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Abstract  

This paper develops a continuous benchmarking method using the inverse data envelopment analysis 

(InDEA) problem. It develops a continuous time-based framework capable of handling InDEA 

models. By this proposed approach, we find the optimal required input level for producing a given 

expected benchmark and preserving the efficiency scores over time. This approach provides a useful 

tool specifically for decision makers in the process of planning and budgeting based on performance. 

If the decision maker aims to produce a specific level of benchmark, then our approach helps them 

find the required input level over time. In fact, it helps us to find when and how much input is 

required for producing a given benchmark level. Compared with existing literature in classical 

InDEA, the proposed models give better solutions, namely, more produced outputs and less 

consumed inputs. These models determine not only the input-output level but also the best time of 

input consumption or output production. We applied our models for a decade efficiency analysis, 

more sensitivity, benchmarking, and planning analysis of selected Iranian economic sectors.  
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1. Introduction 

Data envelopment analysis (DEA) is a mathematical 

programming-based approach to assess the performance of 

homogeneous decision making units (DMUs) with 

multiple inputs and outputs. This method initially proposed 

by (Abraham Charnes, Cooper, & Rhodes, 1978) and has 

been extended in different paths over the last decades. 

Besides theoretical developments, this method has been 

extensively used in different sectors. See, for instance, 

(Emrouznejad, Parker, & Tavares, 2008) and 

(Emrouznejad & Yang, 2018)) for a review of some 

applications. Classical DEA models and most of the 

extended models have a linear structure and as (Cook & 

Seiford, 2009) mentioned, one of the attractive 

characteristics of the DEA model that makes it a widely 

used technique in different sectors is its simplicity to solve. 

In one of the theoretical developments of classical DEA 

models (X. S. Zhang & Cui, 1999) proposed a new research 

line in the DEA literature called inverse DEA (InDEA). 

This method was extended by (Wei, Zhang, & Zhang, 

2000) and (Yan, Wei, & Hao, 2002). The research question 

in the InDEA problem is as follows: if a DMU perturbs its 

input level, then how much output can be produced using a 

new level of inputs with the current output efficiency 

score? (M. Zhang & Cui, 2016) extended this question by 

estimating expected outputs and preserving the input 

efficiency. On the other side, if a DMU perturbs its output 

level, then how much input is needed to produce a new 

level of outputs with the current input efficiency level? 

(Amin & Al-Muharrami, 2016) dealt with negative data in 

the inverse DEA problem. They proposed some models for 

identifying the levels of required inputs and outputs from 

merging units to realize an efficiency target. 

(Lertworasirikul, Charnsethikul, & Fang, 2011) considered 

the variable returns to scale (VRS) properties like (Banker, 

Charnes, & Cooper, 1984) for the production technology in 

the inverse DEA problem. However, there exist some 

drawbacks in their model that were pointed out and revised 

by (Ghiyasi, 2015). 

(Ghiyasi, 2017b) proposed a cost-based inverse DEA 

model that incorporates price information. (Amin & 

Emrouznejad, 2007) applied the inverse linear 

programming for the DEA models, specifically for the 

additive DEA model. They yield to a faster method for 

solving DEA models using inverse linear programming. 

Besides theoretical developments, the InDEA problem has 

proved as a useful approach in various real-life applications 

as it enriched classical DEA models as a tool for making 

predictions. An application of the InDEA models in 

banking mergers was proposed by  (Gattoufi, Amin, & 

Emrouznejad, 2014). (Amin, Emrouznejad, & Gattoufi, 

2017a) proposed an InDEA model for modelling 

generalized firms' restructuring as well as anticipating the 

minor and major consolidation for a merger in a market. 

(Amin, Emrouznejad, & Gattoufi, 2017b) dealt with 

restructuring problems in an InDEA framework and 

developed a novel InDEA-based methodology, called 

Generalized Inverse DEA, for modeling the generalized 

restructuring. (Goshu, Matebu, & Kitaw, 2017) provided a 

productivity analysis framework for analyzing the 

performance of manufacturing companies.  (Chen, Wang, 

Lai, & Feng, 2017) proposed a new InDEA model 

considering undesirable outputs. (Ghiyasi, 2017a) 

proposed an InDEA model for pollution generation in 

production technologies. (Fazelimoghadam, Ershadi, & 

Akhavan Niaki, 2020) used DEA methods for finding the 

efficient solution near the optimal solutions within the 

solutions gauged by a multi-objective particle swarm 

optimization. (Safaie & Nasri, 2022) used a robust DEA 

model for designing a failure mode and effect analysis with 

an application in an automobile oil filter. There are two 

main streams in the DEA literature for dealing with 

efficiency analysis over time, which are windows DEA 

analysis and the Malmquist productivity index. A DEA 

window analysis originally proposed by (A. Charnes, 

Clark, Cooper, & Golany, 1984) works on the principle of 

moving averages and is useful to determine the efficiency 

trends of a DMU over time. Malmquist index, initially 

proposed by (Malmquist, 1953), which measures 

productivity change over time and has been widely 

developed and applied in different sectors (See for instance 

(Asmild, 2015)). (Emrouznejad & Thanassoulis, 2005) 

developed a window-based model considering the changes 

in stock as a particular cause of inter-temporal input–output 

dependence and presented an envelopment dynamic DEA 

model to calculate the technical dynamic efficiency 

measures. (Jahanshahloo, Soleimani-Damaneh, & 

Ghobadi, 2015) developed a specific time based inverse 

DEA model based on the work of (Emrouznejad & 

Thanassoulis, 2005), assuming inter-temporal dependence 

of the dataset. (Emrouznejad, Amin, Ghiyasi, & Michali, 

2023) reviewed the origin, theoretical development, 

application and future research line of the inverse DEA 

since this method was developed.  

The current paper develops a generalized multi-period 

InDEA model considering time changes in the process of 

input-output estimation. The proposed models determine 

not only the input-output level but also the best time of 

input consumption or output production. In all proposed 

models in the current paper, the main assumption of InDEA 

problem is that preserving the relative efficiency is 

guaranteed. The main advantage of the proposed models is 

their ability to deal with the input-output estimation over 

time. This enables decision makers to find the best 

(optimal) amount of inputs for each unit over time. This 

yields to determining the best (optimal) time of consuming 

inputs for producing a desired level of production. 

Furthermore, the proposed models are production-based 

models, and they are generalized in terms of returns to 

scale; and any type of returns to scale assumption can be 

considered based on the characteristics of the production 

technology. The rest of the paper is organized as follows. 

Section 2 provided the basic classical DEA and InDEA 

models. Section 3 develops the input-oriented generalized 

multi-period InDEA model. The output-oriented 

generalized multi-period InDEA model is proposed in the 

section 4. Section 5 performs an application of the 

proposed models for regular efficiency analysis and more 

sensitivity analysis using the proposed model for selected 

Iranian economic sectors during 2003-2013.  
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2. Basic models 

2.1. Classical DEA model 

Suppose there is a set of n DMUs consuming m 

dimensional input vector of 𝑥𝑗 = (𝑥1𝑗 , 𝑥2𝑗 , … , 𝑥𝑚𝑗) ∈ ℝ+
𝑚 

to produce s dimensional output vector of 𝑦𝑗 =

(𝑦1𝑗 , 𝑦2𝑗 , … , 𝑦𝑠𝑗) ∈ ℝ+
𝑠 . The general production 

technology can be seen as T={(x,y): x can produce y}. 

