced with (26).         

 
Model 3 

2
,

1

1

1
1,1 )(min ti

n

i

T

t
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=
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+ (35) 
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Lemma 1. Possible values of Z1 are between Z1PIS and 
Z1NIS (i.e. Z1PIS ≤ Z1≤ Z1NIS) and these limits are 
considered as its positive and negative ideal values 
respectively: 
Z1PIS = 0 (46) 
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Proof. It is obvious that Z1 is a positive combination of 
some quadratic terms. Thus, it will never be lower than 
zero. Given the minimum seeking characteristic of Z1, 
zero would be as its positive ideal value. Then (27) is 
always true. On the other hand, by re-writing (8) as 
below, it is easy to show that a potential upper bound of 
each xi, is obtained when other non-negative variables si, 
ri,t and xk,t (k ≠ i) are simultaneously zero. Then (29) is 
such an upper bound for each xi,t: 
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Then, obviously relations (30) and (31) are correct for 
two adjacent planning periods t and t+1:  
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Then, relation (32) is obtained by squaring both sides of 
relations (30) and (31) and adding each side to the other 
one. In the same way (33) is made of multiplying each 
side of (30) and (31) to other one too. 
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Now the followings are obtained simply from (32) and 
(33): 
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Because (28) is always true for every feasible solution, 
then the right hand side of (28) would be as the negative 
ideal value of Z1. Now the proof is complete □. 
Lemma 2. The lower and upper bounds of Z2 are (34) 
and (35) respectively, known as Z2PIS and Z2NIS. In the 
other words, Z2PIS ≤ Z2 ≤ Z2NIS always holds true for 
every feasible solution.  
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Proof. As it could be seen in (7), Z2 is the sum of some 
nonnegative variables with nonnegative coefficients 
respectively. So it could be considered as the total sum of 
setup cost, production cost, shortage and inventory 
holding costs as well. Then it is clear that the term of 
setup cost will be maximum if there will be one setup for 
each product in every planning period (i.e. ri,t =1) as: 
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On the contrary, this term will be minimum when there 
will be only one setup during all planning periods as: 
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The term of production cost will be maximized if all 
products are processed in crash time. Each xi, should be 
maximized as far as possible and as previously proved 
(39) is always true: 
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Consequently the following is correct for the term of 
production cost in Z2: 
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On the contrary, the term of production cost will be 
minimum if each xi, is minimized so that (9) is satisfied 
and all of products are produced in normal time as: 
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(61) 

The term of shortage cost in Z2 is maximized if there are 
T-1 periods of shortage that are not corresponding to the 
minimum of (unit shortage cost times demand) or (πi,t.di,t) 
for each product type as well. Another fact emanating 
from (8) is that only back order is allowed not lost sales 
for each product type. Consequently there should be no 
shortage in the last planning period. Therefore (40) will 
result from considering (22) and (30) simultaneously: 
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(62)    

In (40), it is assumed that π  is sorted shortage penalties 
for every product (i) among t=1 to T periods ascending. 
So π, is the smallest for each i=1 to n. 
On the other hand, the term of shortage cost in Z2 is 
minimized when there is no shortage in every planning 
period for each product type (i.e. yi,t= 0 for each i, and t). 
Then (41) will be held: 

0min
1 1

,, ≥∑∑
= =

T

t

n

i
titi Bπ (63) 

Similarly the term of inventory holding cost in Z2 is 
maximized if there are more products than what needed 
in each planning period for each product type. 
Consequently there should be no shortage in all periods 
for each product type (i.e. Bi,t=0 ∀ i, t). On the other 
hand, given (22) and (39), an upper bound is obtained as 
(42):  
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Similarly, the term of inventory holding cost in Z2 could 
be minimized if there is no excess of product for every 
planning period and each product type. So (43) will 
always hold true: 

0min
1 1
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= =
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t

n

i
titi Ih (65)   

