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Abstract 

A Crew Scheduling Problem (CSP) is a highly complex airline optimization problem, which includes two sub-problems, namely Crew 

Rostering Problem (CRP) and Crew Pairing Problem (CPP). Solving these problems sequentially may not lead to an optimal solution. To 

overcome this shortcoming, the present study introduces a new bi-objective formulation for the integrating CPP and CRP by considering 

the reserve crew with the objectives of crew cost minimization and crew reserve maximization. The integrated model generates and assigns 

pairings to a group of crew members by taking into account the rules and regulations about employing the manpower (i.e., crew member) 

and crew reservation in order to reduce flight delays or even cancellations due to the unexpected disruptions. An Ant Colony Optimization 

(ACO) algorithm is used to solve the considered problem. To justify the efficiency of this proposed algorithm in solving the presented 

model, different test problems are generated and solved by ACO and GAMS. The computational results indicate that solutions obtained by 

the proposed ACO algorithm have a 2.57% gap with the optimal solutions reported by GAMS as optimization software on average and 

significantly less CPU time for small-sized problems. Also, ACO obtains better solutions in significantly shorter CPU time for large-sized 

problems. The results indicate the efficient performance of the proposed algorithm in solving the given problems.  

Keywords:  Scheduling; Crew Planning; Multiple objective programming; Combinatorial optimization; Air transport; Meta-heuristics. 

Introduction 

 

1. Introduction 

The scheduling problem includes various types of 

problems in production and service industries in which a 

timetable for resources is determined. In production 

systems, one of the main problems is determination of 

sequence and schedule of jobs operations on different 

machines. For the applications of scheduling problem in 

production systems, see Enayati et al., (2021) and 

Dehnavi-Arani et al. (2019). In service industries, the 

scheduling problem plays an important role in efficient 

usage of manpower and resources (Rashidi komijan et al., 

2021a). This paper addresses crew scheduling problem 

which is a good example of a manpower scheduling 

problem. More specifically, a crew is a substantial airline 

resource that requires planning. A Crew Scheduling 

Problem (CSP) is the process of assigning flights to a set 

of crew members to minimize the cost. It is usually 

divided into two sub-problems known as the Crew 

Rostering Problem (CRP) and the Crew Pairing Problem 

(CPP). In the CPP, pairings starting from and ending at 

the same crew base(s) are generated in such a way that all 

the flights are covered with the minimum cost. Some rules 

about employing the manpower (i.e., crew member) 

should be considered during this procedure. It is worth 

noting that each pairing consists of consecutive duty days, 

and each duty day includes consecutive flights 

(Ahmadbeygi et al., 2009). In the CRP, the generated 

pairings as well as vacations and educational courses are 

assigned to a set of crew members based on some other 

rules (Kohl and Karisch, 2004). 

Moreover, disruptions (e.g., crew unavailability, bad 

weather conditions, and air traffic) are inevitable on the 

operation day. These phenomena particularly affect crew 

scheduling and cause flight delays or even cancelations 

(Bazargan, 2016). As crew scheduling is performed one 

month before the operation day, unexpected disruptions 

may increase the operational crew cost up to 5%. This 

cost can be several million dollars in an airline, showing 

the importance of crew cost in airline expenditures 

(Shebalov et al., 2006). Fortunately, crew cost is 

controllable (Aggarwal et al., 2018), but requires very 

complex planning (Barnhart, 2008; Klabjan et al., 2001). 

The crew cost could be reduced by considering the 

reserve crew. In other words, in the case of crew 

unavailability, he/she can be replaced with an alternative 

crew member. Otherwise, flight delays or even 

cancelations will significantly increase, which may 

require expensive recovery actions.  

*Corresponding author Email address: rashidi@azad.ac.ir 
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In this study, the integrated crew pairing and rostering 

problem is investigated by considering reserve crew 

teams. A few main contributions are as follows: 

• This study integrates the CPP and the CRP in a 

bi-objective formulation. The integrated problem leads to 

better solutions compare to solving two separate problems 

sequentially. More specifically, the proposed model can 

simultaneously generate and assign pairings to several 

crew members based on some rules and regulations about 

the CPP and the CRP. 

• In the integrated problem, the reserve crew and 

related constraints are considered. This can significantly 

reduce flight delays or even cancelations related to crew 

unavailability. 

The crew is generally known as the cockpit and cabin 

crew members with different assignments. The focus of 

this research is only on cockpit crew scheduling.  