Considering the input-output set one may specify the 

following production technology:𝑇 = {(𝑥, 𝑦): 𝑥 ≥
∑ 𝜆𝑗𝑥𝑗𝑗 , 𝑦 ≤ ∑ 𝜆𝑗𝑦𝑗𝑗 , 𝜆 ∈ ℷ} , where ℷ specifies the returns 

to scale properties of the production. Considering the 

Farrelle’s distance measure of min⁡{𝜃: (𝜃𝑥𝑜 , 𝑦) ∈ 𝑇} 
(Farrell, 1957) for the production technology of T we get 

the following linear programming model for measuring the 

relative efficiency of DMUo, that is, the DMU under 

assessment: 

𝜃𝑜 = 𝑀𝑖𝑛⁡𝜃 

∑𝜆𝑗𝑥𝑖𝑗

𝑛

𝑗=1

≤ 𝜃𝑥𝑖𝑜; ⁡⁡1 ≤ 𝑖 ≤ 𝑚⁡⁡⁡⁡ 

∑𝜆𝑗𝑦𝑟𝑗

𝑛

𝑗=1

≥ 𝑦𝑟𝑜; ⁡1 ≤ 𝑟 ≤ 𝑠 

𝜆 ∈ ℷ 
 

(1) 

 

Solving the above model for all DMUs results in a list of 

relative efficiency scores based on the input-output 

parameters. 

Definiation1. The DMUo is called (weakly) efficient if the 

optimal value of linear programming (1) is unity (𝜃𝑜 = 1).  

2.2. Classical inverse DEA model 

Having the input-output set, the DEA models seek the 

efficiency score of DMUs. In a quite different path, the 

InDEA models try to answer another question. Assume 

DMUo perturbs its output from𝑦𝑟𝑜⁡to 𝛽𝑟𝑜 = 𝑦𝑟𝑜 + ∆𝑦𝑟𝑜. 

The question is how much input is required for producing 

a new output level of DMUo with its current efficiency 

score of𝜃𝑜. This question is answered by the following 

multiple objective linear programming (MOLP) in the 

InDEA literature. 

 

𝜃𝑜 = 𝑀𝑖𝑛⁡(𝛼1, 𝛼2, … , 𝛼𝑚) 

∑𝜆𝑗𝑥𝑖𝑗

𝑛

𝑗=1

≤ 𝜃(𝑥𝑖𝑜 + Δ𝑥𝑖𝑜); ⁡1 ≤ 𝑖 ≤ 𝑚⁡ 

∑𝜆𝑗𝑦𝑟𝑗

𝑛

𝑗=1

≥ 𝑦𝑟𝑜 + Δ𝑦𝑟𝑜 = 𝛽𝑟𝑜; ⁡1 ≤ 𝑟 ≤ 𝑠 

𝜆 ∈ ℷ 
 

(2) 

 

Definition 2.  Suppose⁡(𝜆, 𝛼)  is a feasible solution MOLP 

model (2) if there is no feasible solution  
(𝜆̅, 𝛼̅) for this model such that 𝛼̅ < 𝛼, then we say the 

(𝜆, 𝛼)   is a weak efficient solution of that model. 
It is a well-known fact in the InDEA literature that weak 

efficient solutions of MOLP model (2) preserve the 

efficiency score of DMUs(see, for instance, (Ghiyasi, 

2015)). 

3. Multi-period InDEA 

In this section, we look at the InDEA over time, and no 

technological change is considered in each time period. 

Consider the input and output vector of an arbitrary DMUj 

as 𝑥𝑖
𝑡𝜖ℝ+

𝑚  and 𝑦𝑟
𝑡𝜖ℝ+

𝑠  at time period 𝑡 = 1,2, … , 𝑡.̅ Assume 

DMUo, for instance, perturbs its output level from 𝑦𝑟𝑜
𝑡  

to𝛽𝑟𝑜
𝑡 = 𝑦𝑟𝑜

𝑡 + ∆𝑦𝑟𝑜
𝑡 at time period t. Now the question is 

how much (minimum) input is required for producing the 

new level of output for DMUo at the current efficiency level 

of each period. One trivial answer to this question is 

estimating the required input of each period separately and 

then adding them to find the total required input level. To 

that end, we need to solve the following MOLP model at 

each period.  

𝑀𝑖𝑛⁡(𝛼1
𝑡 , 𝛼2

𝑡 , , … , 𝛼𝑚
𝑡 ) 

∑𝜆𝑗𝑥𝑖𝑗
𝑡

𝑛

𝑗=1

≤ 𝜃𝑜
𝑡(𝑥𝑖𝑜

𝑡 + Δ𝑥𝑖
𝑡); ⁡1 ≤ 𝑖 ≤ 𝑚⁡⁡ 

∑𝜆𝑗𝑦𝑟𝑗
𝑡

𝑛

𝑗=1

≥ 𝑦𝑟𝑜
𝑡 + Δ𝑦𝑟𝑜

𝑡 = 𝛽𝑟𝑜
𝑡 ; ⁡1 ≤ 𝑟 ≤ 𝑠 

𝜆 ∈ ℷ𝑡 
 

(3) 

 

, where 𝜃𝑜
𝑡 is the efficiency score of DMUo at time period 

of 𝑡 = 1,2, … , 𝑡.̅ 
Both MOLP model (2) and MOLP model (3) have m 

objective functions, m+s+1 constraints and m+n variables.  

Similar to the static environment, it is not difficult to see 

that weak efficient solutions of MOLP (3) at each time 

period of 𝑡 = 1,2, … , 𝑡̅. preserve time associated relative 

efficiency of DMUo, that is, 𝜃𝑜
𝑡 , 𝑡 = 1,2, … , 𝑡̅.. This fact is 

proved in the following theorem.  

Theorem1. If (𝜆𝑡 , 𝛼̅𝑡) is a weak efficient solution of 

MOLP model (3), then the new input-output level of 

(𝛼̅𝑡, 𝛽𝑜
𝑡) preserve the relative efficiency of DMUo at time 

period of 𝑡 = 1,2, … , 𝑡̅ and the total required i-th input level 

for producing the new output level is ∑ 𝛼̅𝑖𝑜
𝑡𝑡̅

𝑡=1 =

⁡∑ 𝑥𝑖𝑜
𝑡 + Δ̅𝑥𝑖𝑜

𝑡𝑡̅
𝑡=1 .                

Proof. For the fixed time period 𝑡 = 1,2, … , 𝑡̅ let (𝜆𝑡 , 𝛼̅𝑡)  
be a weak efficient solution of MOLP model (3) then it 

satisfies the associated constraints as follows: 

∑𝜆𝑗̅𝑥𝑖𝑗
𝑡

𝑛

𝑗=1

≤ 𝜃𝑜
𝑡(𝑥𝑖𝑜

𝑡 + Δ̅𝑥𝑖𝑜
𝑡 ) = 𝜃𝑜

𝑡𝛼𝑖𝑜
𝑡 ; ⁡1 ≤ 𝑖

≤ 𝑚;⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

∑𝜆𝑗̅𝑦𝑟𝑗
𝑡

𝑛

𝑗=1

≥ 𝑦𝑟𝑜
𝑡 + Δ𝑦𝑟𝑜

𝑡 = 𝛽𝑟𝑜
𝑡 ; ⁡1 ≤ 𝑟 ≤ 𝑠 

𝜆̅ ∈ ℷ 
 

(4) 

Now let us check the efficiency score of perturbed DMUo, 

that is, (𝛼̅𝑡, 𝛽𝑜
𝑡). The following model estimates the relative 

efficiency of this DMU: 

 

𝜃𝑜
𝑡𝑁 = 𝑀𝑖𝑛⁡𝜃 (5) 
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∑𝜆𝑗𝑥𝑖𝑗
𝑡

𝑛

𝑗=1

≤ 𝜃𝛼̅𝑖
𝑡; ⁡1 ≤ 𝑖 ≤ 𝑚⁡⁡ 

∑𝜆𝑗𝑦𝑟𝑗
𝑡

𝑛

𝑗=1

≥ 𝛽𝑟𝑜
𝑡 ; ⁡1 ≤ 𝑟 ≤ 𝑠 

𝜆 ∈ ℷ 
 

 

