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1. Introduction

Data envelopment analysis (DEA) is a mathematical
programming-based approach to assess the performance of
homogeneous decision making units (DMUs) with
multiple inputs and outputs. This method initially proposed
by (Abraham Charnes, Cooper, & Rhodes, 1978) and has
been extended in different paths over the last decades.
Besides theoretical developments, this method has been
extensively used in different sectors. See, for instance,
(Emrouznejad, Parker, & Tavares, 2008) and
(Emrouznejad & Yang, 2018)) for a review of some
applications. Classical DEA models and most of the
extended models have a linear structure and as (Cook &
Seiford, 2009) mentioned, one of the attractive
characteristics of the DEA model that makes it a widely
used technique in different sectors is its simplicity to solve.
In one of the theoretical developments of classical DEA
models (X. S. Zhang & Cui, 1999) proposed a new research
line in the DEA literature called inverse DEA (InDEA).
This method was extended by (Wei, Zhang, & Zhang,
2000) and (YYan, Wei, & Hao, 2002). The research question
in the INDEA problem is as follows: if a DMU perturbs its
input level, then how much output can be produced using a
new level of inputs with the current output efficiency
score? (M. Zhang & Cui, 2016) extended this question by
estimating expected outputs and preserving the input
efficiency. On the other side, if a DMU perturbs its output
level, then how much input is needed to produce a new
level of outputs with the current input efficiency level?
(Amin & Al-Muharrami, 2016) dealt with negative data in
the inverse DEA problem. They proposed some models for
identifying the levels of required inputs and outputs from
merging units to realize an efficiency target.
(Lertworasirikul, Charnsethikul, & Fang, 2011) considered
the variable returns to scale (VRS) properties like (Banker,
Charnes, & Cooper, 1984) for the production technology in
the inverse DEA problem. However, there exist some
drawbacks in their model that were pointed out and revised
by (Ghiyasi, 2015).

(Ghiyasi, 2017b) proposed a cost-based inverse DEA
model that incorporates price information. (Amin &
Emrouznejad, 2007) applied the inverse linear
programming for the DEA models, specifically for the
additive DEA model. They vyield to a faster method for
solving DEA models using inverse linear programming.
Besides theoretical developments, the INDEA problem has
proved as a useful approach in various real-life applications
as it enriched classical DEA models as a tool for making
predictions. An application of the InDEA models in
banking mergers was proposed by (Gattoufi, Amin, &
Emrouznejad, 2014). (Amin, Emrouznejad, & Gattoufi,
2017a) proposed an InDEA model for modelling
generalized firms' restructuring as well as anticipating the
minor and major consolidation for a merger in a market.
(Amin, Emrouznejad, & Gattoufi, 2017b) dealt with
restructuring problems in an InDEA framework and
developed a novel InDEA-based methodology, called
Generalized Inverse DEA, for modeling the generalized
restructuring. (Goshu, Matebu, & Kitaw, 2017) provided a
productivity analysis framework for analyzing the
performance of manufacturing companies. (Chen, Wang,
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Lai, & Feng, 2017) proposed a new INnDEA model
considering undesirable outputs. (Ghiyasi, 2017a)
proposed an INDEA model for pollution generation in
production technologies. (Fazelimoghadam, Ershadi, &
Akhavan Niaki, 2020) used DEA methods for finding the
efficient solution near the optimal solutions within the
solutions gauged by a multi-objective particle swarm
optimization. (Safaie & Nasri, 2022) used a robust DEA
model for designing a failure mode and effect analysis with
an application in an automobile oil filter. There are two
main streams in the DEA literature for dealing with
efficiency analysis over time, which are windows DEA
analysis and the Malmquist productivity index. A DEA
window analysis originally proposed by (A. Charnes,
Clark, Cooper, & Golany, 1984) works on the principle of
moving averages and is useful to determine the efficiency
trends of a DMU over time. Malmquist index, initially
proposed by (Malmquist, 1953), which measures
productivity change over time and has been widely
developed and applied in different sectors (See for instance
(Asmild, 2015)). (Emrouznejad & Thanassoulis, 2005)
developed a window-based model considering the changes
in stock as a particular cause of inter-temporal input—output
dependence and presented an envelopment dynamic DEA
model to calculate the technical dynamic efficiency
measures.  (Jahanshahloo,  Soleimani-Damaneh, &
Ghobadi, 2015) developed a specific time based inverse
DEA model based on the work of (Emrouznejad &
Thanassoulis, 2005), assuming inter-temporal dependence
of the dataset. (Emrouznejad, Amin, Ghiyasi, & Michali,
2023) reviewed the origin, theoretical development,
application and future research line of the inverse DEA
since this method was developed.