The rest of the paper is structured as follows. In Section 2, 

the literature is reviewed. The problem definition and 

rules for integrating CPP and CRP by considering the 

reserve crew issue are presented in Section 3. Section 4 is 

dedicated to the mathematical model. In Section 5, the 

proposed meta-heuristic algorithm is introduced. Finally, 

Section 6 presents the computational results.  

2. Literature Review 

Usually, the CPP is formulated as a set covering or 

partitioning problem. Whereas each flight in the set 

covering problem is covered at least once, each flight in 

the set partitioning problem is covered by only one of the 

selected pairings. The CPP has received considerable 

research attention over the past years. Ahmadbeygi et al. 

(2009) introduced a set partitioning formulation of the 

CPP as an integer mathematical model and utilized the 

branch-and-bound (B&B) algorithm as their solution 

approach. Zeren and Ozkol (2012) applied a new operator 

(called perturbation) of a Genetic Algorithm (GA) to 

solve the CPP. Aydemir-Karadag et al. (2013) formulated 

the CPP as a set partitioning model and compared the 

results of three different algorithms (i.e., Knowledge 

Based Random Algorithm (KBRA), Hybrid Algorithm 

(HA), and Branch-and-Price (B&P)) as the solution 

approaches. In another study, Erdogan et al. (2015) 

formulated the CPP as a set partitioning problem and 

solved a large-scale problem using a Large Neighborhood 

Search (LNS) heuristic algorithm. Zeren and Ozkol 

(2016) addressed the CPP as a set partitioning model and 

developed a new column generation method with a 

pricing network design and a pricing elimination 

heuristic. Quesnel et al. (2017) considered the CPP as a 

set partitioning model with base constraints related to 

limiting the total working time at each crew base. They 

designed a novel branching method (i.e., retrospective 

branching) to solve the problem. Haouari et al. (2019) 

proposed a nonlinear model for optimization of the daily 

CPP, which could be solved in polynomial time by 

commercial MIP solvers. They linearized the formulation 

and compared the obtained results with non-linearized 

ones. Quesnel et al. (2020) proposed a new variant of the 

CPP, considered crew preferences to improve the CRP 

solutions in sequential order, and solved it using the 

column generation method. 

Unlike the CPP, the CRP has drawn less attention from 

researchers. Different objective functions have been 

considered for the CRP in the previous studies. Maenhout 

and Vanhoucke (2010) formulated the CRP to generate a 

fair schedule for the crew as well as consider crew 

preferences and solved it using a Scatter Search (SS) 

algorithm. Santosa et al. (2010) addressed the CRP to set 

an equal number of flying days and off days among crew 

members and used Differential Evolution (DE) algorithm 

as the solution method. Hadianti et al. (2013) formulated a 

non-linear programming model for the CRP to minimize 

the deviation of a crew flying time from the ideal time and 

applied Simulated Annealing (SA) algorithm to solve the 

considered problem. De Armas et al. (2017) used a multi-

start randomized heuristic algorithm as the solution 

approach for the CRP to balance crew workload. Doi et 

al. (2018) considered the CRP to set fair working time and 

solved it using a two-level decomposition-based 

algorithm. 

A few studies have applied different solution 

methodologies to solve the integrated crew pairing and 

rostering problem (i.e., integrated CPP and CRP). 

Ozdemir and Mohan (2001) used a GA and specified its 

advantages in comparison to the previous methods in 

terms of cost function and CPU time. In another study, 

Deng and Lin (2011) applied the Ant Colony 

Optimization (ACO) algorithm to solve the integrated 

problem and showed its superiority to a GA. Moreover, 

Saddoune et al. (2012) developed a new algorithm by 

combining Column Generation and dynamic constraint 

aggregation algorithm to solve the integrated problem. 

Their findings indicated that the applied methodology 

could lead to cost savings in comparison to sequential 

order solving. Finally, Azadeh et al. (2013) solved the 

integrated crew pairing and rostering problem by Particle 

Swarm Optimization (PSO) algorithm and confirmed its 

better performance to ACO and GA.  