, where 𝜃𝑜
𝑡𝑁 is the efficiency of perturbed DMUo at time 

period of t .  Regarding to the constraint set of (4) we see 

that (𝜆̅, 𝜃𝑜
𝑡)is a feasible solution of model (5) that implies 

𝜃𝑜
𝑡𝑁 ≤ 𝜃𝑜

𝑡. Now, by contradiction if 𝜃𝑜
𝑡𝑁 ≤≠ 𝜃𝑜

𝑡  then we 

have: 

∑𝜆𝑗
∗𝑥𝑖𝑗

𝑡

𝑛

𝑗=1

≤ 𝜃𝑜
𝑡𝑁𝛼̅𝑖𝑜

𝑡 ; ⁡1 ≤ 𝑖 ≤ 𝑚⁡⁡ 

∑𝜆𝑗
∗𝑦𝑟𝑗

𝑡

𝑛

𝑗=1

≥ 𝛽𝑟𝑜
𝑡 ; ⁡1 ≤ 𝑟 ≤ 𝑠 

𝜆∗ ∈ ℷ 
 

This suggests a feasible solution for the MOLP model of 

(3), where (𝜆∗, 𝜃𝑜
𝑡𝑁
) is the optimal solution of model (5). 

Thus, we have: 

∑𝜆𝑗
∗𝑥𝑖𝑗

𝑡

𝑛

𝑗=1

≤ 𝜃𝑜
𝑡𝑁𝛼̅𝑖𝑜

𝑡 < 𝜃𝑜
𝑡𝛼̅𝑖𝑜

𝑡 ; ⁡1 ≤ 𝑖 ≤ 𝑚⁡⁡ 

∑𝜆𝑗
∗𝑦𝑟𝑗

𝑡

𝑛

𝑗=1

≥ 𝛽𝑟𝑜
𝑡 ; ⁡1 ≤ 𝑟 ≤ 𝑠 

𝜆∗ ∈ ℷ 
 
, which implies  

∑𝜆𝑗
∗𝑥𝑖𝑗

𝑡

𝑛

𝑗=1

< 𝜃𝑜
𝑡𝛼̅𝑖𝑜

𝑡 ; ⁡1 ≤ 𝑖 ≤ 𝑚⁡⁡ 

∑𝜆𝑗
∗𝑦𝑟𝑗

𝑡

𝑛

𝑗=1

≥ 𝛽𝑟𝑜
𝑡 ; ⁡1 ≤ 𝑟 ≤ 𝑠 

𝜆∗ ∈ ℷ 
And this contradicts the weak efficiency of the (𝜆𝑡 , 𝛼̅𝑡).  
The above statement can be done for all time periods 𝑡 =
1,2, … , 𝑡̅. Now 𝛼̅𝑖𝑜

𝑡 =⁡𝑥𝑖𝑜
𝑡 + Δ̅𝑥𝑖𝑜

𝑡 is the required input level 

that produces the given output level and preserves the 

relative efficiency of DMUo at time period of t . In order to 

preserve the efficiency scores in all periods and produce 

the total output level of all periods separately, we need 

∑ 𝛼̅𝑖𝑜
𝑡𝑡̅

𝑡=1 =⁡∑ 𝑥𝑖𝑜
𝑡 + Δ̅𝑥𝑖𝑜

𝑡𝑡̅
𝑡=1  as required input level.□ 

DMUs over time may have different performances, which 

means different capabilities in output production and input 

consumption. They may have regress or progress in some 

period of time, and this trend may change during the time 

period. In order to reach the decision maker’s aim that is 

producing a given level of output while preserving the 

efficiency scores, some input level may be required. The 

required input level may change based on the performance 

of DMUs. However, the goal is to reach the decision 

maker’s aim with a minimum level of input. Thus, it is 

important to know when to consume the new input level. 

The following model determines not only how much input 

is required but also when is the best time for using inputs 

to reach the decision maker’s aim, namely producing 

expected output with a minimum level of inputs.  

𝑀𝑖𝑛⁡𝟏𝑇(𝛼1
𝑡 , 𝛼2

𝑡 , , … , 𝛼𝑚
𝑡 )

= ⁡𝟏𝑇(𝑥1𝑜
𝑡 + Δ𝑥1𝑜

𝑡 , 𝑥2𝑜
𝑡

+ Δ𝑥2𝑜
𝑡 , … , 𝑥𝑚𝑜

𝑡 + Δ𝑥𝑚𝑜
𝑡 , )

= (∑ 𝑥𝑖𝑜
1 + Δ𝑥𝑖

1

𝑡 ̅

𝑡=1

,∑ 𝑥𝑖𝑜
2

𝑡 ̅

𝑡=1

+ Δ𝑥𝑖
2 , …∑ 𝑥𝑖𝑜

𝑡 ̅ + Δ𝑥𝑖
𝑡 ̅

𝑡 ̅

𝑡=1

) 

∑𝜆𝑗𝑥𝑖𝑗
𝑡

𝑛

𝑗=1

≤ 𝜃𝑜
𝑡(𝑥𝑖𝑜

𝑡 + Δ𝑥𝑖
𝑡); ⁡1 ≤ 𝑖 ≤ 𝑚⁡⁡ 

∑𝜆𝑗𝑦𝑟𝑗
𝑡

𝑛

𝑗=1

≥ 𝑦𝑟𝑜
𝑡 + Δ𝑦𝑟𝑜

𝑡 = 𝛽𝑟𝑜
𝑡 ; ⁡1 ≤ 𝑟 ≤ 𝑠 

𝜆𝑡 ∈ ℷ𝑡 
 

(6) 

Please note that each of m  objective functions of model (6) 

is an 𝑡̅-dimensional vector associated with all periods, that 

is, (𝑥𝑖𝑜
𝑡 + Δ𝑥𝑖𝑜

𝑡 ) ∈ ℝ+
𝑡̅ , 1 ≤ 𝑖 ≤ 𝑚. Thus, compared 

with the MOLP model of (3) there exist 𝑚 × 𝑡̅objective 

functions, (𝑚 + 𝑠 + 1) × 𝑡̅constraints and (𝑚 + 𝑛) ×
𝑡̅variables in MOLP model (6). 

Theorem2. Weak efficient solutions of MOLP (6) preserve 

the efficiency score DMUo for all time period of 𝑡 =
1,2, … , 𝑡̅. 
Proof. Consider an arbitrary time period of 𝑡 ∈ {1,2, … , 𝑡̅} 
and take a weak efficient solution of MOLP model (6) like 

(𝜆̅, 𝛼̅1, 𝛼̅2, … , 𝛼̅𝑚) ∈ ℝ+
(𝑚+1)×𝑡

. Thus, ∀𝑡 ∈ {1,2, … , 𝑡̅} 

we have: 