The current paper develops a generalized multi-period
INDEA model considering time changes in the process of
input-output estimation. The proposed models determine
not only the input-output level but also the best time of
input consumption or output production. In all proposed
models in the current paper, the main assumption of INDEA
problem is that preserving the relative efficiency is
guaranteed. The main advantage of the proposed models is
their ability to deal with the input-output estimation over
time. This enables decision makers to find the best
(optimal) amount of inputs for each unit over time. This
yields to determining the best (optimal) time of consuming
inputs for producing a desired level of production.
Furthermore, the proposed models are production-based
models, and they are generalized in terms of returns to
scale; and any type of returns to scale assumption can be
considered based on the characteristics of the production
technology. The rest of the paper is organized as follows.
Section 2 provided the basic classical DEA and INDEA
models. Section 3 develops the input-oriented generalized
multi-period  InDEA  model. The output-oriented
generalized multi-period INDEA model is proposed in the
section 4. Section 5 performs an application of the
proposed models for regular efficiency analysis and more
sensitivity analysis using the proposed model for selected
Iranian economic sectors during 2003-2013.
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2. Basic models
2.1. Classical DEA model

Suppose there is a set of n DMUs consuming m
dimensional input vector of x; = (x1j, X2, ..., Xpj) € RY
to produce s dimensional output vector of y; =
V1), Y2j» - Ysj) ERE. The  general  production
technology can be seen as T={(x,y): x can produce y}.
Considering the input-output set one may specify the
following production technology:T = {(x,y):x =
XiAixj,y < XAy, A €3}, where X specifies the returns
to scale properties of the production. Considering the
Farrelle’s distance measure of min{0:(6x,,y) € T}
(Farrell, 1957) for the production technology of T we get
the following linear programming model for measuring the
relative efficiency of DMU,, that is, the DMU under
assessment:
0, =Min6

n
ZAJXU < Hxio; 1<i<m

j=1
n 1)
Z)ljyrj 2 Yo 1<r<s
j=1

AED

Solving the above model for all DMUs results in a list of
relative efficiency scores based on the input-output
parameters.

Definiationl. The DMU;, is called (weakly) efficient if the

optimal value of linear programming (1) is unity (6, = 1).
2.2. Classical inverse DEA model

Having the input-output set, the DEA models seek the
efficiency score of DMUs. In a quite different path, the
INDEA models try to answer another question. Assume
DMU, perturbs its output fromy,., t0 Bro = Vio + AVyo.
The question is how much input is required for producing
a new output level of DMU, with its current efficiency
score off,. This question is answered by the following
multiple objective linear programming (MOLP) in the
INDEA literature.

0, = Min (aq,ay, ..., Ay)
n
ZAJXU < G(Xio + Axio); 1<i<m
j=1
= )
Aj)’rj = Vro tAVro =Pros 1<T<s

j=1

A€

Definition 2. Suppose (4, &) is a feasible solution MOLP
model (2) if there is no feasible solution
(4, @) for this model such that @ < «, then we say the
(4, ) is aweak efficient solution of that model.

It is a well-known fact in the INDEA literature that weak
efficient solutions of MOLP model (2) preserve the
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efficiency score of DMUs(see, for instance, (Ghiyasi,
2015)).

3. Multi-period INDEA

In this section, we look at the INDEA over time, and no
technological change is considered in each time period.
Consider the input and output vector of an arbitrary DMU;
as x/eRT and yfeRS attime period t = 1,2, ..., £. Assume
DMU,, for instance, perturbs its output level from y%,
tofL, = v, + Ayt,at time period t. Now the question is
how much (minimum) input is required for producing the
new level of output for DMU; at the current efficiency level
of each period. One trivial answer to this question is
estimating the required input of each period separately and
then adding them to find the total required input level. To
that end, we need to solve the following MOLP model at
each period.

Min (at,d,, ..., at)

NIE

Ajxf < 05(xf, + Axf); 1<i<m

~

P

3)
Aj)’rtj = Yrto + AYrto = ﬁﬁo; 1<r<s
1

-
1}

Aet

, Where 8} is the efficiency score of DMU, at time period
oft =1,2,..,¢t.
Both MOLP model (2) and MOLP model (3) have m
objective functions, m+s+1 constraints and m+n variables.
Similar to the static environment, it is not difficult to see
that weak efficient solutions of MOLP (3) at each time
period of t = 1,2, ..., t. preserve time associated relative
efficiency of DMU,, that is, 8f,t = 1,2, ..., t.. This fact is
proved in the following theorem.
Theoreml. If (A%, &) is a weak efficient solution of
MOLP model (3), then the new input-output level of
(at, B) preserve the relative efficiency of DMU, at time
period of t = 1,2, ..., t and the total required i-th input level
for producing the new output level is Yi_;af, =
Yi=1%p + Axp.
Proof. For the fixed time period ¢t = 1,2, ..., T let (A%, a*)
be a weak efficient solution of MOLP model (3) then it
satisfies the associated constraints as follows:
n

A]xl-tj < 05(xf, + Axf,) = 0%al,;
1
m;

1<i

AT

_ (4)
LYii Z Vo +Ayfo = Bfo; 1ST <5

r

j=1

AE€)
Now let us check the efficiency score of perturbed DMU,,
thatis, (at, B¢). The following model estimates the relative
efficiency of this DMU:

N = Min6 ()
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1<ism

z oat

Zajyﬁj > Bfo; 1ST <5
=1
AED

, where BN is the efficiency of perturbed DMU, at time
period of t. Regarding to the constraint set of (4) we see

that (2, 67)is a feasible solution of model (5) that implies
AN < 6%. Now, by contradiction if ¥ <= 8¢ then we

have:
n
j=1

Z)t;yﬁj >l 1<r<s

AT E )

*t tN t, :
Aixi; <05 @jp; 1 <i<m

This suggests a feasible solution for the MOLP model of
(3), where (17, 9 ) is the optimal solution of model (5).

