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Abstract  
 

Biomass is a renewable energy source that is easy to find in agricultural countries and can be quickly implemented by co-combusting CFPP 

in an effort to reduce GHG emissions. However, the integrated optimization of the blending process involving different coal ranks and 

biomass synergizing has yet to be achieved in order to meet the quality requirements of a number of CFPPs. This study offers an optimization 

approach for synergizing blending biomass in several coal-fired power plants (CFPPs). The objective is to reduce fuel costs and carbon 

dioxide emissions by taking into account CFPP's fuel quality requirements as well as constraints on CFPP demand, source supply capacity, 

and transportation alternatives. The optimization model used is mixed integer linear programming (MILP), which leverages OR-Tools in 

Google Colab to provide optimal solutions for the allocation of coal and biomass, whereas in the mathematical model, the amount of biomass 

that can be mixed into coal is limited in the range of 5% to 10%. Case studies conducted on 17 sources of coal, 1 biomass production facility, 

3 alternative transportation capacities, and 4 CFPPs show that blending biomass with coal can reduce fuel costs by 2.77% and carbon dioxide 

emissions by 9.99% when compared to business as usual. This model offers a practical solution to reduce costs while simultaneously tackling 

climate change in accordance with the objectives outlined in the Paris Agreement. 
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1. Introduction  
  

Blending is a commonly utilized process in various supply 

chains, where feedstocks of varying quality are merged to 

meet the specific requirements of end users (Fomeni, 

2018). One of the research subjects that has been widely 

carried out is coal mixing between two or more types of 

coal with different qualities to meet certain requirements, 

such as the technical specifications of boilers for power 

plants (Yin et al., 2000). According to Sloss (2014), when 

the composition of coal blending aligns with the 

specifications of the boiler, there is potential for an increase 

in generator efficiency. The implementation of this 

approach has the potential to yield several benefits in the 

coal industry (Yorukoglu, 2017). The benefits of the 

blending implementation include a reduction in coal 

production, an extension of mine life, a decrease in 

overburden in open pit mines, a reduction in slagging that 

minimizes plant maintenance costs, an increase in profits, 

and a reduction in greenhouse gas emissions. Furthermore, 

research was also carried out to optimize coal mixing while 

considering costs, supply chains, and carbon dioxide 

emissions (Baskoro et al., 2022).  

In the last few years, the existence of coal-fired power 

plants has been in the spotlight because it is the largest 

contributor to the increase in global carbon emissions (Xu 

et al., 2018) and affect air quality (Xu & Ge, 2020). The 

global community has increasingly expressed significant 

apprehension regarding the environmental impact of coal 

usage on the greenhouse effect and climate change (Xu et 

al., 2017). Primary energy consumption has increased over 

the last ten years as a result of societal and economic 

developments, with an average annual growth rate of 1.6% 

until 2030. To reduce the use of traditional fossil energy 

such as coal, support for the use of clean energy has 

become a trending topic, and biomass is one of the clean 

energies that is attracting attention (Zhang et al., 2019). So 

a lot of research has been done on the contribution of co-

firing biomass in coal-fired power plants. The co-firing 

technique utilizes biomass derived from a range of sources, 

including wood chips, rice husks, and corn stalks (Xu et al., 

2020). In the co-firing process, replacing some coal with 

biomass might lower the amount of greenhouse gases 

released, such as carbon dioxide, nitrogen oxides, and 

sulfur oxides (Roni et al., 2017). Hence, as the proportion 

of biomass fuel increases, there is a corresponding decrease 

in the emissions of greenhouse gases. Based on these 

advantages, several CFPPs have implemented the 

technique successfully (Smith et al., 2019). 

However, the optimization of the blending process between 

biomass and various coal ranks has not yet been conducted 

in an integrated manner to satisfy the specific quality 

standards demanded by several CFPPs. The lack of 

coordination among CFPPs in planning fuel requirements 

is the cause of this problem. Each CFPP focuses on 

selecting the most cost-effective coal option available and 

does not integrate the planning of biomass; instead, it is 

solely determined by the availability of coal in the 

stockpile. Consequently, a scenario occurs wherein the fuel 
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quality fails to fulfil the quality requirement of the CFPP 

boiler, thereby leading to elevated fuel expenses and 

greenhouse gas emissions. 