∑𝜆̅𝑗𝑥𝑖𝑗
𝑡

𝑛

𝑗=1

≤ 𝜃𝑜
𝑡𝛼̅𝑖

𝑡; ⁡1 ≤ 𝑖 ≤ 𝑚⁡ 

∑𝜆̅𝑗𝑦𝑟𝑗
𝑡

𝑛

𝑗=1

≥ 𝛽𝑟𝑜
𝑡 ; ⁡1 ≤ 𝑟 ≤ 𝑠 

𝜆̅𝑡 ∈ ℷ𝑡 

This suggest (𝜆𝑡̅ ,𝜃𝑜
𝑡
) ( , )t t

o  as a feasible solution to the 

criterion model of (5) ∀𝑡 ∈ {1,2, … , 𝑡̅}. This implies that 

𝜃𝑜
𝑡𝑁 ≤ 𝜃𝑜

𝑡:⁡∀𝑡 ∈ {1,2, … , 𝑡̅}  . Now if ∃𝑡′ ∈ {1,2, … , 𝑡̅}  such 

that 𝜃𝑜
𝑡′𝑁 < 𝜃𝑜

𝑡′ then 𝜃𝑜
𝑡′𝑁 = 𝑘𝜃𝑜

𝑡′ , 0 < 𝑘 < 1 and then we 

have  

∑𝜆𝑗
∗𝑡′𝑥𝑖𝑗

𝑡′
𝑛

𝑗=1

≤ 𝜃𝑜
𝑡′𝑁𝛼̅𝑖

𝑡′ = 𝜃𝑜
𝑡′(𝑘𝛼̅̅ ̅̅ ̅

𝑖
𝑡′); ⁡1 ≤ 𝑖 ≤ 𝑚⁡ 

∑𝜆𝑗
∗𝑡′𝑦𝑟𝑗

𝑡′
𝑛

𝑗=1

≥ 𝛽𝑟𝑜
𝑡′ ; ⁡1 ≤ 𝑟 ≤ 𝑠 

𝜆∗𝑡
′
∈ ℷ𝑡

′
 

, where (𝜆∗𝑡
′
, 𝜃𝑜

𝑡′𝑁) is the optimal solution of the criterion 

model (5) at the time period⁡𝑡′ ∈ {1,2, … , 𝑡̅}. Now 

setting⁡𝜆̃𝑡 = {𝜆
∗𝑡 ⁡⁡⁡⁡𝑡 = 𝑡′
𝜆𝑡̅ ⁡⁡⁡⁡⁡⁡𝑡 ≠ 𝑡′

 and 𝛼̃𝑡 = {
𝑘𝛼𝑖

𝑡′⁡⁡⁡⁡𝑡 = 𝑡′

𝛼𝑖
𝑡⁡⁡⁡⁡⁡⁡𝑡 ≠ 𝑡′

   we see 
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that (𝜆,̃ 𝛼̃1, 𝛼̃2, … , 𝛼̃𝑚) is a feasible solution of MOLP 

model of (6) and this contradicts with weak efficiency of  

(𝜆̅, 𝛼̅1, 𝛼̅2, … , 𝛼̅𝑚) since 1𝑇(𝜆,̃ 𝛼̃1, 𝛼̃2,… , 𝛼̃𝑚) <

1𝑇(𝜆, 𝛼̅1, 𝛼̅2, … , 𝛼̅𝑚).□ 

One of the main factors in the potential of the production is 

the production size. This issue is dealt with by the returns 

to scale concept in the DEA and inverse DEA modelling. 

There is a high potential for production in the increasing 

returns to scale area, and the manager should suggest 

scaling up. The constant returns to scale area is a vital and 

important area since it is some sort of boundary between 

increasing and decreasing returns to scale areas. In the area 

of decreasing returns to scale wise managers should be 

careful of the production scale of the firm, and shrinking 

the scale of production may be beneficial for the firm. The 

proposed models (3)-(6) provide the possibility of 

considering any type of returns to scale in the case of the 

input-output estimation, based on the characteristics of the 

production technology in each period. This helps decision 

makers in using the potential of increasing production and 

saving resources, considering the scale opportunities in 

each period.  MOLP models are well-known for having 

alternative efficient solutions, and different methods are 

presented for solving these models in the literature, see e.g., 

(Steuer, 1986) for more details on the solving method. One 

may use the weighted sum method for solving MOLP 

model (6), which yields the following model: 

𝑀𝑖𝑛⁡ =∑∑ 𝛼𝑖
𝑡

𝑚

𝑖=1

𝑡 ̅

𝑡=1

=∑∑ 𝑥𝑖𝑜
𝑡 + Δ𝑥𝑖

𝑡

𝑚

𝑖=1

𝑡 ̅

𝑡=1

 

∑𝜆𝑗𝑥𝑖𝑗
𝑡

𝑛

𝑗=1

≤ 𝜃𝑜
𝑡(𝑥𝑖𝑜

𝑡 + Δ𝑥𝑖
𝑡); ⁡1 ≤ 𝑖 ≤ 𝑚, 𝑡

= 1,2, … , 𝑡̅⁡⁡ 

∑𝜆𝑗𝑦𝑟𝑗
𝑡

𝑛

𝑗=1

≥ 𝑦𝑟𝑜
𝑡 + Δ𝑦𝑟𝑜

𝑡 = 𝛽𝑟𝑜
𝑡 ; ⁡1 ≤ 𝑟 ≤ 𝑠, 𝑡

= 1,2, … , 𝑡̅ 
𝜆𝑡 ∈ ℷ𝑡 

 

(7) 

 

Theorem3. The MOLP model (6) requires less input 

compared with the MOLP model of (3) over time period of 

𝑡 ∈ {1,2, … , 𝑡̅} for producing a given total output level and 

preserving the efficiency score of DMUo over a given 

period.  

Proof. Assume a given expected output level of 𝛽𝑟𝑜
𝑡 =

𝑦𝑟𝑜
𝑡 + ∆𝑦𝑟𝑜

𝑡   that needs to be produced with current 

efficiency scores over time. The required input level using 

the MOLP model (3) is ∑ 𝛼𝑖
𝑡𝑡 ̅

𝑡=1 = ∑ 𝑥𝑖𝑜
𝑡 + Δ𝑥𝑖

𝑡𝑡 ̅
𝑡=1 . Note 

that this model needs to be solve t  times regarding to 𝑡 =
1,2, … , 𝑡̅ to find the required input level. Now let 

(𝜆𝑡̅ , 𝛼̅𝑡), = 1,2, … , 𝑡 ̅is the weak efficient solution of MOLP 

(3) at each time period of= 1,2, … , 𝑡̅. This suggests 

(𝜆,̃ 𝛼̃1, 𝛼̃2, … , 𝛼̃𝑚)  as a feasible solution of MOLP model 

(6), where 𝜆̃𝑗
𝑡 = 𝜆𝑗̅

𝑡 and 𝛼̃𝑗
𝑡 = 𝛼̅𝑗

𝑡 are getting from the weak 

efficient solution of MOLP (3) for each⁡𝑡 = 1,2, … , 𝑡̅. This 

implies (𝜆,̃ 𝛼̃1, 𝛼̃2, … , 𝛼̃𝑚) <≠

(𝜆,̂ 𝛼̂1, 𝛼̂2, … , 𝛼̂𝑚),where (𝜆,̂ 𝛼̂1, 𝛼̂2, … , 𝛼̂𝑚)⁡is weak 

efficient solution of MOLP model (6).         

For long-run policy making and planning, if the decision 

maker is able, then he may pool all perturbed inputs of a 

specific DMU over all time periods and then use the 

following model to decide about the required input level, 

producible output level, and also the optimal time period 

for each input consumption and output production.   

𝑀𝑖𝑛⁡𝟏𝑇(𝛼1
𝑡 , 𝛼2

𝑡 , , … , 𝛼𝑚
𝑡 )

= ⁡𝟏𝑇(𝑥1𝑜
𝑡 + Δ𝑥1𝑜

𝑡 , 𝑥2𝑜
𝑡

+ Δ𝑥2𝑜
𝑡 , … , 𝑥𝑚𝑜

𝑡 + Δ𝑥𝑚𝑜
𝑡 , )

= (∑ 𝑥𝑖𝑜
1 + Δ𝑥𝑖

1

𝑡 ̅

𝑡=1

,∑ 𝑥𝑖𝑜
2

𝑡 ̅

𝑡=1

+ Δ𝑥𝑖
2 , …∑ 𝑥𝑖𝑜

𝑡 ̅ + Δ𝑥𝑖
𝑡 ̅

𝑡 ̅

𝑡=1

) 

∑𝜆𝑗𝑥𝑖𝑗
𝑡

𝑛

𝑗=1

≤ 𝜃𝑜
𝑡(𝑥𝑖𝑜

𝑡 + Δ𝑥𝑖
𝑡); ⁡1 ≤ 𝑖 ≤ 𝑚⁡⁡ 

∑𝜆𝑗𝑦𝑟𝑗
𝑡

𝑛

𝑗=1

≥ 𝑦𝑟𝑜
𝑡 + Δ𝑦𝑟𝑜

𝑡 = 𝛽𝑟𝑜
𝑡 ; ⁡1 ≤ 𝑟 ≤ 𝑠 

∑𝛽𝑡 = ∑𝛽𝑜
𝑡

𝑡̅

𝑡=1

𝑡̅

𝑡=1

 

 
𝜆𝑡 ∈ ℷ𝑡 

 

(8) 

In fact, the above model provides the possibility of 

consuming some inputs from one period of time for another 

period of time. This makes more flexibility of input 

consumption for producing the expected output. However, 

model (8) does not necessarily guarantee the expected 

output of each time period, but the total produced output is 

guaranteed with minimum input consumption. It is also 

important to point out that, like the MOLP model (6), the 

current efficiency of all units is guaranteed to be 

unchanged. The proof of this statement is straightforward 

and is ignored. If we consider an inter-temporal structure 

for the problem, we get the input-oriented InDEA model of 

(Jahanshahloo et al., 2015) as a special case of our model. 