Thus, we have:

Z)l*xt < oNat < otat;

ij < 1<i<m

Byl =Bl 1<r<s
=1

J

AT €
, Which implies
Za*xt <eglal;1<i<m
j=1

n

Byl = Bloi 1<T <5
j=1

A€

And this contradicts the weak efficiency of the (1, a®).
The above statement can be done for all time periods t =
1,2,..,t. Now &}, = x}, + Ax},is the required input level
that produces the given output level and preserves the
relative efficiency of DMUj at time period of t. In order to
preserve the efficiency scores in all periods and produce
the total output level of all periods separately, we need
Yi_ial, = Y, xf + Axt asrequired input level.o
DMUs over time may have different performances, which
means different capabilities in output production and input
consumption. They may have regress or progress in some
period of time, and this trend may change during the time
period. In order to reach the decision maker’s aim that is
producing a given level of output while preserving the
efficiency scores, some input level may be required. The
required input level may change based on the performance
of DMUs. However, the goal is to reach the decision
maker’s aim with a minimum level of input. Thus, it is

important to know when to consume the new input level.
The following model determines not only how much input
is required but also when is the best time for using inputs
to reach the decision maker’s aim, namely producing
expected output with a minimum level of inputs.
Min17(at,as,, ..., aky)
= 1T(xlo + Axloero
xmo + Axmm)

= ©)

n
Z/lx <Oi(xf,+Axf);1<i<m
1

J:
n
Zl Yrj 2 > Yo + Ayfo =
=1

Bty 1<r<s
At et

Please note that each of m objective functions of model (6)
is an t-dimensional vector associated with all periods, that
is, (xf, +Ax{,)€R,, 1<i<m. Thus, compared
with the MOLP model of (3) there exist m x tobjective
functions, (m + s + 1) x tconstraints and (m + n) x
tvariables in MOLP model (6).

Theorem2. Weak efficient solutions of MOLP (6) preserve
the efficiency score DMU, for all time period of t =
1,2,..,t

Proof. Consider an arbitrary time period of t € {1,2, ..., t}
and take a weak efficient solution of MOLP model (6) like
(X, @y, @y, .., @) € RV Thus, vt € (1,2, ..., 8
we have:

r}—[))ror 1<r<s

AL et
This suggest (1, 05) (A',6)as a feasible solution to the

criterion model of (5) vt € {1,2, ..., t}. This implies that
OV < @t:vt e (1,2,..,t} .Nowif3at € {1,2,...,t} such
that 61N < ¢ then 85N = k6!',0 < k < 1 and then we
have

za*f xt <05Vt = 0 kat'); 1<i<m

le’ft’yﬁ} >pBli1<r<s
j=1
1 et
, where (A°t',8'VY is the optimal solution of the criterion

model (5) at the time periodt’ € {1,2,...,t}. Now
*t — _t’ — !

setting A = {’1 E=tandat =154 E50 e gee
ALl af t#t
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that (/T, &q, 0, ...,&m) is a feasible solution of MOLP
model of (6) and this contradicts with weak efficiency of
(/1, ay, ay, ...,c?m) since  17(4, @1, &y, oo, Tpy) <
17(A, @y, @z, ..., Ap).0

One of the main factors in the potential of the production is
the production size. This issue is dealt with by the returns
to scale concept in the DEA and inverse DEA modelling.
There is a high potential for production in the increasing
returns to scale area, and the manager should suggest
scaling up. The constant returns to scale area is a vital and
important area since it is some sort of boundary between
increasing and decreasing returns to scale areas. In the area
of decreasing returns to scale wise managers should be
careful of the production scale of the firm, and shrinking
the scale of production may be beneficial for the firm. The
proposed models (3)-(6) provide the possibility of
considering any type of returns to scale in the case of the
input-output estimation, based on the characteristics of the
production technology in each period. This helps decision
makers in using the potential of increasing production and
saving resources, considering the scale opportunities in
each period. MOLP models are well-known for having
alternative efficient solutions, and different methods are
presented for solving these models in the literature, see e.g.,
(Steuer, 1986) for more details on the solving method. One
may use the weighted sum method for solving MOLP
model (6), which yields the following model:

t

m m
n -3 333 w0
t=1 i=1 t=1 i=1
n

zljyﬁj = yrto + Ayrfo = .Brto; 1<r<s,t
Jj=1

Aixf < 605(xf, +Axf); 1< i<m,t

=12, ..t (7

=12, ..,
At et

Theorem3. The MOLP model (6) requires less input
compared with the MOLP model of (3) over time period of
t € {1,2, ..., t} for producing a given total output level and
preserving the efficiency score of DMU, over a given
period.

