
Journal of Optimization in Industrial Engineering

Vol.15, Issue 1, Winter & Spring 2022, 207-216

DOI:10.22094/JOIE.2021.1941138.1896

207

Throughput Improvement of RIPEMD-160 Design Using Unfolding

Transformation Technique

Shamsiah Binti Suhaili
 a,*

, Takahiro Watanabe
b
, Norhuzaimin Julai

c

a
 Faculty of Engineering, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia,

b
 School of Information, Production and Systems, Waseda University, 2-7 Hibikino, Wakamatsu-ku, Fukuoka 808-0135, Japan

c
 Faculty of Engineering, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia

Received 23 September 2021; Revised 09 November 2021; Accepted 18 November 2021

Abstract

RIPEMD-160 hash functions are widely used in many applications of cryptography such as digital signature, Hash Message Authentication

Code (HMAC) and other data security application. There are three proposed RIPEMD-160 design namely RIPEMD-160 iterative design,

RIPEMD-160 unfolding with factor two and RIPEMD-160 unfolding design with factor four. These techniques were applied to RIPEMD-

160 designs to examine the inner structure of RIPEMD-160 in terms of area, maximum frequency and throughput of the design. In this

project, RIPEMD-160 hash function using unfolding transformation technique with factor four provided high throughput implementation.

The throughput of the RIPEMD-160 unfolding design increase significantly. The objective of this project is to enhance the performance of

RIPEMD-160 in terms of throughput. By using unfolding transformation factor four technique, the throughput of RIPEMD-160 can be

improved which is about 1753.50 Mbps. The percentage of performance to area ratio of RIPEMD-160 unfolding with factor four designs

increase 1.51% if compared with RIPEMD-160 design. The results show performance of proposed designs give the highest value compare

with other designs. The simulation results were obtained from ModelSim Altera-Quartus II to verify the correctness of the RIPEMD-160

designs in terms of functional and timing simulations.

Keywords: FPGA; Hash Function; RIPEMD-160; Throughput; Unfolding

1. Introduction

There are different types of hash functions such as SHA-1,

MD5, RIPEMD-160, SHA-2 and others (Rodriguez-

Henriquez and et al., 2006). Hash function is important for

some security application such as Hash Message

Authentication Codes (HMAC), digital signature and

others. The RIPEMD-160 hash function can also be used

in the implementation of cryptocurrency. Cryptocurrency

is a digital currency that transfers the coin in blockchain

where each block consists of hash of the previous block.

Therefore, RIPEMD-160 hash function becomes

important especially in recent peer-to-peer electronic cash

system like Bitcoin.

Nowadays, the security process of money transaction

becomes important aspect. No matter whether it is

traditional currency or cryptocurrency transaction. There

are lots of problem occur during transaction where the

original data is modified by some users. Therefore, the

data accuracy is very important, and it needs security

design to avoid this problem. Security on the network is a

major issue in data transmission. A network layer needs to

be secure enough with cryptographic algorithms so that it

can be used to accommodate encryption and

authentication processes. Hash function can be used for

some applications such as Message Authentication Code

(MAC) and digital signature. Therefore, high performance

of cryptographic hash function algorithm is one of the

important aspects of security algorithm. Hence, designing

an efficient implementation of RIPEMD-160 hash

function algorithm on reconfigurable hardware needs to be

considered. Thus, the implementation of efficient design

of hash function needs to be applied to network security

(Abu Bakar, Rosbi & Uzaki, 2017). In this project, the

design focuses on RIPEMD-160 design. The scope of

research for this project is to design and implement the

optimized RIPEMD-160 using Verilog HDL which is

based on FPGA device. The designs need to be improved

to obtain the high performance RIPEMD-160 hash

function. Therefore, several types of techniques are

applied to this design such as iterative and unfolding

transformation. The design must meet the timing

requirement where setup and hold time will give the

positive value. Thus, there is no violation in the slack from

the timing report. This leads to the frequency maximum

which is the longest path of the design. The optimized

design can be obtained by giving appropriate clock

constraint to the RIPEMD-160 design. The RIPEMD-160

design is simulated and tested by using ModelSim with

different testbench files. The motivation of this research is

to provide the improvement of RIPEMD-160 design. The

inner structure of RIPEMD-160 algorithm is different

from other hash function. In this design, there are two

parallel design for both left and right parts. The

complexity of RIPEMD-160 design is more complex in

terms of shift and constant value.

*Corresponding author Email address: rai.naveed@mountsafa.com

Shamsiah Binti Suhaili and et al./ Throughput Improvement of RIPEMD-160 Design…

208

Hash function is a one-way function which maps the

arbitrary inputs and produces fixed length of the output

based on the structure of the hash function itself. There is

no key for the hash function structure and the output of the

hash function is called hash value, hash code and message

digests. Nowadays, performance of hash function needs to

be taken into consideration since all the designs need to be

fast enough through the application design. Therefore, it is

necessary to improve the performance of hash function in

terms of area, frequency and throughput of the design. In

this paper, RIPEMD-160 hash functions with unfolding

transformation are proposed. The advantage of unfolding

design if compared to the traditional design is it can

improve the throughput of RIPEMD-160 design. Besides,

it reduces the number of cycles and increase the maximum

frequency of the design based on factor chosen for

unfolding transformation. This technique will increase the

FMax which is frequency maximum of the design. This

leads to high throughput of RIPEMD-160 design.