Hilali et al. (2023) have integrated coal blending planning, 

transportation planning, and supply and demand capacity 

considerations in their research to minimize costs and 

carbon dioxide emissions, but it is important to note that 

biomass was not part of their study models. Meanwhile, 

Nawaz and Ali (2020) conducted a study on blending 

biomass as a co-firing of coal based on supply already in 

the stockpile without addressing changes in the variation of 

coal quality characteristics or coal supply plans. This 

research was based on the supply already in the stockpile. 

The utilization of biomass co-firing in existing coal-fired 

power plants represents a rapid and efficient approach to 

increasing the renewable energy mix (Arifin et al., 2023). 

This is also driven by the minor CFPP modifications 

required (Juan et al., 2018). Biomass also has quality 

characteristics similar to coal, such as caloric value, 

moisture content, and ash content, which affect boiler 

efficiency (Mehmood et al., 2012). Hence, the utilization 

of linear programming methodology is applicable for the 

computation of coal and biomass blending, as the 

amalgamation of these three quality attributes can be 

represented as a weighted mean.  

This research aims to synergize the supply of biomass and 

coal into an optimized blending plan involving 4 PLTUs, 

17 coal mines, and 1 biomass production facility. The 

mathematical model was built by considering the quality of 

coal from various mines and biomass so that they comply 

with the technical specifications of boilers, source of 

supply capacity, CFPP demand, and transportation 

selection, with the objective of reducing costs and carbon 

dioxide emissions. 

The subsequent sections of this work are structured in the 

following manner: Section 2 provides an examination of 

the relevant literature pertaining to the study. The 

presentation of the research methodology was provided in 

Section 3, while the mathematical model was presented in 

Section 4. In Section 5, a proposed solution is put forth, and 

an analysis of the outcomes is presented. In the last section, 

we present the conclusion and recommendation. 

2. Literature Review 

Over the decades, studies on how to best combine the 

quality of coal have been conducted. Coal blending 

optimization is a widely employed practice within the 

mining industry, processing plants, and coal-fired power 

plants. Its primary objective is to ensure that the coal 

produced adheres to the required technical standards in 

terms of quality (Chakraborty & Mitra, 2019). A 

deterministic method with linear programming (Cutz et al., 

2019) and mixed integer linear programming (Baskoro et 

al., 2022) were used in the research on coal blending 

optimization that was carried out. In addition, research was 

carried out utilizing heuristic techniques, such as particle 

search optimization (Gao & Li, 2019; Yuan et al., 2020), 

robust algorithms (Amini et al., 2022), and support vector 

machines (Zhao et al., 2019). 

Yuan et al. (2020) developed a mathematical model to 

forecast the quality of coke generated by a coal processing 

plant. The prediction model generates coke production 

with a higher degree of accuracy and stability compared to 

the formula that was originally used. In the meantime, Gao 

and Li (2019) use the particle swarm optimization method 

to find the global optimal coal mix ratio in order to get the 

best solution from coal-quality alloys in the power plant. In 

addition, research and development were carried out on an 

optimization model for coal blending by including a 

transportation model, with supply and demand capacity 

being utilized as research and development optimization 

factors. In the research that was carried out by Hilali et al. 

(2023), a non-linear programming approach was used to 

simulate coal blending optimization and integrated supply 

chain operations. This method took into consideration 

many suppliers and several merchants. The capacity of the 

suppliers and the routes that the coal will travel are taken 

into account by the mathematical model in order to 

establish the optimal blending of coal for each order. The 

MILP model is used by Baskoro et al. (2022), which takes 

into account the characteristics of supply, demand, and 

transportation capacity in order to achieve the goal of 

reducing costs and carbon dioxide emissions as much as 

possible. The results suggest that the implementation of the 

direct shipping scenario will reduce fuel costs and mitigate 

carbon dioxide emissions.  