Proof. Assume a given expected output level of Bf, =
yi, + Ayt, that needs to be produced with current
efficiency scores over time. The required input level using
the MOLP model (3) is Yi—; af = Yi_; x!, + Axt. Note
that this model needs to be solve t times regarding to t =
1,2,..,t to find the required input level. Now let
(1, a%),= 1,2, ..., tis the weak efficient solution of MOLP
(3) at each time period of=1,2,..,t. This suggests
(/T aq, Ay, ... &m) as afeasible solution of MOLP model
(6), where I = A} and @ = af are getting from the weak
efficient solutlon of MOLP (3) foreacht = 1,2, ..., t. This

implies (X, &, &, ..., 0n) <#
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(A, @, @, ..., 8 ) where  (%,84,8, ...,
efficient solution of MOLP model (6).

For long-run policy making and planning, if the decision
maker is able, then he may pool all perturbed inputs of a
specific DMU over all time periods and then use the
following model to decide about the required input level,
producible output level, and also the optimal time period
for each input consumption and output production.

AT (ot ot t
Min 1" (a3, as3,, ..., a5)

_ 4T

=1 (xlo + Axlo'xZo
me + Ame’)

¢

_ § 1 1 E 2

= () x,+Ax;, Xio
t=1

+ Ax?, Z xfo + Axlf)

t=1

n
Z/l xf; < 05(xf, +0xf); 1<i<m @)
J:

dm) is weak

Z Yr] 3’1EO+A3’1E0=Brto; 1<r<s

C Se-Ys
t=1 t=1
At et

In fact, the above model provides the possibility of
consuming some inputs from one period of time for another
period of time. This makes more flexibility of input
consumption for producing the expected output. However,
model (8) does not necessarily guarantee the expected
output of each time period, but the total produced output is
guaranteed with minimum input consumption. It is also
important to point out that, like the MOLP model (6), the
current efficiency of all units is guaranteed to be
unchanged. The proof of this statement is straightforward
and is ignored. If we consider an inter-temporal structure
for the problem, we get the input-oriented INDEA model of
(Jahanshahloo et al., 2015) as a special case of our model.
This means considering a general initial stuck input and a
terminal stuck input and adding relative constraints to our
model as follows:

Z}e])' Z1.'+T > ZT+T

2161/1 Z]T 1 SLT 1

Lot =2 25" + X pg

Po = Zo

where Z].T‘lis the initial stuck and ij+T is the terminal

stuck of j-th DMU. Another important setting that makes
the model of (Jahanshahloo et al., 2015) a special case of
our model is that we need to consider a special case of
for the intensity variable our model to the model of
(Jahanshahloo et al., 2015). In fact, a unique set of intensity
variables for all time periods is considered by
(Jahanshahloo et al., 2015). This means a unique peer
analysis, a unique target setting, etc., for all periods, which
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seems a bit strict. However, we assume a separate intensity
variable for each time period which makes our model a
generalized model in this sense.

4, Output-oriented multi-period INDEA

In the literature of the INDEA, one may ask different
questions, such as if the input level of a specific DMU
perturbs to a certain level, then how much output should
we expect to be produced at the current efficiency level.
This may be called an output-oriented INDEA problem.
This section aims to deal with this question over time.
Moreover, this section finds when we should expect the
produced output too. Assume DMU,, for instance, that
perturbs its input level from xf, to af, = x}, + Ax}, x|,
at time period t.

Now the question is how much output should be expected

for the perturbed inputs at the current efficiency level. The
following model aims to achieve this for us.

n Max (ﬁf’ﬁztl""l SF)

z xU < (xw+Axw) 1<i<m
leyr,- 2 @5 (o +8yr) = @ofy; 1<
j=1

©)

<s
A€

, Where ¢} is the optimal value of the following models,
that is, the output efficiency score of DMUj, at the period
of t.

= (10)
Z)ljyﬁj >yl 1<r<s

Aet

Model (9) finds the maximum producible output using
perturbed input in the current efficiency level.

Theoremd. If (2%, B%) is a weak efficient solution of
MOLP model (9), then the new input-output level of
(al, B*) preserve the relative efficiency of DMUj, in the
periodof t = 1,2, ..., t

Proof. It is straightforward to follow the proof of Theorem
1.

Now, considering the whole time period, the following
MOLP model guarantees an unchanged efficiency score of
all DMUs over all periods for a perturbed input level
ofal, = xf, + Ax},:

154

Max 17 (Bf, B%,, ...,ﬁst)t o
= 1T(y10 + Ale'yZO
+ AY30, s Vio + AYio,)
t t

= (Z Vro + By, 2 Vro
t=1 _ t=1

+ Ayf ) ,Z yfo + Ayf)
t=1

(11)

U_(xm+Axm) 1<i<m

Z Yy 2 0o + AYF) = @bBf 1<

<s
e

The above model not only finds the required input and
producible output but also determines the optimal time of
input consumption and output production.

Theorem5. Weak efficient solutions of MOLP (11)
preserve the efficiency score DMU, for all periods of t =
1,2,..,t

Proof. It is straightforward, following the proof of
Theorem 2.