Therefore, by using this technique, the improvement of

throughput of optimized RIPEMD-160 design will be

obtained. This is because of parallel input operation that

occurs at one time. Therefore, to overcome this problem,

the RIPEMD-160 design can be implemented on devices

that provide huge amount of register and ALUTs.

In this design, there are two types of unfolding

transformation such as factor two and factor four.

Unfolding algorithm is one of the techniques that can be

used by the Digital Signal Processing (DSP) application to

obtain a new program that performs more than one

iteration of the original program. In addition, unfolding

factor, J describes the number of iterations from the

original program. The rules of unfolding algorithm are

explained as following (Parhi, 1999).

1. For each node U in the original Data flow graph

(DFG), draw the J nodes * +.

2. For each edge with delay in the original,

draw the edges () with [

] delays

for .

In order to explain the structure of unfolding algorithm,

one example of DSP program is shown in Equation 1.

Equation (1) shows input x(n) and output y(n) with 9

delay.

 () (9) () (1)

Fig. 1 The example of original DSP program(Parhi, 1999).

DFG can be constructed based on Figure 1, which is an

example of the original DSP program by replacing the

input and output ports with node A and B, while the

addition and multiplication processes are represented by

node C and node D respectively as shown in Figure 2.

Fig. 2. A DFG corresponding to DSP program [3]

Based on the first rule of unfolding algorithm, there are 8

nodes that

represent namely and .

The second step of unfolding algorithm is to connect each

edge into the DSP program. The edge with

no delay is divided into two parts, and .

Therefore, the edge with 9 delays

becomes () with [

] delays and

 () with[

] delays. Figure 3 shows the unfolded

DFG corresponding to the 2-unfolded DSP program [4].

Finally, the 2-unfolded DFG is created with
10 DC

with 4 delays and
01 DC with 5 delays respectively.

Fig. 3. The unfolded DFG corresponding to the 2-unfolded DSP

program (Parhi, 1999).

The structure of RIPEMD-160 algorithm has two sides,

left and right. Thus, two parallel structure will operate at

the same time during the execution of the RIPEMD-160

designs. There are lots of research and investigation on

RIPEMD-160 hash functions that had been done

throughout the years [4 – 18]. Most of the RIPEMD-160

designs were using iterative designs. The drawback of

iterative design is the performance of hash function in

terms of throughput is low. However, (Michail, 2008)

introduced the pipelining design of RIPEMD-160. From

these two papers, the throughput of RIPEMD-160 design

increase significantly. Different FPGA device was used in

the implementation of RIPEMD-160 hash function.

Implementation of pipelining designs normally use a lots

of area implementation. In order to reduce the number of

areas, unfolding technique can be applied to RIPEMD-160

hash function. Therefore, by applying unfolding

transformation method, the number of cycles can be

reduced. By increasing the number of unfolding factors,

the performance of RIPEMD-160 will increase where the

high throughput of the RIPEMD-160 design will be

obtained from unfolding factor two to unfolding factor

D C A

B

4D

5D
𝐴

𝐴

𝐶

𝐶

𝐷

𝐷

𝐵

𝐵

Journal of Optimization in Industrial Engineering, Vol.15, Issue 1, Winter & Spring 2022, 207-216

209

four. It can improve the performance of the design

significantly in future by combining the pipelining and

unfolding techniques to. There was no unfolding

RIPEMD-160 design in previous implementation.

Implementation of unfolding design for RIPEMD-160

needs to be implemented for both sides of this design. The

complexity of this design makes it complicated to be

designed. The designers need to analyze the next input for

each register. The factor of unfolding design plays an

important role in designing unfolding transformation.

Unfolding factor four needs more complexity of algorithm

if compared to factor two because the number of cycles of

the design must be reduced by four. This paper is

organized as follows: In the next section, RIPEMD-160

hash function algorithm is introduced. In section 3,

proposed architecture of RIPEMD-160 algorithm are

presented. Section 4 is results and discussion. Finally,

section 5 concludes this paper.

2. RIPEMD-160 Hash Function

2.1. RIPEMD-160 algorithm

RIPEMD-160 stands for Race Integrity Primitives

Evaluation Message Digest. It consists of parallel

operation which is left and right sides of the inner

structures of RIPEMD-160 algorithm. The arbitrary input

length for RIPEMD-160 algorithm is mapping to the

algorithm to produce 160-bit of hash code. The RIPEMD-

160 hash function is one-way function where the process

to get the message back from hash code cannot be done

inversely. Besides, collision resistance is one of the

requirement characteristics of hash function. That means

there are two different messages for two different message

digests. The output of 160-bit of RIPEMD-160 hash

function is in little-endian format. Figure 4 shows the

compression function of RIPEMD-160 algorithm. From

this figure, there are five inputs from the left namely A, B,

C, D and E and five inputs from the right namely A’, B’,

C’, D’ and E’. The output D and D’ shift (rotation) to the

left over 10 positions. Other shift rotations are based on

the given shift value. In this compression function, there

are non-linear function for input B, C and D. See Fig. 4.