Murele et al. (2020) developed an optimization model that 

aims to determine the optimal biomass fraction in mixed 

solid fuels to reduce carbon dioxide emissions. This study 

found that the integration of biomass into the energy supply 

chain can result in a reduction in carbon dioxide emissions 

of up to 4.32% with a blend of 5–8% biomass.  

A comprehensive overview of the assessments conducted 

in the aforementioned domain is presented in Table 1. 

 

The emission of carbon dioxide is one of the most 

significant problems facing the environment today, and it 

is becoming a worry on a worldwide scale, particularly in 

the energy industry (Xu et al., 2017). The environmental 

repercussions of the coal supply for CFPPs are an 

additional significant concern that needs to be addressed. 

In comparison with other types of power plants, CFPP 

produces the most electrical energy while emitting more 

carbon dioxide into the atmosphere (Adebayo et al., 2021). 

For this reason, co-firing, another name for the process in 

which coal and other materials, are burned together to 

produce energy, is one strategy for lowering the emissions 

caused by the burning of fossil fuels in power plants 

(Wander et al., 2020). Currently, various co-firing 

technologies have been developed, such as mixing coal 

with green ammonia which results in a reduction in 

operating costs of 8.59% and a reduction in carbon dioxide 

emissions of 12.74% (Zhao et al., 2023). Co-firing 

experiments have also been conducted by combining fuels 

with distinct properties, such as coal, biomass and 

ammonia, in a single joint combustion that has been shown 

to substantially reduce carbon dioxide emissions (Cardoso 

et al., 2022). At this time, biomass co-firing is regarded as 

the simplest and quickest method. In CFPP, co-firing 
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biomass results in lower investment costs and improved 

environmental impacts than just coal (Kommalapati et al., 

2018). Additionally, co-firing biomass at CFPP results in 

lower costs associated with the generation of electricity 

(Xu & Ge, 2020) with a reduction in operating costs of 

6.06% using rice husk (Xu et al., 2020). According to Gil 

and Rubiera (2018), the use of biomass as a fuel source has 

the potential to enhance the value derived from forest 

products and the agricultural sector in developing nations. 

There is an inverse relationship between the proportion of 

alternative fuels and the levels of greenhouse gas 

emissions. According to Tchapda and Pisupati (2014), 

biomass exhibits a lower sulfur content in comparison to 

coal. Consequently, the use of biomass does not contribute 

to air pollution and can enhance the efficiency of forest and 

agricultural resource utilization (Aviso et al., 2020). Hence, 

the utilization of co-firing with biomass is often regarded 

as a highly viable near-term strategy for mitigating CO2 

emissions (Križan et al., 2011). This is also supported by 

findings showing that strict energy conservation and 

pollution reduction policies will make economic capability 

unharmed (Yu et al., 2018). 
 
Table 1  
The state of the art in the area of fuel blending optimization 
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Gao & Li (2019) √    √   √    √  PSO 

Zhao et al. (2019) √    √ √  √    √  SVM 

Yuan et al. (2020) √  √ √ √   √   √  √ MPSO 

Amini et al. (2019) √  √ √ √  √ √  √ √   RA 

Aviso et al. (2020)    √ √ √  √ √   √  FMILP 

Murele et al. (2020)  √ √ √ √    √    √ STN 

Cutz et al. (2019) √  √ √ √ √  √ √   √  LP 

Peng et al. (2023) √  √ √ √ √  √     √ NLP 

Hilali et al. (2023) √ √ √ √ √   √  √ √  √ NLP 

Baskoro et al. (2022) √ √ √ √ √ √  √  √ √ √  MILP 

This research √ √ √ √ √ √  √ √ √ √ √  MILP 

Q: Quality; T: Transportation; S: Supply; D: Demand 
MILP: Mixed Integer Linear Programming; RA: Robust Alghorithm; STN: State-Task Network 
PSO: Particle Swarm Optimization; SVM: Support Vector Machine; NLP: Non-Linear Programming 