The associated linear programming of MOLP model (11)
is also as follows:

=1 r=1 =1 i=1
n
=1

Z yr] 2 (po(yro +Ay )= (poﬂr' l1=<r

xfj < (xf, +Axl-t0); 1<i<mt

=1.2,..,t (12)

<st=12..,t
A1eN

Theorem6. The total produced r-th input level for using
the new input level is Yt_, Bf, = YL_, yi, + Ayt, and the
produced output using the MOLP model (11) is greater
than the produced output level using the MOLP model of
(9) over period of t =1,2,...,t, using a perturbed input
level and preserving the efficiency score of DMU, over the
given period.

Proof. It is straightforward, following the proof of
Theorem 3.

Considering a more flexible situation where the total
expected output is targeted instead of the individual output
level at each period, one may use the following model:
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Max 17 (8%, B%,, ..., B¢ t o
= 1T(Y1o + AY10)3’20
+ AV, 0 Vio + AYio,)
t

t
= (Z Vro + Ay, z Vro
t=1 B t=1
t

+ Ayf ) ,Z yio + Ayf)

t=1

n

t t t. .
Zijij < (xl-o +Axf); 1<i<mt
j=1

=12..,t

(13)

n
leyﬁj > 05 (Vo +AYF) = @SB 1< 7
j=1
<st=1.2,..,t
Y jaf=%1af,1<i<m
AEN, t=12,..,1

Just to remind you that the above model also preserves the
efficiency scores of all DMUs over all periods. The MOLP
model (5.4) focuses on the total input consumption (output
production) in contrast with the MOLP model (11) that
cares about separate input consumption (output
production) of each period of time. However, both models
produce the maximum output level within their own
framework.

5. An Application of Efficiency and Sensitivity
Analysis of Selected Iranian Economic Sectors

This section analyzes the efficiency status of five selected
Iranian economic sectors (agriculture, oil, industry,
transportation and domestic, commercial, and public) as
the basic research units during the period of 2003-2013.
Deeper investigation is done using the proposed models to
have a sensitivity analysis and more structural efficiency
insight of the aforementioned economic sectors within the
period of study. Labor and capital stock are assumed as two
inputs in the analysis, and the value added is considered a
single output. Employed labor is considered the first input
that is found from the Iran Statistical Yearbook (1997-
2014). Capital and net capital stock of each sector are
selected as a proxy of input, which is reported as billion
IRR. The added value of each sector that is output is
extracted from the Statistical Center of Iran. Table 1 reports
the statistical description of the data set.

Table 1

Summary statistics of data
Variable Mean Standard Min Max
name error
Labor 2623270 1525832 118270 | 4404110
Capital 1606084.109 | 2044746575 | 148612 | 12217851
GDP 519960.5 372673 80516.2 | 1589633

The first step of efficiency analysis is done and reported in
table 2 over the time period of the study, assuming constant
returns to scale. As can be seen, the oil industry is the
efficient sector during the study period, and the agriculture
sector is efficient in some years. The last sector, which is
the domestic, commercial, and public sector, has the lowest
efficiency within sectors during the study period.

Table 2
The efficiency score of sectors over period of study
Agricultural QOil Industry Transportation Domestic...

Year 2003 1 1 0.4632 0.5092 0.1871
Year 2004 1 1 0.4535 0.468 0.1831
Year 2005 1 1 0.4382 0.4495 0.1817
Year 2006 1 1 0.4312 0.4249 0.1711
Year 2007 0.9826 1 0.4163 0.3955 0.1467
Year 2008 0.8188 1 0.3862 0.3479 0.1278
Year 2009 0.8654 1 0.4069 0.3613 0.1373
Year 2010 0.8071 1 0.3896 0.3349 0.1308
Year 2011 0.7191 1 0.3842 0.308 0.1152
Year 2012 1 1 0.5 0.4574 0.1572
Year 2013 1 1 0.4715 0.4924 0.1553

In the next part of the analysis, let us consider two sectors:
one efficient and one inefficient, for instance oil sector (S2)
and the domestic, commercial, and public sector (S5).
Assuming the current efficiency level for each sector, let us
consider an increment for the output of each sector and find
the required input level. This analysis is performed
considering a steady increment from 5 to 100 percent, and
the results are reported in Table 3a-3c. Columns report the
required inputs (first input shown by Dx1 and second input
shown by Dx2) associated with the expected output. Rows
are associated with the S2 and S5 during the period from
2003 to 2013.

S5 is found inefficient, meaning it does not use its current
inputs efficiently; thus, it does not require any extra input
to produce up to 30 percent of the output increment in 2003.
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It does not need even extra inputs for producing up to 100
percent output increment in some years, like 2004. It is
expected, given the efficiency score of this sector, which is
0.1831 in 2004, that means 81 percent waste of input on
producing output. This analysis suggests consuming
wasted input for new perturbed output levels. The story for
the second sector (S2), which is the oil sector, and found to
be efficient, is different. It is found relatively efficient,
meaning there is no waste of inputs. This implies extra
input for producing new, increased outputs. This can be
seen in Table 3, which shows the requirement for extra
inputs in almost all periods of study. In the next analysis,
we consider the above investigation for the whole years of
the study period and find interesting results that is reported
in Table 4a-4c. Then provide a comparison between the
classical inverse DEA that considers each period
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separately, with the results of the proposed time-flexible
inverse DEA. For the first scenario, that is, a five percent
extension of output level, if we consider a time-separate
framework, then we need 326939 units of the first input and
69420 units of the second input, and 395659 units of the
inputs generally. In this scenario, if we consider the time-
flexible framework, then we see that we need 1286.323
units of the first input and no extra amount of the second
input.