Among studies focused on reserve crew scheduling, 

Sohoni et al. (2006) introduced a model, compared its 

results with those of another formulation, and showed its 

effectiveness in terms of decreasing the number of 

uncovered trips and reducing reserve availability. Bayliss 

et al. (2012) developed a probabilistic mathematical 

model for a reserve crew scheduling problem and 

suggested various solution approaches. The computational 

results showed a better performance of some algorithms 

(e.g., Variable Neighborhood Search (VNS) and Tabu 

Search (TS)) in terms of the objective functions and CPU 

time to the enumeration algorithm on some test problems. 

Finally, Bayliss et al. (2017) presented different 

simulation scenario-based approaches to schedule the 

reserve crew teams and compared the results in terms of 

the minimized overall disruptions on duties. 
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Recently, Shafipour-Omran et al. (2021) modeled the 

problem of crew pairing by considering the risk of 

COVID-19 in terms of minimizing daily flights as well as 

elapsed time. The results obtained by their solution 

approach called GA were better than GAMS, the exact 

method, for all real small and medium sized problems 

used in this study. Moreover, Rashidi Komijan et al. 

(2021b) presented an integrated model for the crew 

scheduling and fleet assignment problems and solved it by 

two meta-heuristic algorithm called Vibration Damping 

Optimization (VDO) and PSO. They indicated that VDO 

had better performance compared to PSO for all generated 

test problems. In another recent study, Saemi et al. (2021) 

presented a new mathematical model for the integrated 

problem by considering one or more off days in a pairing, 

which could provide the opportunities for the crew 

members to perform their preferred activities. They 

solved the problem by two meta-heuristic algorithms 

namely, GA and PSO. In the recent work, Saemi et al. 

(2022) presented a new mathematical formulation for the 

integrated problem and compered the results obtained by 

a meta-heuristic algorithm (i.e., ACO) for the integrated 

problem and sequential solving approach. Their findings 

indicated that solving the integrated problem cannot be 

much more difficult than solving the sequential approach 

and also it leads to solutions with significant lower cost 

and minimum number of assigned crew members.  

In this study, a linear mathematical model for the 

integrated crew pairing and rostering problem by 

considering the reserve crew issue is presented. The 

integration of the CPP and the CRP can generate 

appropriate and accurate schedules for the crew in 

comparison to the sequentially solving two separate 

problems. On the other hand, considering the reserve crew 

can reduce flight delays or even cancelations, resulting in 

significant cost saving. A meta-heuristic algorithm based 

on ACO is applied to solve the considered problem. The 

results obtained by this proposed algorithm are compared 

with those results obtained by an exact method (i.e., 

GAMS) on some small-sized problems and its 

performance in solving the integrated problem is 

evaluated. 

 

 
Fig.  1. Graphical Abstract 

3. Problem Definition 

The CSP includes two sub-problems, called CPP and 

CRP. The CPP is the process of generating a minimum 

cost set of pairings to cover all flights. The CRP is the 

task of assigning the previously generated pairings to a set 

of crew members considering some rules about employing 

the manpower (i.e., crew member). This study integrates 

these sub-problems into a single mathematical model. The 

main advantage of this integration is to provide accurate 

and appropriate work schedules for the existing crew 

members in comparison with sequential order models. 

More especially, the proposed formulation includes 

variables to generate and assign pairings to several crew 

members simultaneously. Furthermore, the suggested 

model is based on the following general rules about the 

CPP and the CRP: 

• Each flight should be covered by only one of the 

existing crew members. 

• Each pairing should begin/end from/to the same 

crew base. 

• Each pairing includes at most two consecutive 

duty days. 

• Each duty day consists of consecutive flights, in 

which the destination of each flight is the departure of the 

next one. 

• A minimum sit time between two sequential 

flights on a duty day must be considered for the crew.  

• A minimum layover time between two sequential 

duties in a pairing must be considered for the crew. 

• Flying hours during each duty must be restricted 

by flying time and elapsed time, respectively. Also, a 

similar limitation should be considered for the total flying 

time duration in a pairing. It should be noted that the term 

“elapsed time” means working day time and includes not 

only the flying hours on a day but also the sit time 

between the consecutive daily flights assigned to a crew 

member.  

The integrated problem is considered by several 

additional assumptions for the reserve crew teams based 

on related rules. These assumptions result in fewer flight 

delays or even cancelations due to the crew unavailability 

on the operation day. In other words, the crew scheduling 

is performed in such a way that when an assigned crew 

member cannot operate a flight, an alternative crew can 

be replaced. Moreover, this can also significantly result in 

more cost savings in the airline industry. Furthermore, 

general rules about the reserve crew policies are as 

follows: 

A crew member can be reserved for a flight, 

• If the minimum sit time period is considered 

between this flight and his/her previously assigned flight 

on the same day. 