The use of deterministic methods like linear programming 

(LP), mixed integer linear programming (MILP), and non-

linear programming (NLP) has begun to be researched in 

the coal blending optimization model. This is in addition to 

the investigation of the use of co-firing, which is the 

combination of biomass with coal. A linear programming 

(LP) model is utilized by Cutz et al. (2019) in order to 

maximize the quantity of biomass that is co-fired with coal 

in order to make it economically advantageous for power 

plant retrofitting in four different nations. The findings of 

this research give recommendations for power plants that 

might potentially benefit from the retrofitting process by 

combining the combustion of biomass and coal. The MILP 

model was created by Aviso et al. (2020) in order to best 

plan a biomass-coal co-firing network by taking into 

consideration the characteristics of the power plant as well 

as the source of the biomass. This model also provides the 

option of using direct and indirect co-firing choices at each 

power plant by employing a fuzzy method. 

3. Methodology 

The importance of blending coal and biomass to meet the 

boiler quality requirements of CFPPs, as well as 

considering a supply chain constrained by demand for 

CFPPs, production capacity from various sources, and 

available transportation options, has led to the modeling of 

supply chain network issues in this section of the article.  

The optimization process is depicted in the study model 

presented in Figure 1 below. 

The optimization process is conducted in the planning of 

coal and biomass supply, considering the quality attributes 

and production capacity of each source to fulfill the quality 

and quantity requirements of each power plant. The 

optimization process encompasses the assessment of both 

the capacity and quality of seventeen coal mines (CSi) and 

one biomass production facility (BSi). The use of three 

different types of barges (Sj), each with a different 
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capacity, facilitates the transportation of coal and biomass. 

The capacity of each barge varies, ranging from 7500 to 

7700 MT, 10,000 to 10,400 MT, and 12,000 MT to 12,600 

MT. The allocation of these barges is designated for four 

power plant destinations, where the blending process is 

conveniently conducted within the stockpile area to ensure 

compliance with quality standards and the fuel 

requirements of the power plant boilers. The optimization 

framework that is being utilized is based on mixed integer 

linear programming (MILP) and utilizes OR-Tools in 

Google Colab to produce optimal results concerning the 

distribution of biomass and coal. 

The results were then compared with business as usual, 

which is the realization of coal blending implementation. 

From the data obtained, the costs incurred to fulfill the coal 

supply to the four CFPPs amounted to USD 691,260,791, 

and the CO2 emissions produced were 22,697,124 tons of 

CO2. 

 

Fig. 1. Supply chain model 

4. Mathematical Model 

The mixed-integer linear programming approach is utilized 

for conducting calculations. This optimization involves 

iteratively calculating the amount of coal from mines or 

biomass from production facilities sent to CFPP using 

barges of various capacities. The aim of this optimization 

is to obtain the lowest fuel costs, consisting of coal 

purchasing costs, biomass purchasing costs, and 

transportation costs.  

Meanwhile, it is assumed that CFPPs do not use carbon 

capture technology and release all of their carbon dioxide 

emissions into the atmosphere. The carbon dioxide 

emissions calculation formula refers to the Guidelines for 

National Greenhouse Inventories Volume 2 Energy (IPCC, 

2006), and GHG emissions resulting from biomass burning 

are not taken into account in the electricity generation 

sector in the national GHG emissions inventory but are 

allocated to the forestry sector (land use, land-use change, 

and forestry), so that the use of biomass as fuel will reduce 

GHG emissions. The higher the biomass utilization, the 

lower the emissions produced, as long as the fuel mixture 

meets the quality requirements set by the CFPP. However, 

the amount of biomass that can be utilized will be limited 

to between 5 and 10% of total fuel use. This value is based 

on guidelines for biomass utilization for power plants, 

which state that biomass utilization is 5% and rarely 

exceeds 10% on a continuous basis (IEA, 2013). This is in 

line with the results of Murele et al. (2020) research, which 

resulted in the best optimization of biomass utilization in 

the range of 8–10%.  