Now it is worthy noting that the meaning of positiveness 
and negativeness in PIS and NIS come from the type of 
the original objective function. In another words, when 
the original objective function is to find a minimum value 
over the feasible solution space, its minimum value or 
every value less than it, would be considered as its 
positive ideal value and vice versa. On the contrary, the 
maximum value of the above-mentioned objective 
function or every value higher than that, would be 
considered as its negative ideal value. PIS and NIS are 
solution vectors corresponding to positive ideal value and 
negative ideal value respectively. 
After all, the positive ideal value of Z2, known as Z2PIS, 
could be elaborated as (32) by considering (37), (39), 
(41) and (43) as well:  
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And finally the negative ideal value of Z2, known as 
Z2NIS, could be elaborated as (33) by considering (36), 
(38), (40) and (42) simultaneously: 
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Now the proof is complete. 
 
3. Problem Complexity 
 
In this section, the classification of the problem in terms 
of complexity is considered briefly. Before proving the 
degree of complexity of the problem, the concept of 
space dimensionality is given as simple as possible, 
because this concept is used in the proof of the following 
theorems. Informally, space dimensionality refers to how 
large an instance of a problem is. 
 
Definition1. Space dimensionality in every 
decision/optimization problem is determined by the 
number of independent variables provided the 
state/solution space is not null. 
 
Theorem1. Appending some of the new decision 
variables and/or new constraints to every 
decision/optimization problem causes a new problem 
whose complexity is not less than the initial model 

provided that the number of space dimensionality in the 
new problem is not less than the initial problem.  
 
Proof. Regarding definition 1, augmenting new decision 
variable to any problem will not reduce space 
dimensionality. Also, appending new constraints to every 
problem results   in one of the following cases: 
   Case1. The new constraint is valid for every feasible 
solution of the initial problem, then such a constrain does 
not reduce space dimensionality of the new problem, 
thus, this case confirms the theorem (Fig. 3 (a)), 
   Case2. The new constraint cuts a part of state/solution 
space such that space dimensionality of the new problem 
is not less than that of the old problem. So in this case, 
the theorem is correct because every arbitrary algorithm 
should decide or move in state/solution space consisting 
of a new constraint. Surely this means that the needed 
time for the new problem is not less than that needed in 
the previous problem (Fig. 3 (b)), and 
   Case3. The new constraint is in stark conflict with 
some of the old constraints and demolishes the 
state/solution space, thus according to the claim of the 
theorem; such a constraint is not considered (Fig. 3 (c)).  
   Finally given the  above reasons, appending some new 
variables and new constraints to a problem 
simultaneously will make a new problem which will not 
be of less degree of difficulty. Now the proof is complete 
□. 

 

   
(a)  (b) (c) 

Fig. 3. Different cases of adding a new constraint to a problem 
        

Theorem 2. Augmenting a new objective to an ordinary 
optimization problem results in a new problem whose 
complexity is not less than the initial problem. 
 
Proof. There are two main cases when a new objective is 
augmented to an arbitrary problem: 
   Case 1. The new objective approaches its optimal value 
when the other one does so. In other words, there is no 
conflict between the two objectives in the new problem. In 
this case, solving the new problem is equivalent to solving 
the single objective problem. So in this case the theorem is 
proved. 

   Case 2. The new objective contradicts the other objective. 
In this case, improving each objective results in the decline 
of the other one. So, it becomes more complex to search 
over feasible solution space (FSS) so that both objectives 
are near their own optimal values as far as possible. (Of 
course, in this case we are looking for a set of Pareto-
optimal solutions instead of an overall best solution). Then 
in this case, the new problem is not of less complexity and 
perhaps would be of more complexity. So this case 
confirms the theorem. Now the proof is complete □. Now, 
formal presentations of the corresponding decision 
problems SPMP and MPMP-CP are given. 
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Single Product, Multi Period Production Planning 
Problem (SPMP) 
Instance: Number of T ∈Z+ periods for each period t, 

1≤t≤T, a demand dt∈Z+∪ {0}, a production 
capacity ATt∈Z+∪ {0}, a production setup 
cost sct∈Z+∪ {0}, an incremental production 
cost coefficient pt∈Z+∪ {0}, and an inventory 
coefficient ht∈Z+∪ {0}, and an overall bound 
Best∈Z+. 