This means considering a general initial stuck input and a 

terminal stuck input and adding relative constraints to our 

model as follows: 

 ∑ 𝜆𝑗𝑍𝑗
𝜏+𝑇

𝑗𝜖𝐽 ≥ 𝑍𝑜
𝜏+𝑇 

 ∑ 𝜆𝑗𝑍𝑗
𝜏−1

𝑗𝜖𝐽 ≤ ℒ𝑜
𝜏−1 

 ℒ𝑜
𝜏−1 =≥ 𝑍𝑜

𝜏+𝑇 +∑ 𝜌𝑜
𝑡𝜏+𝑇

𝑡=𝜏  

  𝜌𝑜
𝑡 ≥ 𝑍𝑜

𝑡  

 

 where 𝑍𝑗
𝜏−1is the initial stuck and 

T

jZ  
is the terminal  

stuck of j-th DMU. Another important setting that makes 

the model of (Jahanshahloo et al., 2015) a special case of 

our model is that we need to consider a special case of 

𝜆𝑟𝑗
𝑡 = 𝜆𝑗⁡ 

for the intensity variable our model to the model of 

(Jahanshahloo et al., 2015). In fact, a unique set of intensity 

variables for all time periods is considered by 

(Jahanshahloo et al., 2015). This means a unique peer 

analysis, a unique target setting, etc., for all periods, which 
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seems a bit strict. However, we assume a separate intensity 

variable for each time period which makes our model a 

generalized model in this sense. 

4. Output-oriented multi-period InDEA 

In the literature of the InDEA, one may ask different 

questions, such as if the input level of a specific DMU 

perturbs to a certain level, then how much output should 

we expect to be produced at the current efficiency level. 

This may be called an output-oriented InDEA problem. 

This section aims to deal with this question over time. 

Moreover, this section finds when we should expect the 

produced output too. Assume DMUo, for instance, that 

perturbs its input level from 𝑥𝑖𝑜
𝑡  to  𝛼𝑖𝑜

𝑡 = 𝑥𝑖𝑜
𝑡 + ∆𝑥𝑖𝑜

𝑡 t

iox  

at time period t.  

Now the question is how much output should be expected 

for the perturbed inputs at the current efficiency level. The 

following model aims to achieve this for us. 

𝑀𝑎𝑥⁡(𝛽1
𝑡, 𝛽2

𝑡, , … , 𝛽𝑠
𝑡) 

∑𝜆𝑗𝑥𝑖𝑗
𝑡

𝑛

𝑗=1

≤ (𝑥𝑖𝑜
𝑡 + Δ𝑥𝑖𝑜

𝑡 ); ⁡1 ≤ 𝑖 ≤ 𝑚⁡⁡ 

∑𝜆𝑗𝑦𝑟𝑗
𝑡

𝑛

𝑗=1

≥ 𝜑𝑜
𝑡(𝑦𝑟𝑜

𝑡 + Δ𝑦𝑟
𝑡) = 𝜑𝑜

𝑡𝛽𝑟
𝑡; ⁡1 ≤ 𝑟

≤ 𝑠 
𝜆 ∈ ℷ𝑡 

 

(9) 

, where 𝜑𝑜
𝑡  is the optimal value of the following models, 

that is, the output efficiency score of DMUo at the period 

of t.  

𝑀𝑎𝑥⁡𝜑 

∑𝜆𝑗𝑥𝑖𝑗
𝑡

𝑛

𝑗=1

≤ 𝑥𝑖𝑜
𝑡 ; ⁡⁡1 ≤ 𝑖 ≤ 𝑚⁡⁡⁡⁡ 

∑𝜆𝑗𝑦𝑟𝑗
𝑡

𝑛

𝑗=1

≥ 𝜑𝑦𝑟𝑜
𝑡 ; ⁡1 ≤ 𝑟 ≤ 𝑠 

𝜆 ∈ ℷ𝑡 
 

(10) 

 
 Model (9) finds the maximum producible output using 

perturbed input in the current efficiency level.  

Theorem4. If  (𝜆𝑡 , 𝛽̅𝑡) is a weak efficient solution of 

MOLP model (9), then the new input-output level of 

(𝛼𝑜
𝑡 , 𝛽̅𝑡) preserve the relative efficiency of DMUo in the 

period of 𝑡 = 1,2, … , 𝑡̅.                  
Proof. It is straightforward to follow the proof of Theorem 

1.  

Now, considering the whole time period, the following 

MOLP model guarantees an unchanged efficiency score of 

all DMUs over all periods for a perturbed input level 

of𝛼𝑖𝑜
𝑡 = 𝑥𝑖𝑜

𝑡 + ∆𝑥𝑖𝑜
𝑡 : 

 

𝑀𝑎𝑥⁡𝟏𝑇(𝛽1
𝑡, 𝛽2

𝑡, , … , 𝛽𝑠
𝑡)

= 𝟏𝑇(𝑦1𝑜
𝑡 + Δ𝑦1𝑜

𝑡 , 𝑦2𝑜
𝑡

+ Δ𝑦2𝑜
𝑡 , … , 𝑦𝑠𝑜

𝑡 + Δ𝑦𝑠𝑜
𝑡 , )

= (∑ 𝑦
𝑟𝑜
1 + Δ𝑦

𝑟
1

𝑡 ̅

𝑡=1

,∑ 𝑦
𝑟𝑜
2

𝑡 ̅

𝑡=1

+ Δ𝑦
𝑟
2 , … ,∑ 𝑦

𝑟𝑜
𝑡 ̅ + Δ𝑦

𝑟
𝑡 ̅

𝑡 ̅

𝑡=1

) 

∑𝜆𝑗𝑥𝑖𝑗
𝑡

𝑛

𝑗=1

≤ (𝑥𝑖𝑜
𝑡 + Δ𝑥𝑖𝑜

𝑡 ); ⁡1 ≤ 𝑖 ≤ 𝑚⁡⁡ 

∑𝜆𝑗𝑦𝑟𝑗
𝑡

𝑛

𝑗=1

≥ 𝜑𝑜
𝑡(𝑦𝑟𝑜

𝑡 + Δ𝑦𝑟
𝑡) = 𝜑𝑜

𝑡𝛽𝑟
𝑡; ⁡1 ≤ 𝑟

≤ 𝑠 
𝜆 ∈ ℷ𝑡 

 

(11) 

The above model not only finds the required input and 

producible output but also determines the optimal time of 

input consumption and output production. 

Theorem5. Weak efficient solutions of MOLP (11) 

preserve the efficiency score DMUo for all periods of 𝑡 =
1,2, … , 𝑡̅. 
Proof. It is straightforward, following the proof of 

Theorem 2. 