The initial step in the stage of optimization calculation 

involves the identification and formulation of a 

mathematical model that accurately represents the problem 

under consideration. The model encompasses three key 

components: a decision variable, an objective function, and 

a set of constraints. 

4.1. Decision  variable  

𝑥𝑖𝑗𝑘 = Coal or biomass amount delivered from 

mine i using capacitated barge j to CFPP k  

notation: 

i = The i-th coal mine or biomass production 

facility, where i = 1, 2, ..., 18  

j = Choice of barge capacities with capacities 

of 7,500 MT; 10,000 MT; and 12,000 MT; 

where j = 1, 2, 3 

k = CFPP, to which coal is shipped, where k = 

1, 2, 3, 4 
 

4.2. Objective Function 

Minimize fuel and transportation cost  

        𝑍 = ∑ ∑ ∑ (𝐹𝐶𝑖 + 𝑇𝐶𝑖𝑗𝑘) 𝑥𝑖𝑗𝑘

4

𝑘=1

3

𝑗=1

17

𝑖=1

    

 

 

        + ∑ ∑ ∑ (𝐹𝐶𝑖 + 𝑇𝐶𝑖𝑗𝑘) 𝑥𝑖𝑗𝑘

4

𝑘=1

3

𝑗=1𝑖=18

 (1) 

or 

        𝑍 = ∑ ∑ ∑ 𝑐𝑖𝑗𝑘  𝑥𝑖𝑗𝑘

4

𝑘=1

3

𝑗=1

18

𝑖=1

 (2) 

where, 

𝐹𝐶𝑖 = Cost of coal or biomass from mine i 

𝑇𝐶𝑖𝑗𝑘  = Transportation costs from the mine i 

𝑐𝑖𝑗𝑘  = Total mining costs i 
 

4.3. Constraints 

Meanwhile, the reduction in CO2 emissions produced by 

the CFPPs is obtained by setting constraints on biomass 

demand. The higher the demand for biomass, the lower the 

emissions produced, as long as the blended fuel meets the 

quality requirements. The other constraints are shown 

below. 

Coal and biomass sources 

       ∑ 𝑥𝑖𝑗𝑘

18

𝑖=1

≤ 𝐶𝑆𝑖 + 𝐵𝑆𝑖 (3) 

where, 
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𝐶𝑆𝑖 = Coal source i = 1,2,…,17 

𝐵𝑆𝑖  = Biomass source i = 18 

CFPPs demand 

       ∑ 𝑥𝑖𝑗𝑘

4

𝑘=1

≥ 𝐷𝑏𝑏𝑘 + 𝐷𝑏𝑖𝑜𝑘 (4) 

Biomass demand 

     𝐷𝑏𝑖𝑜𝑘 𝑚𝑖𝑛 ≤   ∑ 𝑥𝑖𝑗𝑘

4

𝑘=1

≤ 𝐷𝑏𝑖𝑜𝑘 𝑚𝑎𝑥 (5) 

where, 

𝐷𝑏𝑏𝑘 = CFPP coal demand k = 1,2,3,4 

𝐷𝑏𝑖𝑜𝑘 = CFPP biomass demand k = 1,2,3,4 

The amount of biomass is set at a minimum of 5% and 

a maximum of 10% of the CFPP fuel requirements. 

Coal and biomass quality  

𝐶𝑉𝑚𝑖𝑛  ≤ 𝐶𝑉𝑖𝑗 ≤ 𝐶𝑉𝑚𝑎𝑥  (6) 

𝑇𝑀𝑚𝑖𝑛 ≤ 𝑇𝑀𝑖𝑗 ≤ 𝑇𝑀𝑚𝑎𝑥  (7) 

𝐴𝑆𝐻𝑚𝑖𝑛 ≤ 𝑇𝑆𝑖𝑗 ≤ 𝑇𝑆𝑚𝑎𝑥  (8) 

𝐴𝑆𝐻𝑚𝑖𝑛 ≤ 𝐴𝑆𝐻𝑖𝑗 ≤ 𝐴𝑆𝐻𝑚𝑎𝑥  (9) 

Non-negative 

𝑥𝑖𝑗𝑘 ≥ 0 (10) 

 

 

Binary constraints 

Each variable value for the decision variable is binary 

(0 or 1). This shows that the value of the variable is 1 

when it is used and 0 if it is not used. 