Question: Do there exist production amounts 
xt∈Z+∪ {0}, and associated inventory levels 
It=∑(xt-dt), 1≤t≤T, such that all xt≤ATt, all It ≥0, 
and ∑(pt.xt+ht.It+sct.rt) ≤ Best ? (Where rt is a 
binary variable determining whether xt >0 as 
rt=1 or not as rt=0). 

 
Garey and Johnson reported that SPMP is solvable in 
pseudo-polynomial time, but remains NP-Complete even if 
all demands are equal, all setup cost are equal, and all 
inventory costs are zero [9]. If all capacities are equal, the 
problem can be solved in polynomial time.  
 
Multi Product, Multi Period Production Planning 
Problem with Controllable Processing Times (MPMP- 
CP) 
Instance: Number of T ∈Z+ periods and number of n 

products, for each period t, 1≤t≤T, each product i, 
1≤i≤n, with demand di,t∈Z+∪ {0}, a production 
capacity ATt∈Z+∪ {0}, extremes of process time 
as Pi

c and Pi
n, a production setup time si, a 

production setup cost sci∈Z+∪ {0}, and unit 
production cost (ki-csi.pi), an inventory holding 
coefficient hi,t∈Z+∪ {0}, a shortage coefficient 
πi,t∈Z+∪ {0}, and an overall bounds {Best1, 
Best2}∈R+. 

Question: Do there exist production amounts xi,t∈Z+∪ {0}, 
and production processing times pi, Pi

c≤ pi ≤Pi
n and 

associated inventory levels Ii,t and shortage levels 
Bi,t, for 1≤t≤T, 1≤i≤n, and such that all 
∑(si.ri.t+xi,t.pi)≤ATt, and ∑xi,t ≥∑di,t all {Ii,t, Bi,t}≥0, 
and ∑∑(xi,t+1-xi,t)2 ≤ Best1 and ∑∑((ki-
csi.pi).xi,t+hi,t.Ii,t+sci.ri,t+Bi,t.πi,t) ≤ Best2 
simultaneously? (Where ri,t is a binary variable 
determining whether xi,t >0 as ri,t=1 or not as ri,t=0). 

 
Theorem 3. The problem MPMP- CP is NP-Complete. 
 
Proof. It could be observed that: (1) MPMP-CP take 
account of more variables than SPMP, (2) MPMP-CP has 
more constraints than SPMP, and (3) MPMP-CP has more 
objectives than SPMP. Then according to theorems 1 and 2, 
complexity of MPMP-CP is not less than SPMP. Since 
SPMP is proven to be NP-Complete, MPMP-CP is NP-
Complete too. Furthermore SPMP could be considered as a 
special case of MPMP-CP. On the other hand, if a special 
case of a problem is proved to be NP-Complete, then the 
more general problem is NP-Complete too [13]. So MPMP-
CP is surely NP-Complete. Now the proof is complete □. 

4. Case Study 

In this section, parameters gathered from a real case study 
in Iran are presented. The plant under study produces 
different types of a communication control instrument in 
Iranian police vehicles under the license of two 
international companies. Demands of each product type 
(di,t), unit shortage and unit inventory holding costs (πi,t , hi,t) 
are obtained from market research of the case and shown in 
Table 2 and Table 3 respectively. Intervals of processing 
time / cost and setup times/costs are asked from production 
experts, shown in Table 4. Finally available time of each 
planning period (ATt) is obtained by subtracting needed 
maintenance hours from potential available time of the 
corresponding planning period, shown in Table 2. 
Before running an arbitrary solution method, and for these 
set of parameters, Z1PIS, Z1NIS, Z2PIS and Z2NIS are 
computed according to (28), (29), (35) and (36) 
respectively as Z1PIS=0, Z1NIS=925579.60, Z2PIS=105044, 
Z2NIS=1651899. All of computations are run on a Pentium 
IV, 2.53 GHz CPU, 256 MB RAM. 