The associated linear programming of MOLP model (11) 

is also as follows: 

 

𝑀𝑎𝑥⁡∑∑𝛽
𝑟
𝑡

𝑠

𝑟=1

𝑡 ̅

𝑡=1

=∑∑ 𝑦
𝑟𝑜
𝑡 + Δ𝑦

𝑖
𝑡

𝑠

𝑖=1

𝑡 ̅

𝑡=1

 

∑𝜆𝑗𝑥𝑖𝑗
𝑡

𝑛

𝑗=1

≤ (𝑥𝑖𝑜
𝑡 + Δ𝑥𝑖𝑜

𝑡 ); ⁡1 ≤ 𝑖 ≤ 𝑚, 𝑡

= 1,2, … , 𝑡̅⁡⁡ 

∑𝜆𝑗𝑦𝑟𝑗
𝑡

𝑛

𝑗=1

≥ 𝜑𝑜
𝑡(𝑦𝑟𝑜

𝑡 + Δ𝑦𝑟
𝑡) = 𝜑𝑜

𝑡𝛽𝑟
𝑡; ⁡1 ≤ 𝑟

≤ 𝑠, 𝑡 = 1,2, … , 𝑡̅ 
𝜆 ∈ ℷ𝑡 

 

(12) 

 

 

Theorem6. The total produced r-th input level for using 

the new input level is ∑ 𝛽̅𝑟𝑜
𝑡 = ∑ 𝑦𝑟𝑜

𝑡 + Δ̅𝑦𝑟𝑜
𝑡𝑡̅

𝑡=1
𝑡̅
𝑡=1  and the 

produced output using the MOLP model (11) is greater 

than the produced output level using the MOLP model of 

(9) over period of 𝑡 = 1,2, … , 𝑡̅, using a perturbed input 

level and preserving the efficiency score of DMUo over the 

given period. 

Proof. It is straightforward, following the proof of 

Theorem 3. 

Considering a more flexible situation where the total 

expected output is targeted instead of the individual output 

level at each period, one may use the following model: 
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𝑀𝑎𝑥⁡𝟏𝑇(𝛽1
𝑡, 𝛽2

𝑡, , … , 𝛽𝑠
𝑡)

= 𝟏𝑇(𝑦1𝑜
𝑡 + Δ𝑦1𝑜

𝑡 , 𝑦2𝑜
𝑡

+ Δ𝑦2𝑜
𝑡 , … , 𝑦𝑠𝑜

𝑡 + Δ𝑦𝑠𝑜
𝑡 , )

= (∑ 𝑦
𝑟𝑜
1 + Δ𝑦

𝑟
1

𝑡 ̅

𝑡=1

,∑ 𝑦
𝑟𝑜
2

𝑡 ̅

𝑡=1

+ Δ𝑦
𝑟
2 , … ,∑ 𝑦

𝑟𝑜
𝑡 ̅ + Δ𝑦

𝑟
𝑡 ̅

𝑡 ̅

𝑡=1

) 

∑𝜆𝑗𝑥𝑖𝑗
𝑡

𝑛

𝑗=1

≤ (𝑥𝑖𝑜
𝑡 + Δ𝑥𝑖𝑜

𝑡 ); ⁡1 ≤ 𝑖 ≤ 𝑚, 𝑡

= 1,2, … , 𝑡̅⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

∑𝜆𝑗𝑦𝑟𝑗
𝑡

𝑛

𝑗=1

≥ 𝜑𝑜
𝑡(𝑦𝑟𝑜

𝑡 + Δ𝑦𝑟
𝑡) = 𝜑𝑜

𝑡𝛽𝑟
𝑡; ⁡1 ≤ 𝑟

≤ 𝑠, 𝑡 = 1,2, … , 𝑡̅ 

∑ 𝛼𝑖
𝑡 = ∑ 𝛼𝑖𝑜

𝑡𝑡̅
𝑡=1

𝑡̅
𝑡=1 , 1 ≤ 𝑖 ≤ 𝑚 

𝜆 ∈ ℷ𝑡,     𝑡 = 1,2, … , 𝑡̅ 
 

(13) 

 

Just to remind you that the above model also preserves the 

efficiency scores of all DMUs over all periods. The MOLP 

model (5.4) focuses on the total input consumption (output 

production) in contrast with the MOLP model (11) that 

cares about separate input consumption (output 

production) of each period of time. However, both models 

produce the maximum output level within their own 

framework. 

 

5. An Application of Efficiency and Sensitivity 

Analysis of Selected Iranian Economic Sectors  

This section analyzes the efficiency status of five selected 

Iranian economic sectors (agriculture, oil, industry, 

transportation and domestic, commercial, and public) as 

the basic research units during the period of 2003-2013. 

Deeper investigation is done using the proposed models to 

have a sensitivity analysis and more structural efficiency 

insight of the aforementioned economic sectors within the 

period of study. Labor and capital stock are assumed as two 

inputs in the analysis, and the value added is considered a 

single output. Employed labor is considered the first input 

that is found from the Iran Statistical Yearbook (1997-

2014). Capital and net capital stock of each sector are 

selected as a proxy of input, which is reported as billion 

IRR. The added value of each sector that is output is 

extracted from the Statistical Center of Iran. Table 1 reports 

the statistical description of the data set.  

 

Table 1 

Summary statistics of data 
Variable 
name  

Mean Standard 
error  

Min Max  

Labor  2623270 1525832 118270 4404110 

Capital 1606084.109 2044746.575 148612 12217851 

GDP 519960.5 372673 80516.2 1589633 

 

The first step of efficiency analysis is done and reported in 

table 2 over the time period of the study, assuming constant 

returns to scale. As can be seen, the oil industry is the 

efficient sector during the study period, and the agriculture 

sector is efficient in some years. The last sector, which is 

the domestic, commercial, and public sector, has the lowest 

efficiency within sectors during the study period.  

 

Table 2 

 The efficiency score of sectors over period of study 
 Agricultural Oil Industry Transportation Domestic… 

Year 2003 1 1 0.4632 0.5092 0.1871 

Year 2004 1 1 0.4535 0.468 0.1831 

Year 2005 1 1 0.4382 0.4495 0.1817 

Year 2006 1 1 0.4312 0.4249 0.1711 

Year 2007 0.9826 1 0.4163 0.3955 0.1467 

Year 2008 0.8188 1 0.3862 0.3479 0.1278 

Year 2009 0.8654 1 0.4069 0.3613 0.1373 

Year 2010 0.8071 1 0.3896 0.3349 0.1308 

Year 2011 0.7191 1 0.3842 0.308 0.1152 

Year 2012 1 1 0.5 0.4574 0.1572 

Year 2013 1 1 0.4715 0.4924 0.1553 

 

In the next part of the analysis, let us consider two sectors: 

one efficient and one inefficient, for instance oil sector (S2) 

and the domestic, commercial, and public sector (S5). 

Assuming the current efficiency level for each sector, let us 

consider an increment for the output of each sector and find 

the required input level. This analysis is performed 

considering a steady increment from 5 to 100 percent, and 

the results are reported in Table 3a-3c. Columns report the 

required inputs (first input shown by Dx1 and second input 

shown by Dx2) associated with the expected output. Rows 

are associated with the S2 and S5 during the period from 

2003 to 2013. 

S5 is found inefficient, meaning it does not use its current 

inputs efficiently; thus, it does not require any extra input 

to produce up to 30 percent of the output increment in 2003. 