Observe that the aforementioned expected output level in
the previous analysis needs a lower input level compared
with the previous study, as proved in Theorem 3. It is
important to point out that this fact does not hold for
individual DMUs; for instance, the sector S2 does not
require much input in the previous analysis, but it demands
some inputs using a generalized model over time. This
result is summarized in Table 5. However, the total
required inputs using the generalized INDEA over time do
not exceed the required input level using separate years’
analysis. This is due to the flexibility of the proposed
models that provides the possibility of consuming inputs in
all years and then finds the optimal time and optimal
amount of consuming inputs for producing the targeted
output. Remember that the optimal time and optimal
amount are associated with the minimum level of inputs for
producing the targeted output. The first and second rows of
Table 5 are associated with the sum of the required input
considering separate years, and the third and fourth rows
are associated with the total required input using the
generalized model. Observe that the latter is not greater
than the former. This means we need fewer inputs using a
generalized model compared with the separate models for
producing the expected output level. In short, we observe
that the proposed models provide a more flexible
framework for producing a targeted output. This
framework provides the possibility of identifying and
preventing any excess of inputs from the beginning of the
period in each year, and consequently prevents any waste
of inputs that may occur in each year and may transfer to
the next year. It requires fewer inputs compared with the
separate year investigation and thus yields savings in inputs
that are used for producing desired outputs.

Regarding the nature of the inverse DEA methodology, it
can be used as a proxy for the sensitivity analysis in the
efficiency analysis of production units. It helps decision
makers in finding how sensitive the resources (inputs) are
for the production lines and how sensitive the production is
to consuming resources. This provides vital information on
the prioritization of inputs and outputs for decision makers.
If a resource is sensitive in case of its effects on the
performance of production units, then it should be given
high priority of attention by decision makers. If an output
is sensitive and plays an important role for the firm, then it
needs more consideration to prevent any possible potential
loss of the firm in the market. Beyond that, inverse DEA
methods can be used as a complementary tool for
performance measurement by managers and policy makers.
It helps managers design the optimal production lines. If a
manager is interested in assigning available resources to
production units, then the inverse DEA plays a core role.
This role becomes more important when the resource
assignment should be done over time, and the proposed
models in the current paper help decision makers and
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managers with this task. On the output side, if a manager
desires to produce a specific amount of output, then the
inverse DEA models are a powerful method for such
planning, optimally. The proposed models in the current
paper help managers in designing an optimal production
plan over a period of time. They help decision-makers in
reaching targets by consuming the minimum amount of
resources.

The proposed models are based on the available crisp data.
However, in many real-world problems, there is
uncertainty or incomplete information on the data. Thus,
one of the potential areas for future study is working on the
uncertainty issue in the inverse DEA problem over time.
We consider proportional and radial measurements in all
processes of input-output estimation in the current paper.
One potential future line for further investigation is dealing
with non-radial measurements within the concept.
However, the proposed models are generalized in terms of
the returns to scale, and any type of returns to scale may
assumed for the input-output estimation process. The
underlying production technology for the proposed models
in the current paper is a straight production technology line.
In case of any production and technological complexity,
the proposed models need modification, which is left for
future research.

Table 3a
INDEA results for separate years

5 percent increment 10 percent increment

Dx1 Dx2 Dx1 Dx2
$2(2003) 11291.1 | 59135 22582.2 11827
S5(2003) 0 0 0 0
$2(2004) 0 0 26314.2 11899.5
S5(2004) 0 0 0 0
$2(2005) 15215.05 | 6105.05 30430.1 12210.1
S5(2005) 0 0 0 0
$2(2006) 16814.5 | 6227 33629 12454
S5(2006) 0 0 0 0
$2(2007) 18665.75 | 6289.4 37331.5 12578.8
S5(2007) 0 0 0 0
$2(2008) 21270.25 | 6347.3 42540.5 12694.6
S5(2008) 0 0 0 0
$2(2009) 23854.25 | 6383.95 47708.5 12767.9
S5(2009) 0 0 4548398 | 0
$2(2010) 25408.05 | 6697.7 50816.1 13395.4
S5(2010) 0 0 0 0
S2(2011) 28838.7 7543.9 57677.4 15087.8
S5(2011) 0 0 0 0
$2(2012) 61599.15 | 8449.15 123198.3 | 16898.3
S5(2012) 8182.716 | 0 381522.7 | O
$2(2013) 95099.5 | 9463.05 190199 18926.1
S5(2013) 0 0 0 0

Table 3b.