𝛼 = 0 𝑎𝑡𝑎𝑢 1 ∀ 𝑥𝑖𝑗𝑘  (11) 

where, 

CVij = Coal and biomass caloric value from 

the source 

CVk = CFPP caloric value requirement 

TMij = Coal and biomass total moisture from 

the source 

TMk = CFPP total moisture requirement 

TSij = Coal and biomass total sulphur from 

the source 

TSk = CFPP total sulphur requirement 

ASHij = Coal and biomass ash content from the 

source 

ASHk = CFPP ash content requirement 

The MILP approach is employed for conducting 

calculations, utilizing the Google OR-Tools application for 

assistance. The initial step in the optimization calculation 

stage involves the identification and formulation of a 

mathematical model that accurately represents the problem 

under consideration. 

5. Results and Discussion 

5.1 Validation in biomass blending optimization  

Fuel demand and quality are constraints that must be met 

so that the CFPP can produce energy optimally. The 

number of fuel requests that are the same between 

businesses as usual (BaU) and the optimization results 

confirm that the optimization calculations have been 

carried out accordingly. Table 2 shows the amount of coal 

and biomass that resulted from the optimization 

calculation, which is compared based on the BaU data. 
 

Table 2 

Comparison of coal and biomass usage between BaU and 

blending optimization scenarios 

Source 
Business as Usual 

(tons) 

Optimization 

(tons) 

CS01  74,822   150,000  

CS02  3,686,050   3,007,685  

CS03  2,076,318   775,000  

CS04  613,128   615,000  

CS05  385,320   -  

CS06  327,268   -  

CS07  682,420   -  

CS08  729,052   -  

CS09  273,940   -  

CS10  52,310   525,000  

CS11  134,055   1,067,660  

CS12  1,054,433   -  

CS13  37,424   -  

CS14  1,389,081   139,500  

CS15  678,812   2,825,000  

CS16  201,841  2,025,000 

CS17  109,073   125,000  

Biomass -   1,250,500  

TOTAL       12,505,347  12,505,345  
 

The entire biomass consumption for the four CFPPs 

amounts to 1,250,500 tons, which corresponds to 10% of 

the overall fuel use. The present composition adheres to the 

biomass demand restrictions allowed for each CFPPS, 

where the recommended practice is to incorporate 

approximately 5–10% biomass into coal for burning. The 

augmentation of biomass supply as a fuel source for coal-

fired power plants (CFPP) presents numerous challenges 
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that need careful consideration and resolution (Yudiartono 

et al., 2023). One of the factors to consider is the 

requirement for extensive land areas in order to cultivate 

biomass raw materials (Maulidia et al., 2019). Despite 

these challenges, the utilization of biomass makes a 

significant contribution to the achievement of sustainable 

development goals and holds the potential to ensure energy 

security for an expanding global population (Ekpeni et al., 

2014). The need for large amounts of biomass will support 

the increase in the agricultural industry and biomass 

processing industry (Saleem, 2022). 

5.2 Biomass blending results in significant fuel cost of 

CFPP reduction 

Calculations for optimizing biomass blending show that the 

costs required to purchase and deliver fuel in accordance 

with the requirements are USD 672,645,231 or 2.77% 

lower than business as usual. Therefore, it can be 

concluded that optimizing the blending of biomass into 

coal results in a cost efficiency of USD 18,615,560, as 

shown in Table 3. 
 