It does not need even extra inputs for producing up to 100 

percent output increment in some years, like 2004. It is 

expected, given the efficiency score of this sector, which is 

0.1831 in 2004, that means 81 percent waste of input on 

producing output. This analysis suggests consuming 

wasted input for new perturbed output levels. The story for 

the second sector (S2), which is the oil sector, and found to 

be efficient, is different. It is found relatively efficient, 

meaning there is no waste of inputs. This implies extra 

input for producing new, increased outputs. This can be 

seen in Table 3, which shows the requirement for extra 

inputs in almost all periods of study. In the next analysis, 

we consider the above investigation for the whole years of 

the study period and find interesting results that is reported 

in Table 4a-4c. Then provide a comparison between the 

classical inverse DEA that considers each period 
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separately, with the results of the proposed time-flexible 

inverse DEA. For the first scenario, that is, a five percent 

extension of output level, if we consider a time-separate 

framework, then we need 326939 units of the first input and 

69420 units of the second input, and 395659 units of the 

inputs generally. In this scenario, if we consider the time-

flexible framework, then we see that we need 1286.323 

units of the first input and no extra amount of the second 

input.  

Observe that the aforementioned expected output level in 

the previous analysis needs a lower input level compared 

with the previous study, as proved in Theorem 3. It is 

important to point out that this fact does not hold for 

individual DMUs; for instance, the sector S2 does not 

require much input in the previous analysis, but it demands 

some inputs using a generalized model over time. This 

result is summarized in Table 5. However, the total 

required inputs using the generalized InDEA over time do 

not exceed the required input level using separate years’ 

analysis. This is due to the flexibility of the proposed 

models that provides the possibility of consuming inputs in 

all years and then finds the optimal time and optimal 

amount of consuming inputs for producing the targeted 

output. Remember that the optimal time and optimal 

amount are associated with the minimum level of inputs for 

producing the targeted output. The first and second rows of 

Table 5 are associated with the sum of the required input 

considering separate years, and the third and fourth rows 

are associated with the total required input using the 

generalized model. Observe that the latter is not greater 

than the former. This means we need fewer inputs using a 

generalized model compared with the separate models for 

producing the expected output level. In short, we observe 

that the proposed models provide a more flexible 

framework for producing a targeted output. This 

framework provides the possibility of identifying and 

preventing any excess of inputs from the beginning of the 

period in each year, and consequently prevents any waste 

of inputs that may occur in each year and may transfer to 

the next year. It requires fewer inputs compared with the 

separate year investigation and thus yields savings in inputs 

that are used for producing desired outputs.  

Regarding the nature of the inverse DEA methodology, it 

can be used as a proxy for the sensitivity analysis in the 

efficiency analysis of production units. It helps decision 

makers in finding how sensitive the resources (inputs) are 

for the production lines and how sensitive the production is 

to consuming resources. This provides vital information on 

the prioritization of inputs and outputs for decision makers. 

If a resource is sensitive in case of its effects on the 

performance of production units, then it should be given 

high priority of attention by decision makers. If an output 

is sensitive and plays an important role for the firm, then it 

needs more consideration to prevent any possible potential 

loss of the firm in the market. Beyond that, inverse DEA 

methods can be used as a complementary tool for 

performance measurement by managers and policy makers. 

It helps managers design the optimal production lines. If a 

manager is interested in assigning available resources to 

production units, then the inverse DEA plays a core role. 

This role becomes more important when the resource 

assignment should be done over time, and the proposed 

models in the current paper help decision makers and 

managers with this task. On the output side, if a manager 

desires to produce a specific amount of output, then the 

inverse DEA models are a powerful method for such 

planning, optimally. The proposed models in the current 

paper help managers in designing an optimal production 

plan over a period of time. They help decision-makers in 

reaching targets by consuming the minimum amount of 

resources.       

The proposed models are based on the available crisp data. 

However, in many real-world problems, there is 

uncertainty or incomplete information on the data. Thus, 

one of the potential areas for future study is working on the 

uncertainty issue in the inverse DEA problem over time. 

We consider proportional and radial measurements in all 

processes of input-output estimation in the current paper. 

One potential future line for further investigation is dealing 

with non-radial measurements within the concept. 

However, the proposed models are generalized in terms of 

the returns to scale, and any type of returns to scale may 

assumed for the input-output estimation process. The 

underlying production technology for the proposed models 

in the current paper is a straight production technology line. 

In case of any production and technological complexity, 

the proposed models need modification, which is left for 

future research. 
 

Table 3a 

InDEA results for separate years 
 5 percent increment  10 percent increment  

 Dx1 Dx2 Dx1 Dx2 

S2(2003) 11291.1 5913.5 22582.2 11827 

S5(2003) 0 0 0 0 

S2(2004) 0 0 26314.2 11899.5 

S5(2004) 0 0 0 0 

S2(2005) 15215.05 6105.05 30430.1 12210.1 

S5(2005) 0 0 0 0 

S2(2006) 16814.5 6227 33629 12454 

S5(2006) 0 0 0 0 

S2(2007) 18665.75 6289.4 37331.5 12578.8 

S5(2007) 0 0 0 0 

S2(2008) 21270.25 6347.3 42540.5 12694.6 

S5(2008) 0 0 0 0 

S2(2009) 23854.25 6383.95 47708.5 12767.9 

S5(2009) 0 0 45483.98 0 

S2(2010) 25408.05 6697.7 50816.1 13395.4 

S5(2010) 0 0 0 0 

S2(2011) 28838.7 7543.9 57677.4 15087.8 

S5(2011) 0 0 0 0 

S2(2012) 61599.15 8449.15 123198.3 16898.3 

S5(2012) 8182.716 0 381522.7 0 

S2(2013) 95099.5 9463.05 190199 18926.1 

S5(2013) 0 0 0 0 
 

Table 3b. 

 InDEA results for separate years 
 15 percent increment  30 percent increment  

 Dx1 Dx2 Dx1 Dx2 

S2(2003) 33873.3 17740.5 67746.6 35481 

S5(2003) 0 0 37490.26 0 

S2(2004) 39471.3 17849.25 78942.6 35698.5 

S5(2004) 0 0 0 0 

S2(2005) 45645.15 18315.15 91290.3 36630.3 

S5(2005) 0 0 0 0 

S2(2006) 50443.5 18681 100887 37362 

S5(2006) 0 0 0 0 

S2(2007) 55997.25 18868.2 111994.5 37736.4 

S5(2007) 0 0 0 0 

S2(2008) 63810.75 19041.9 127621.5 38083.8 

S5(2008) 0 0 0 0 

S2(2009) 71562.75 19151.85 143125.5 38303.7 



Journal of Optimization in Industrial Engineering,Vol.18, Issue 2, Summer & Autumn 2025, 149-159  

Mojtaba Ghiyasi  & Farhad Taghizadeh-Hesary  / Continuous benchmarking using a time-framed inverse data … 

157 

 
 

S5(2009) 205475.9 0 685451.6 0 

S2(2010) 76224.15 20093.1 152448.3 40186.2 

S5(2010) 0 0 444450.5 0 

S2(2011) 86516.1 22631.7 173032.2 45263.4 

S5(2011) 0 0 0 0 

S2(2012) 184797.5 25347.45 369594.9 50694.9 

S5(2012) 754862.6 0 1874882 0 

S2(2013) 285298.5 28389.15 570597 56778.3 

S5(2013) 120017 0 1729304 0 

 

 

Table 3c 

 InDEA results for separate years 
 50 percent 

increment  

75 percent 

increment  

100 percent 

increment  

 Dx1 Dx2 Dx1 Dx2 Dx1 Dx2 

S2(200

3) 

11291.

1 

5913.

5 

22582.

2 

11827 33873.

3 

17740.

5 

S5(200

3) 

0 0 0 0 0 0 

S2(200

4) 

0 0 26314.

2 

11899

.5 

39471.

3 

17849.

25 

S5(200

4) 

0 0 0 0 0 0 

S2(200

5) 

15215.

05 

6105.

05 

30430.

1 

12210

.1 

45645.

15 

18315.

15 

S5(200
5) 

0 0 0 0 0 0 

S2(200

6) 

16814.

5 

6227 33629 12454 50443.

5 

18681 

S5(200
6) 

0 0 0 0 0 0 

S2(200

7) 

18665.

75 

6289.

4 

37331.

5 

12578

.8 

55997.