• If the minimum layover time period is 

considered between this flight and his/her previously 

assigned flight on the day before. 

• If the total flying time is considered for both a 

duty day and a pairing. 
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• If both the reserve and the assigned crew 

members end their pairings on the similar day. This 

assumption guarantees that both assigned and reserve 

crew members can continue their original works’ 

schedules (i.e., next pairings) without any interruptions. 

    • If both the reserve and the assigned crew 

members have the same home base. 

• If the reserve crew’s flight departure time starts 

earlier than his/her assigned flight according to schedule. 

It should be noted that the CSP is developed several days 

before the operation day to inform the existing crew 

members about their duty and off days. Therefore, it is 

assumed that they can potentially be reserved for the 

flights not assigned to them on only their duty days. 

The objective functions of the model tend to maximize the 

reserve crew and minimize the total cost, including the 

minimum guaranteed pay, additional pay for the extra 

flying hours on a duty, hoteling cost, and the deviation 

cost of the number of the duty days assigned to a crew 

member from an ideal one.  

4. Problem Formulation 

In this section, a novel mathematical model for the 

integrated crew pairing and rostering problem is 

formulated by considering the reserve crew issue. Sets, 

indices, parameters, and decision variables are as follows: 

 

Sets and indices: 

   Set of all crew members (indexed by  ). 

  Set of all flights (indexed by  ). 

  Set of all days of planning horizon (indexed by 

 ). 

       Set of all flights on day d 

           Set of flight rounds (indexed by  ) considering 

that a crew member starts his/her duty day by 

flight i and continues it by flight j. For flights i 

and flight j, n equals 1 and 2, respectively.                 

     Set of all flights that originate from the home 

base of crew i. 

      Set of all flights that terminate to the home 

base of crew i.  

           Set of all consecutive flight pairs, in which the 

destination of the first flight is the   departure 

of the next one. 

        Set of all crew members have the same home 

base as crew i 
 

Parameters: 

      Departure time of flight   on day d 

         Arrival time of flight   on day d 

             Minimum rest time required between 

two sequential flights on a single duty 

day  

            Minimum rest time required between 

two sequential duty days in a pairing 

          Maximum flying time in a duty 

          Maximum elapsed time in a duty 

          Maximum flying time in a pairing 

GH Minimum required flying time  

             Minimum guaranteed payment for a duty 

             Crew cost for each flying hour more than 

minimum required time  

             Hoteling cost  

    Penalty cost for the deviation of the number of 

duty days assigned to a crew member from an 

ideal one 

  Ideal number of duty days which can be 

assigned to a crew member 

           A big number 
 

Decision variables: 

         1 if flight f on day d is assigned to crew i in 

flight round n; 0, otherwise  

           1 if crew i is reserved for flight f on day d in 

flight round n; 0, otherwise  

           1 if crew i ends his/her duty day d by the flight 

f ; 0, otherwise  

         1 if flight f is handled after flight    on day d 

by crew i; 0, otherwise 

             1 if duty day d is working day of crew i; 0, 

otherwise  

              Flying hours of crew i on day d exceeding the 

minimum required time (GH) 

    Number of duty days assigned to crew member 

  in the planning horizon 

The objective function and constraints are as follows: 
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The objective function (1) aims to maximize the number 

of reserved crew members. The objective function (2) 

includes four terms: crew cost, additional pay for flying 

times exceeding the required time for each crew member 

on duty days, hoteling cost and the deviation cost of the 

number of the duty days assigned to a crew member from 

an ideal one. Constraint (3) ensures that each pairing lasts 

for at most two consecutive duty days. Relation (4) states 

that no flight must be assigned to a crew member on 

his/her off day (M=number of flights on day d). Formula 

(5) ensures each flight can be assigned to any of the 

existing crew members. Based on Constraint (6), each 

crew member can cover at most one flight in the round. 

Constraint (7) demonstrates the last flight of each crew 

member on his/her duty day (M=1). Inequalities (8) and 

(9) are about the minimum sit time and minimum rest 

time, respectively (                    

                 . Constraint (10) restricts the total 

flying time on a duty day for each crew member. 

Constraint (13) is about elapsed time for each crew 

member. Constraint (14) limits each crew member’s total 

flying time in his/her pairing (M= duration of all flights 

on days d, and d+1).  