Table 3 

Comparison of fuel costs between BaU and blending optimization 

scenarios 

Source 
Business as Usual 

(USD) 

Optimization  

(USD) 

CS01  4,584,361   9,246,849  

CS02  214,390,107   174,205,790  

CS03  108,472,429   40,402,231  

CS04  35,357,079   35,239,500  

CS05  20,641,387   -  

CS06  18,170,877   -  

CS07  36,226,221   -  

CS08  39,205,782   -  

CS09  15,018,581   -  

CS10  2,782,892   27,854,410  

CS11  6,918,007   54,509,234  

CS12  59,688,813   -  

CS13  2,129,426   -  

CS14  73,491,586   7,254,000  

CS15  37,621,315   156,276,829  

CS16  10,813,780   107,914,790  

CS17  5,748,147   6,495,896  

Biomass -  53,245,704  

TOTAL 691,260,791  672,645,231  

 

The efficiency of fuel costs was also demonstrated through 

research conducted by Furubayashi (2022), where the use 

of biomass as a fuel for power plants will reduce energy 

costs in Akita prefecture, Japan. The cost advantage of 

biomass over coal can be attributed to its comparatively 

lower calorific value. Hence, the significant quantity of 

biomass used plays a crucial role in enhancing cost-

effectiveness while maintaining fuel quality integrity. The 

balance framework reveals that the quantity of the biomass 

mixture plays a crucial role in determining the ultimate 

calorie requirements of the boiler. This result is supported 

by Hodžić and Kadić (2023), who state that the efficiency 

of the combustion process depends on several factors, such 

as the type and quality of fuel as well as the technology 

used.  

 
Fig. 2. Comparative analysis of fuel expenses between the 

standard operational approach and the optimized outcomes on a 

monthly basis for each CFPP. 

Figure 2 shows a comparison of fuel costs between 

businesses as usual and optimization results from a 

monthly perspective for each CFPP. The graph shows that 

cost optimization results tend to be the same each month, 

while business as usual scenarios show cost fluctuations 

from month to month. From the data available, the 

tendency for low costs in March, August, and September is 

due to the use of coal with a lower calorific value than the 

specifications required by the CFPPs. 

5.3 Impact of biomass blending optimization on co2 

emissions  

The reduction in emissions can be attributed to the 

utilization of biomass as an energy source. In the present 

scenario, the emissions arising from the utilization of 

biomass are not factored into the calculations within the 

electric power industry in order to avoid redundant 

computations (IPCC, 2006). Reducing CO2 emissions, 

which is one of the objectives of this study, shows 

significant results compared with business as usual. 

According to the data presented in Table 4, there is a 

notable decline of 9.99% in the CO2 emissions released by 

CFFPs, as evidenced by the reduction from 22,697,124 to 

20,427,542 tons of CO2. 
 

Table 4 

Comparison of CO2 emissions between BaU and blending 

optimization scenarios 
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CO2 

emissions 

CFPP#1 

(tons CO2) 

CFPP#2 

(tons CO2) 

CFPP#3 

(tons CO2) 

CFPP#4 

(tons CO2) 

BaU 3,942,936 6,968,288 7,250,669 4,535,271 

Optimization 3,548,673  6,271,486  6,525,615  4,081,768  

The findings presented in Table 4 align with the research 

conducted by Xu et al. (2020), which asserts that the 

utilization of coal-biomass co-firing methods in power 

plants is a viable approach for mitigating CO2 emissions. 

The utilization of the blending mechanism has 

demonstrated its efficacy in improving the optimization of 

biomass and coal supply for CFPP, taking into account 

factors such as feedstock quality, transportation, and 

efficiency (Juan et al., 2019).  

Considering these variables, the model possesses the 

capacity to facilitate efficient decision-making processes 

aimed at mitigating fuel expenses and curbing greenhouse 

gases within power plants. This is particularly relevant for 

developing nations that heavily rely on coal-fired power 

plants and possess ample biomass resources (Gil & 

Rubiera, 2018). 