INDEA results for separate years

15 percent increment | 30 percent increment

Dx1 Dx2 Dx1 Dx2
$2(2003) 33873.3 177405 | 67746.6 35481
S5(2003) 0 0 37490.26 0
S2(2004) 39471.3 17849.25 | 78942.6 35698.5
S5(2004) 0 0 0 0
$2(2005) 45645.15 | 18315.15 | 91290.3 36630.3
S5(2005) 0 0 0 0
$2(2006) 50443.5 18681 100887 37362
S5(2006) 0 0 0 0
$2(2007) 55997.25 | 18868.2 111994.5 37736.4
$5(2007) 0 0 0 0
$2(2008) 63810.75 | 19041.9 127621.5 38083.8
S5(2008) 0 0 0 0
$2(2009) 71562.75 | 19151.85 | 143125.5 38303.7
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S5(2009) 2054759 | 0 685451.6 0
$2(2010) 76224.15 | 20093.1 | 152448.3 40186.2
S5(2010) 0 0 444450.5 0
S2(2011) 86516.1 | 22631.7 | 173032.2 45263.4
S5(2011) 0 0 0 0
S2(2012) 184797.5 | 25347.45 | 369594.9 50694.9
S5(2012) 754862.6 | O 1874882 0
S2(2013) 285298.5 | 28389.15 | 570597 56778.3
S5(2013) 120017 0 1729304 0
Table 3c
INDEA results for separate years
50 percent | 75 percent | 100 percent
increment increment increment
Dx1 Dx2 Dx1 Dx2 Dx1 Dx2
S2(200 | 11291. | 5913. | 22582. | 11827 | 33873. | 17740.
3) 1 5 2 3 5
S5(200 | O 0 0 0 0 0
3)
S2(200 | O 0 26314. | 11899 | 39471. | 17849.
4) 2 5 3 25
S5(200 | O 0 0 0 0 0
4)
S2(200 | 15215. | 6105. | 30430. | 12210 | 45645. | 18315.
5) 05 05 1 A 15 15
S5(200 | O 0 0 0 0 0
5)
S2(200 | 16814. | 6227 | 33629 | 12454 | 50443. | 18681
6) 5 5
S5(200 | O 0 0 0 0 0
6)
S2(200 | 18665. | 6289. | 37331. | 12578 | 55997. | 18868
7) 75 4 5 8 25 2
S5(200 | O 0 0 0 0 0
7
S2(200 | 21270. | 6347. | 42540. | 12694 | 63810. | 19041
8) 25 3 5 6 75 9
S5(200 | O 0 0 0 0 0
8)
S2(200 | 23854. | 6383. | 47708 12767 | 71562. | 19151
9) 25 95 5 9 75 85
S5(200 | O 0 45483. | 0 20547 | O
9) 98 5.9
S2(201 | 25408. | 6697. | 50816. | 13395 | 76224. | 20093
0) 05 7 1 4 15 1
S5(201 | O 0 0 0 0 0
0)
S2(201 | 28838. | 7543. | 57677. | 15087 | 86516. | 22631
1) 7 9 4 8 1 7
S5(201 | O 0 0 0 0 0
1)
S2(201 | 61599. | 8449. | 12319 | 16898 | 18479 | 25347
2) 15 15 8.3 3 7.5 45
S5(201 | 8182.7 | O 38152 |0 75486 | O
2) 16 27 2.6
S2(201 | 95099. | 9463. | 19019 | 18926 | 28529 | 28389.
3) 5 05 9 1 85 15
S5(201 | 38750 | O 65571 | O 92393 | O
3) 20 66 11
Table 4a.
INDEA results using generalized model over time
5 percent increment 10 percent increment
Dx1 Dx2 Dx1 Dx2
$2(2003) 0 0 22582.2 11827
S5(2003) 0 0 0 0
52(2004) 0 0 26314.2 11899.5
S5(2004) 0 0 0 0
S2(2005) 0 0 30430.1 12210.1
S5(2005) 0 0 0 0
$2(2006) 0 0 33629 12454
S5(2006) 0 0 0 0
$2(2007) 0 0 373315 12578.8
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S5(2007) 0 0 0 0
S2(2008) 0 0 42540.5 12694.6
S5(2008) 0 0 0 0
$2(2009) 0 0 47708.5 12767.9
S5(2009) 0 0 33377.61 0
$2(2010) 0 0 50816.1 13395.4
S5(2010) 0 0 0 0
S2(2011) 0 0 57677.4 15087.8
S5(2011) 0 0 0 0
S2(2012) 0 0 123198.3 16898.3
S5(2012) 1286.32 | 0 381522.7 0
S2(2013) 0 0 190199 18926.1
S5(2013) 0 0 0 0
Table 4b.