Inequalities (15) and (16) state that each pairing starts by 

a flight originating from the crew base and ends by 

another flight terminating to the same crew base (M=1). 

Constraint (17) ensures that a crew member should finish 

his/her duty day by one of his/her assigned flights. 

Constraints (18) and (19) ensure the integrity of flights 

assigned to a crew member (M=1). Equation (20) shows 

each flight must be assigned to only one of the existing 

crew members. Constraint (21) ensures that at least one 

flight must be assigned to each crew member. Constraint 

(22) shows the extra flying hour on a duty day, which is 

considered for the additional payment to the crew. 

Constraint (23) shows the number of duty days assigned 

to each crew member in the planning horizon. Constraint 

(24) implies that a crew member can be reserved for a 

flight only if the flight has not been assigned to him/her 

according to the schedule.  

Constraints (25) and (26) state that a crew member can be 

reserved for a flight originating from city j while he/she 

has previously arrived there on either the same duty day 

or a day before, respectively (M=1). Constraint (27) 

indicates the minimum sit time for a crew member 

between two flights for which he/she is considered as a 

reserve crew and his/her previously assigned flight on the 

same day (                  . Constraint (28) 

indicates the minimum rest time for a crew member 

between two flights for which he/she is considered as a 

reserve crew and his/her previously assigned flight on the 

day before (                  ). Constraint (29) 

ensures that a reserve crew should start his/her pairing by 

the flight originating from his/her home base. Constraint 

(30) ensures that a reserve crew’s flight departure time 

should start earlier than his/her assigned flight according 

to the schedule          . Constraints (31) and (32) 

ensure that both the reserve and the assigned crew to a 

flight should end their pairings on the same day (M=2). 

Constraint (33) implies that a crew member cannot be 
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reserved for any flight on his/her off days. Constraints 

(34) and (35) show that the reserve crew’s total flying 

time should be limited on his/her duty day and pairing, 

respectively (M= duration of all flights on days d, M= 

duration of all flights on days d and d+1). Finally, 

constraint (36) ensures both the reserve and the assigned 

crew to a flight must have the same home base. Since the 

proposed model includes a non-linearized absolute value 

term in the objective function, two non-negative variables 

(     ) are defined and used for linearization of the 

model. Consequently, this term is replaced by Equation 

(37) and the additional related Constraint (38) is added to 

the model. Relation (39) shows the types of variables used 

in this study. 

5. Solving Approach 

Meta-heuristic algorithms can efficiently solve NP-hard 

problems by generating appropriate solutions in a 

reasonable time. In the current study, the ACO algorithm, 

as a major meta-heuristic algorithm, is used to solve the 

integrated crew pairing and rostering problem by 

considering the reserve crew teams. In this section, the 

proposed algorithm is introduced. 

5.1. Ant colony optimization 

ACO is swarm intelligence, a population-based, meta-

heuristic algorithm designed by Dorigo et al. (1996) 

according to the behavior of the ants. Ants have a unique 

behavior in finding food sources outside their nests by 

choosing the shortest paths. They start this procedure by 

randomly depositing a chemical substance called 

pheromone trail while constructing their paths. The 

pheromone amount deposited on the path depends on the 

path quality; in other words, shorter paths are more likely 

to be selected in the next iterations. If an ant is positioned 

at node i, the following neighborhood node j has the 

following probability to be selected (equation (40)). 

 

    
     

       
 

∑      
       

 
    

                                 

where    is the set of neighborhood nodes connected to 

node i,   the relative importance of the trail, and   the 

relative importance of visibility. Moreover,     indicates 

the number of pheromone trails deposited on edge (i, j), 

and     is the heuristic function obtained by subtracting 

the number of the uncovered flights between flights i and 

j from the number of flights in the planning horizon. 

Next, the pheromone trails are updated so that a fraction 

of them on edge (i, j) is evaporated and the pheromone 

amount related to the path quality is added. 
 

                                   

        
 

       
                             

where   is the evaporation rate,        represents the 

number of pheromone trails on edge (i, j) in iteration t, 

and         is the number of pheromone trails added to 

edge (i, j) in iteration t+1 (equation (41)). The additional 

pheromone trail is directly and inversely proportional to a 

fixed factor called Q and the quality of the tour (       ), 

respectively (Eq.      .  