In order to effectively accomplish the objectives delineated 

in the Paris Agreement, it is imperative to implement a 

gradual reduction in coal utilization until the point at which 

coal-fired power plants are rendered obsolete. This is 

crucial, as CFPPs impede the comprehensive 

decarbonization of the electricity sector. However, the 

utilization of biomass as a means of co-firing with coal is 

an optimal strategy in the near term for achieving 

maximum reductions in CO2 emissions (Križan et al., 

2011). The MILP model demonstrates a reduction in CO2 

emissions of 9.99%, which aligns with the findings of a 

case study conducted in the Philippines. Their case study 

revealed that a substitution of 3.8% of coal usage for 

electricity generation can lead to a 5.9% decrease in GHG 

emissions (Dang et al., 2015). 

 
Fig. 3. CO2 emissions saved through biomass synergy at each 

CFPP 

Figure 3 presents the comparison of carbon dioxide 

emissions generated in the business as usual scenario with 

the optimized scenario. The graphic clearly illustrates a 

decline in carbon dioxide emissions at each CFPP. 

5.4 Sensitivity Analysis of Biomass Variable: Price and 

Calorific Value  

Sensitivity analysis determines the extent to which the 

same decision will persist by changing an element or by 

combining other elements, then determines the effect on 

the analysis results. In the sensitivity analysis of optimizing 

biomass blending, changes in the biomass price variable 

show changes in total costs. The increase in biomass prices 

by 34.96% resulted in an increase in total costs to USD 

691,260,791, illustrating the high sensitivity of operational 

costs to fluctuations in biomass prices. This emphasizes the 

need to take changes in biomass prices seriously in the 

decision-making process for optimizing fuel blends. Figure 

2 illustrates the periodic changes in biomass prices, namely 

at 10%, 20%, 30%, and 40% increments. 

 
Fig. 4. Conducting sensitivity analysis on changes in biomass 

costs variable to ensure optimal adjustments to total fuel costs 
 

Apart from that, the biomass calorific value variable also 

has a moderate role in influencing the quality of the fuel 

combination. Following the sensitivity analysis, it was 

found that the optimal calorific value for biomass is 

between 2512 and 3600 kcal/kg. This makes sure that the 

mixed fuel's calorific value stays within the CFPP 

standards. A fairly wide range of values illustrates the 

significance of adjusting the calorific value of biomass to 

achieve the required efficiency in fuel blending. The 

biomass calorific value range shown in Figure 5 shows how 

changes in biomass calorific value affect total fuel costs, 

which stay within the ideal range of USD 671,808,535 to 

USD 681,414,835. 

 

Fig. 5. Conducting sensitivity analysis on changes in biomass 

calorif value variable to ensure optimal adjustments to total fuel 

costs. 
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6. Conclusion 

The MILP model has been built to optimize co-firing 

biomass blending by considering the fuel quality required 

by the CFPP, production capacity, CFPP demand, and 

transportation selection. The calculation results show that 

the cost of procuring and transporting fuel is USD 

672,645,231, which results in a cost efficiency of 2.77% 

compared to business as usual conditions. Additionally, it 

is important to mention that there has been a significant 

reduction of 9.99% in carbon dioxide emissions produced 

by the four CFFPs. Optimization showing a decrease in 

carbon dioxide emissions from 22,697,124 to 20,427,542 

tons of CO2 supports this assertion. 

The validation calculation demonstrates that there is no 

significant difference in the amount of fuel between the 

business as usual and the optimization results. It is 

important to note that the optimization results yield fuel-

quality output that adheres to the technical specifications 

of the CFPP boiler. This compliance ensures that the fuel 

used for combustion will result in an efficient net plant heat 

rate and greater energy production. However, a comparison 

is not feasible due to the scarcity of available data. 

Therefore, further research is recommended to examine 

whether optimizing biomass blending outcomes can be 

correlated with the net plant heat rate and energy 

production output of the power plant. It is intended to 

examine the potential advantages of the biomass blending 

process in terms of cost reduction, plant efficiency 

enhancement, and improvement in the plant’s merit order 

rating. 
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