5. Conclusions and Future Research 

As it was observed in this paper, the proposed model takes 
account of different categories of costs, parameters, 
constraints, and etc, involved in a common production 
planning. It seems that the model could be developed for 
many other environments such as parallel machine, flow 
shop, job shop, open shop, cellular manufacturing systems, 
etc. Also, the current paper could be extended for dealing 
with stochastic demands and indefinite cost coefficients. It 
was assumed that the available time in each period is 
determined by subtracting the maintenance time from 
potential working time. But in real world, there are other 
cases involving uncertain needed maintenance time. 
Another potential future research is when there are some of 
dependent products among under consideration products. 
After all, the paper could be extended to consider infinite 
planning horizon.  
It should be noted that a suitable solution method should be 
used that at least have the following advantages: 
1. The natural conflict of objectives should be observed in 

the corresponding plot of objectives as Fig. 4, so that 
improving Z1 results in the decline of Z2.  

2. Due to model complexity, the solution method should be 
efficient in both average solution quality and the average 
CPU time. This could be evaluated via comparison with 
well-known algorithms such as Multi-Objective Genetic 
Algorithm (MOGA), Niched Pareto Genetic Algorithm 
(NPGA), Non-dominated Sorting Genetic Algorithm 
(NSGA), Sub-Population Genetic Algorithm (SPGA), 
Strength Pareto Evolutionary Algorithm (SPEA) and etc 
in average run time and average solution quality.  

3. Also, we are better off if the average solution quality is 
measured by a unique index over FSS. This is because 



Mir Bahadorgholi Aryanezhad et al. /Building a Multi-Objective Model for Multi-Product Multi-Period … 

10 
 

there is usually a natural conflict between two pairs of 
objectives in multi-objective problems.  

4. If the solution method covers the solutions only in FSS, it 
has the chance of outperforming most common 
algorithms proposed in the literature for multi-objective 
problems. 

 
Fig. 4. A Pareto-optimal frontier 

 
 

 
 

Table 2 
 Demands of products (di,t) and available times (ATt)     

product (i) planning periods (t) 
1 2 3 4 5 6 7 8 9 10 11 12 

A 15 0 0 33 6 12 30 45 28 18 15 20 
B 30 30 46 35 32 15 18 12 6 23 4 0 
C 5 18 4 42 47 21 38 26 17 5 5 5 

ATt 5904  588 582 594 576 588 594 570 588 582 594 564 
 

Table 3 
Shortage and holding costs of products (πi,t , hi,t) 

products 
(i) 

planning periods (t) 
1 2 3 4 5 6 7 8 9 10 11 12 

A (3,1) (4,1) (5,2) (7,1) (7,1) (7,1) (8,1) (8,2) (8,3) (6,3) (6,1) (∞,2) 
B (4,2) (4,2) (4,2) (4,2) (4,1) (4,0) (5,1) (7,2) (7,3) (7,4) (7,5) (∞,3) 
C (9,2) (7,2) (3,1) (5,2) (3,2) (3,2) (3,1) (9,3) (6,2) (7,3) (5,2) (∞,1) 

 
Table 4 
 Time/cost of process and setup  

product (i) n
ip )( n

ii pC  C
ip )( C

ii pC CSj ki  Si SCi 

A 11 311  7 530 54.75 913.25  21 2 
B 12 33  4 285 31.50 411.00  11 1 
C 16 119  5  390 24.64 513.18  18 3 
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