At the end of each iteration, once the best solution is 

stored, the next iteration begins. This procedure continues 

until no better solution is achieved in the specified time 

period. The pseudo-code of the applied ACO algorithm is 

shown in Algorithm 1. 

To represent the problem, the current study employs the 

flight graph representation, first introduced by Ozdemir 

and Mohan (2001), in which the nodes and arcs represent 

the flights and connections between them, respectively. 

Connecting arcs are assumed between all flight pairs, in 

which the destination of each flight is the departure point 

for the next one. A minimum time period between two 

sequential flights on the same day is required. Also, a 

minimum rest time period between two consecutive 

flights on sequential days is needed. 
 

t=0 and initialize all parameters (i.e.,             ,  ). 

Place all ants, k=1, …,    and initialize pheromone on 

each link; 

Repeat 

     For each ant k=1,… ,    do 

     Construct a path,     
 , 

     End 

     For each link (i, j) do 

     Apply pheromone evaporation, and then update 

pheromone; 

                      

      End 

      t=t+1; 

Until the stopping condition is true; 

Algorithm 1. Pseudo code of ACO 

 

In this study, the flight graph representation is revised 

based on the concept of inseparable flights first 

introduced by Azadeh et al. (2013). Inseparable flights are 

the sets of two flights, which should be assigned to a crew 

member sequentially. Moreover, two types of virtual 

nodes (i.e., initial and final nodes) are considered. The 

number of initial or final nodes is determined based on the 

number of the existing crew bases. If a flight starts from a 

specified crew base, a connecting edge should be 

considered between the flight and its relevant initial node. 

Also, if a flight ends at a specified crew base, a 

connecting edge is assumed between the flight and its 
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relevant final node. On each day, flights are sorted based 

on their departure times, and each ant must take the sorted 

flights. In other words, each ant must start from an initial 

node and pass over some real nodes (i.e., flights) to reach 

a relevant final node. All the selected flights by the ant are 

then removed from the graph, and other ants must cover 

the remaining flights based on the aforementioned 

procedure. This procedure continues until other flights are 

covered. 

5.2. Parameters setting 

The algorithm efficiency depends on the parameters 

design, which was first introduced by Taguchi in the early 

1960s. The ACO parameters are maximum iteration ( ), 

number of ants (  ), evaporation rate ( ), a fixed value 

( ), the importance of pheromone trails ( ), and 

importance of visibility ( ). Each parameter is valued at 

three levels. For example,   is valued as 30, 50, and 70. 

   is valued as 80, 100, and 120. Moreover,     is 

valued as 0.9, 0.95, 0.99.   is valued as 0.5, 0.7, and 0.9. 

Finally,   and   are valued as 2, 3, and 4. Based on the 

Design of Expert (DOE), 27 different scenarios are 

considered, each being run five times. Moreover, the 

mean S/N ratio plots are depicted for the ACO objective 

functions (Figure 2).  
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Fig.  2. Mean S/N ratio plot for each level of factors in ACO 
 

The appropriate value for each parameter is obtained as 

follows:   =50,    =120,     =     , Q=   ,     and  

   . Moreover, it should be noted that the initial 

pheromone is valued as 1 (    ). 

6. Computational Results  

In this study, a set of problem instances extracted from the 

dataset (Kasirzadeh et al., 2017) is used to validate the 

integrated model and evaluate the performance of the 

applied algorithm. Table 1 shows these problems with 

their characteristics. As can be seen, seven test problems 

with different sizes are used. Columns 2-5 show the 

problem inputs including the planning horizon time, the 

number of flights, the number of crew members and the 

number of bases, respectively. The rest of the columns 

show the problem outputs. For example, Columns 6-9 

show the computational results obtained by running the 

proposed model in GAMS software. It should be noted 

that the following single objective function (43) based on 

the LP-metric method is used for the problem. 

 

      
  

    

  
  

     
 

  
       

Where,    and    refer to objective functions of the crew 

reserve and crew cost, respectively and the values    
  and 

  
  are their optimal amounts. Columns 10-12 demonstrate 

the ACO algorithm results run in MATLAB R2015a 

software. This algorithm is run 5 times for each problem, 

and the average cost function and CPU time are recorded 

in columns 10 and 12. Column 11 shows the best 

objective function of the ACO algorithm obtained in 5 

runs. The last column (i.e., Column 13) represents the 

deviation of the ACO cost function from the optimal 

solution obtained by the exact method. This key 

parameter indicator (i.e., GAP) is one of the main 

indicators to compare the results and is measured by: 
 

    
              

       

       
     

 

Where         is the optimal solution obtained by the 

exact method and        is the minimum objective 

function obtained by running the ACO algorithm for five 

times. 