INDEA results using generalized model over time

15 percent increment 30 percent increment
Dx1 Dx2 Dx1 Dx2

$2(2003) 22582.2 11827 22582.2 11827
S5(2003) 0 0 0 0
S2(2004) 26314.2 11899.5 26314.2 11899.5
S5(2004) 0 0 0 0
$2(2005) 30430.1 12210.1 30430.1 12210.1
S5(2005) 0 0 0 0
S2(2006) 33629 12454 33629 12454
S5(2006) 0 0 0 0
S2(2007) 55997.25 | 18868.2 111994.5 37736.4
S5(2007) 0 0 0 0
$2(2008) 63810.75 | 19041.9 127621.5 38083.8
S5(2008) 0 0 0 0
$2(2009) 71562.75 | 19151.85 | 1431255 38303.7
S5(2009) 0 0 503006.4 0
$2(2010) 76224.15 | 20093.1 152448.3 40186.2
S5(2010) 0 0 444450.5 0
S2(2011) 86516.1 22631.7 173032.2 45263.4
S5(2011) 0 0 0 0
S2(2012) 184797.5 | 25347.45 | 369594.9 50694.9
S5(2012) 1286.323 | 0 1874882 0
S2(2013) 285298.5 | 28389.15 | 570597 56778.3
S5(2013) 0 0 1729304 0
Table 4c.
INDEA results using generalized model over time

50 percent | 75 percent | 100 percent

increment increment increment

Dx1 Dx2 Dx1 Dx2 Dx1 Dx2
S2(200 | 11291 59135 | 16936 88702. | 22582 1182
3) 1 6. 5 2 70
S5(200 | 21766 0 44287 0 66808 0
3) 1.2 4 8
S2(200 | 13157 59497 | 19735 89246. | 26314 1189
4) 1 .5 6.5 25 2 95
S5(200 | 17852 0 43586 0 69319 0
4) 6.1 0 3.9
S2(200 | 15215 61050 | 22822 91575. | 30430 1221
5) 0.5 .5 5.7 75 1 01
S5(200 | 18491. | O 28091 0 54333 0
5) 16 2.4 35
S2(200 | 16814 62270 | 25221 93405 33629 1245
6) 5 7.5 0 40
S5(200 | 32650. | O 36162 0 69059 0
6) 48 3.6 6.6
S2(200 | 18665 62894 | 27998 94341 37331 1257
7) 75 6.3 5 88
S5(200 | O 0 10648 0 48526 0
7) 1.6 75
S2(200 | 21270 63473 | 31905 95209. | 42540 1269
8) 2.5 3.7 5 5 46
S5(200 | O 0 50106 0 10482 0
8) 8.7 17
S2(200 | 23854 63839 | 35781 95759. | 47708 1276
9) 2.5 .5 3.8 25 5 79
S5(200 | 97263 0 15596 0 21467 0
9) 5.3 71 07
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S2(201 | 25408 66977 | 38112 10046 50816 1339
0) 0.5 0.7 5.5 1 54
S5(201 | 11104 0 19429 0 27753 0
0) 35 17 98
S2(201 | 28838 75439 | 43258 11315 57677 1508
1) 7 0.5 8.5 4 78
S5(201 | O 0 20310 0 94757 0
1) 2.9 1.9
S2(201 | 61599 84491 | 92398 12673 12319 1689
2) 15 5 7.3 7.3 83 83
S5(201 | 33682 0 52349 0 71016 0
2) 42 42 42
S2(201 | 95099 94630 | 14264 14194 19019 1892
3) 5 5 93 5.8 90 61
S5(201 | 38750 0 65571 0 92393 0
3) 20 66 11

Table 5

Comparison INDEA for separate years and the generalized INDEA
over time

5 percent increment 10 percent increment
Dx1 Dx2 Dx1 Dx2
Sum  of | 318056.3 69420 662426.8 150739.5
Dx1 of S2
Sum  of | 8182.716 0 427006.6 0
Dx1 of S5
S2(2004) 0 0 662426.8 150739.5
S5(2004) 1286.323 0 414900.3 0
15 percent 30 percent
increment increment
Sum  of | 993640.2 226109.2 | 1987280 452218.5
Dx1 of S2
Sum  of | 1080356 0 4771579 0
Dx1 of S5
S2(2004) 937162.4 201913.9 | 1761369 355437.3
S5(2004) 1286.323 0 4551644 0
50 percent 75 percent
increment increment
Sum  of | 3312134 753697.5 | 4968201 1130546
Dx1 of S2
Sum  of | 10126446 0 18192327 0
Dx1 of S5
S2(2004) 3312134 753697.5 | 4968201 1130546
S5(2004) 9773662 0 17626620 0
100 percent
increment
Sum  of | 6624268 1507395
Dx1 of S2
Sum of | 27117958 0
Dx1 of S5
S2(2004) 6624268 1507395
S5(2004) 26339327 0

6. Conclusion

INDEA models like classical DEA models have been
developed and widely used over the last two decades.
Dealing with the data over time and analyzing the
efficiency is an important concept that needs more
theoretical attention. The current paper deals with the time-
dependent INDEA and proposes a generalized model that is
capable of not only the input-output estimation but also
optimal time determination in terms of input consumption
and output production. As mentioned before, the proposed
model has a generalized structure, and different theoretical
extensions of INDEA models that are proposed so far can
be considered in its generalized over-time framework.
Although we had the data set in as crisp form but there are
many real-world problems involved with uncertainty that
should be considered in the process of input or output
estimation. It is a well-known fact that the source of
uncertainty may be different from case to case. As long as
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we have information about the source of uncertainty, we
should consider it in the performance assessment process
and input-output estimation.
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