25 

18868.

2 

S5(200
7) 

0 0 0 0 0 0 

S2(200

8) 

21270.

25 

6347.

3 

42540.

5 

12694

.6 

63810.

75 

19041.

9 

S5(200
8) 

0 0 0 0 0 0 

S2(200

9) 

23854.

25 

6383.

95 

47708.

5 

12767

.9 

71562.

75 

19151.

85 

S5(200
9) 

0 0 45483.
98 

0 20547
5.9 

0 

S2(201

0) 

25408.

05 

6697.

7 

50816.

1 

13395

.4 

76224.

15 

20093.

1 

S5(201
0) 

0 0 0 0 0 0 

S2(201

1) 

28838.

7 

7543.

9 

57677.

4 

15087

.8 

86516.

1 

22631.

7 

S5(201
1) 

0 0 0 0 0 0 

S2(201

2) 

61599.

15 

8449.

15 

12319

8.3 

16898

.3 

18479

7.5 

25347.

45 

S5(201
2) 

8182.7
16 

0 38152
2.7 

0 75486
2.6 

0 

S2(201

3) 

95099.

5 

9463.

05 

19019

9 

18926

.1 

28529

8.5 

28389.

15 

S5(201
3) 

38750
20 

0 65571
66 

0 92393
11 

0 

 

Table 4a.  

InDEA results using generalized model over time 
 5 percent increment  10 percent increment  

 Dx1 Dx2 Dx1 Dx2 

S2(2003) 0 0 22582.2 11827 

S5(2003) 0 0 0 0 

S2(2004) 0 0 26314.2 11899.5 

S5(2004) 0 0 0 0 

S2(2005) 0 0 30430.1 12210.1 

S5(2005) 0 0 0 0 

S2(2006) 0 0 33629 12454 

S5(2006) 0 0 0 0 

S2(2007) 0 0 37331.5 12578.8 

S5(2007) 0 0 0 0 

S2(2008) 0 0 42540.5 12694.6 

S5(2008) 0 0 0 0 

S2(2009) 0 0 47708.5 12767.9 

S5(2009) 0 0 33377.61 0 

S2(2010) 0 0 50816.1 13395.4 

S5(2010) 0 0 0 0 

S2(2011) 0 0 57677.4 15087.8 

S5(2011) 0 0 0 0 

S2(2012) 0 0 123198.3 16898.3 

S5(2012) 1286.32 0 381522.7 0 

S2(2013) 0 0 190199 18926.1 

S5(2013) 0 0 0 0 

 

Table 4b. 

 InDEA results using generalized model over time 
 15 percent increment  30 percent increment  

 Dx1 Dx2 Dx1 Dx2 

S2(2003) 22582.2 11827 22582.2 11827 

S5(2003) 0 0 0 0 

S2(2004) 26314.2 11899.5 26314.2 11899.5 

S5(2004) 0 0 0 0 

S2(2005) 30430.1 12210.1 30430.1 12210.1 

S5(2005) 0 0 0 0 

S2(2006) 33629 12454 33629 12454 

S5(2006) 0 0 0 0 

S2(2007) 55997.25 18868.2 111994.5 37736.4 

S5(2007) 0 0 0 0 

S2(2008) 63810.75 19041.9 127621.5 38083.8 

S5(2008) 0 0 0 0 

S2(2009) 71562.75 19151.85 143125.5 38303.7 

S5(2009) 0 0 503006.4 0 

S2(2010) 76224.15 20093.1 152448.3 40186.2 

S5(2010) 0 0 444450.5 0 

S2(2011) 86516.1 22631.7 173032.2 45263.4 

S5(2011) 0 0 0 0 

S2(2012) 184797.5 25347.45 369594.9 50694.9 

S5(2012) 1286.323 0 1874882 0 

S2(2013) 285298.5 28389.15 570597 56778.3 

S5(2013) 0 0 1729304 0 

 

Table 4c.  

InDEA results using generalized model over time 
 50 percent 

increment  

75 percent 

increment  

100 percent 

increment  

 Dx1 Dx2 Dx1 Dx2 Dx1 Dx2 

S2(200

3) 

11291

1 

59135 16936

6. 

88702.

5 

22582

2 

1182

70 

S5(200

3) 

21766

1.2 

0 44287

4 

0 66808

8 

0 

S2(200

4) 

13157

1 

59497

.5 

19735

6.5 

89246.

25 

26314

2 

1189

95 

S5(200

4) 

17852

6.1 

0 43586

0 

0 69319

3.9 

0 

S2(200

5) 

15215

0.5 

61050

.5 

22822

5.7 

91575.

75 

30430

1 

1221

01 

S5(200

5) 

18491.

16 

0 28091

2.4 

0 54333

3.5 

0 

S2(200

6) 

16814

5 

62270 25221

7.5 

93405 33629

0 

1245

40 

S5(200

6) 

32650.

48 

0 36162

3.6 

0 69059

6.6 

0 

S2(200

7) 

18665

7.5 

62894 27998

6.3 

94341 37331

5 

1257

88 

S5(200

7) 

0 0 10648

1.6 

0 48526

7.5 

0 

S2(200
8) 

21270
2.5 

63473 31905
3.7 

95209.
5 

42540
5 

1269
46 

S5(200

8) 

0 0 50106

8.7 

0 10482

17 

0 

S2(200
9) 

23854
2.5 

63839
.5 

35781
3.8 

95759.
25 

47708
5 

1276
79 

S5(200

9) 

97263

5.3 

0 15596

71 

0 21467

07 

0 
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0.7 
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1 
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0 
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.5 
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7.3 
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83 
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83 
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42 
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42 
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42 

0 
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5 
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.5 
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93 
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5.8 
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90 
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Table 5 

Comparison InDEA for separate years and the generalized InDEA 

over time 
 5 percent increment  10 percent increment  

 Dx1 Dx2 Dx1 Dx2 

Sum of 

Dx1 of S2 

318056.3 69420 662426.8 150739.5 

Sum of 
Dx1 of S5 

8182.716 0 427006.6 0 

S2(2004) 0 0 662426.8 150739.5 

S5(2004) 1286.323 0 414900.3 0 

 15 percent 

increment 

 30 percent 

increment 

 

Sum of 

Dx1 of S2 

993640.2 226109.2 1987280 452218.5 

Sum of 

Dx1 of S5 

1080356 0 4771579 0 

S2(2004) 937162.4 201913.9 1761369 355437.3 

S5(2004) 1286.323 0 4551644 0 

 50 percent 

increment 

 75 percent 

increment 

 

Sum of 

Dx1 of S2 

3312134 753697.5 4968201 1130546 

Sum of 

Dx1 of S5 

10126446 0 18192327 0 

S2(2004) 3312134 753697.5 4968201 1130546 

S5(2004) 9773662 0 17626620 0 

 100 percent 

increment 

   

Sum of 
Dx1 of S2 

6624268 1507395   

Sum of 

Dx1 of S5 

27117958 0   

S2(2004) 6624268 1507395   

S5(2004) 26339327 0   

 

6. Conclusion            

InDEA models like classical DEA models have been 

developed and widely used over the last two decades. 

Dealing with the data over time and analyzing the 

efficiency is an important concept that needs more 

theoretical attention. The current paper deals with the time-

dependent InDEA and proposes a generalized model that is 

capable of not only the input-output estimation but also 

optimal time determination in terms of input consumption 

and output production. As mentioned before, the proposed 

model has a generalized structure, and different theoretical 

extensions of InDEA models that are proposed so far can 

be considered in its generalized over-time framework. 

Although we had the data set in as crisp form but there are 

many real-world problems involved with uncertainty that 

should be considered in the process of input or output 

estimation. It is a well-known fact that the source of 

uncertainty may be different from case to case. As long as 

we have information about the source of uncertainty, we 

should consider it in the performance assessment process 

and input-output estimation.   
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