As the mathematical model has the NP-hard complexity, 

the exact method is continued until sufficient CPU time 

(24 hours) for large-sized problems and the solutions are 

recorded as local solutions. As can be seen in Table 1, the 

ACO algorithm can obtain solutions with 2.57% average 

gaps in significantly shorter time in comparison to GAMS 

for small-sized problems. 

In other words, based on Figures 3 and 4, the ACO 

algorithm can achieve appropriate solutions in 

significantly shorter CPU time, resulting in ACO 

outperformance in comparison to the exact method. 

Moreover, the ACO can obtain better solutions in a 

significantly less computational time compared to GAMS 

for large-sized problems. It should be noted the algorithm 

is run in a computer with specifications of 2.4GHz, Intel 

Corei7, 4GB of RAM, and Windows 7 (64bit). 
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Fig.  3. Comparison of computational time between GAMS and 

ACO. 

 

Fig.  4. Comparison of the obtained solutions between GAMS 

and ACO. 
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1 2 20 6 2 0.021882 0:00:07 17 Opt. 0.021882 0.021882 0:00:1.41 0.00 

2 2 24 8 2 0.05882 0:02:37 13 Opt. 0.05882 0.05882 0:00:2.24 0.00 

3 2 32 9 1 0.04335 0:50:00 13 Opt. 0.04335 0.04335 0:00:7.79 0.00 

4 3 30 8 2 0.06421 0:18:43 16 Opt. 0.06564 0.06507 0:00:20.8 1.34 

5 3 54 11 2 0.02919 3:00:24 21 Opt. 0.03019 0.02996 0:00:59.5 2.64 

6 4 58 12 2 0.1891 6:15:3 26 Opt. 0.1989 0.1973 0:01:38.2 4.36 

7 5 52 9 3 0.2312 9:20:33 28 Opt. 0.24509 0.2436 0:06:07.5 5.37 

8 4 118 17 3 0.1789 21:10:01 46 Opt. 0.1916 0.19102 00:16:4.4 6.78 

9 5 394 24 3 0.2344 24:00:00 - Local 0.2292432 0.225235 00:21:02.1 - 

10 6 523 35 3 0.4519 24:00:00 - Local 0.43829781 0.432513 00:39:43.4 - 

11 5 721 46 3 0.8912 24:00:00 - Local 0.86526608 0.845571 00:45:51.9 - 

 
 Average GAP 2.57 

 

7. Conclusion 

Due to the complexity of the NP-hard problem, the Crew 

Scheduling Problem (CSP) was divided into two sub-

problems, namely crew pairing problem (CPP) and crew 

rostering problem (CRP). The literature review showed 

that some studies separately explored these problems 

while only a few have used different algorithms to solve 

the integrated crew pairing and rostering problem. 

Therefore, this study presented a new bi-objective 

formulation for the integrated crew pairing and rostering 

problem by considering reserve crew with the objective 

functions of reserve crew maximization and crew cost 

minimization .It should be noted that the integrated 

problem could generate accurate and appropriate 

schedules for the crew members and, in turn, significantly 

reduce the costs. The variables in the formulation were 

defined in such a way that the pairings were 

simultaneously generated and assigned to crew members 

based on the rules about the CPP and the CRP. Also, the 

integrated problem was addressed by considering the 

reserve crew teams. It was noteworthy that the reserve 

crew teams could help to significantly decrease costs by 

reducing flight delays and cancelations on operation days, 

which might otherwise require the implementation of 

expensive recovery actions. The ACO algorithm was 

employed to solve the problem. As compared to the exact 

method, the computational results for small-sized 

problems in this study showed that the algorithm could 

achieve solutions with 2.57% average gaps in 

significantly less time. Furthermore, for large-sized 

problems, ACO could obtain better solutions in 

significantly less computational time as compared to 

GAMS. In other words, the ACO algorithm outperformed 

the exact method in terms of solutions and computational 

time. Future studies should focus on rescheduling crew 

members’ work with minimum modifications on the 
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operation day. Moreover, it is suggested that further 

research explores the integrated CSP by considering other 

regulations, like the 8-in-24 rule. 
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