Fig. 4. Compression function of RIPEMD-160 algorithm

From Fig. 4, the output for left part, A, B, C, D, and E and

right part A’, B’, C’, D’ and E’ for t = 0 to 79 can be

written as the following equations.
1. ()(()

 , ()- ())

2. (2)

3. 4.

5. 6. (3)

7. 8. (4)

9. () 10. (5)

11. 12. (6)

13. 14. (7)

15. ()(
 (

)

 , ()- ())

16. (8)

17. 18. (9)

19. 20. (10)

21. (
) 22. (11)

23. 24. (12)

25. 26. (13)

Equation (2) and (8) show the equation for T. These

equations represent rotation, () with the specific fixed

shift value, s of non-linear function, () with

K′

A B C D E

𝑓 𝑡(B,C,D)

+

+

+

𝑟𝑜𝑙𝑠

A B C D E

M[𝑚]

A B C D E

𝑓𝑡(B,C,D)

+

+

+

𝑟𝑜𝑙𝑠

A B C D E

M[m]

K

+

𝑟𝑜𝑙

+

𝑟𝑜𝑙

Shamsiah Binti Suhaili and et al./ Throughput Improvement of RIPEMD-160 Design…

210

message input, , ()- and constant value, () . Five

initial inputs H0, H1, H2, H3 and H4 will provide inputs

to both parts of the inner structure of RIPEMD-160 as

shown in Table 1.

Table 1

 Initialization value of RIPEMD-160 algorithm
Register Left input Right input Initialization value

H0 A A’ 32’h67452301

H1 B B’ 32’hefcdab89

H2 C C’ 32’h98badcfe

H3 D D’ 32’h10325476

H4 E E’ 32’hc3d2e1f0

Table 2 illustrates non-linear function f(B,C,D) of

RIPEMD-160 algorithm. There are five non-linear

function such as f1, f2, f3, f4 and f5. In the non-linear

function, the symbol ⊕, ˄ , ˅ and ¬ represent bitwise

XOR, AND, OR and complement respectively. The

operation for non-linear function for left and right part are

different where the left part will use the normal sequence

while for the right part, it will use the reverse order of

non-linear function as shown in Table 3. From this table,

there are 80 rounds of 32-bit of three different inputs to

generate the non-linear functions.

Table 2

Non-linear functions of RIPEMD-160
Round (R) Non-linear function

R1 0 ≤ t ≤ 15 f1(B,C,D) B ⊕ C ⊕ D

R2 16 ≤ t ≤ 31 f2(B,C,D) (B ˄ C) ˅ (¬B ˄ D)

R3 32 ≤ t ≤ 47 f3(B,C,D) (B ˅ ¬ C) ⊕ D

R4 48≤ t ≤ 63 f4(B,C,D) (B ˄ D) ˅ (C ˄ ¬ D)

R5 64 ≤ t ≤ 79 f5(B,C,D) B ⊕(C ˅ ¬ D)

Table 3

Left and right part of RIPEMD-160 rounding
Part R1 R2 R3 R4 R5

Left f1(B,C,D) f2(B,C,D) f3(B,C,D) f4(B,C,D) f5(B,C,D)

Right f5(B,C,D) f4(B,C,D) f3(B,C,D) f2(B,C,D) f1(B,C,D)

There are ten constants are used in RIPEMD-160

algorithm which are five 32-bit constants from left and

five 32-bit constants from right. Message input for both

left and right parts of RIPEMD-160 represent by m and

m’. The value of m and m’ for both left and right of

RIPEMD-160 will be executed which is based on the

sequence of the round. As mentioned in the previous

paragraph, there are five rounds for both left and right

sides of RIPEMD-160 algorithm such as R1, R2, R3, R4,

and R5. Each round consists of 16 steps and the design

will complete the 80 rounds to obtain the output. There are

two parts of shift value, shift from the left, s and shift from

the right, s’. After processing 80 rounds of looping for this

algorithm, the 160-bit of hash code can be computed. The

output of RIPEMD-160 hash function can be obtained

from the following equation.

 (14)

 (15)

 (16)

 (17)

 (18)

Fig. 5. Top Level of RIPEMD-160 architecture

Figure 5 illustrates the parallel data transformation for

RIPEMD-160 hash function. It consists of left and right

path. Finally, the output of message digest for RIPEMD-

160 is equal to Message digest = || || || ||

3. Proposed Ripemd-160 Design

3.1. Iterative RIPEMD-160 Design

The proposed RIPEMD-160 architecture design is

illustrated in Figure 6. Eight modules of RIPEMD-160

design are Counter, Coder, KConst, Message, Mux,

Function parallel, Hash and Hash output modules.

𝑓 𝐾 M(5) S(5)

𝑓 𝐾 M(6 3) S(6 3)

𝑓 𝐾 𝑀(32 47) 𝑆(32 47)

𝑓 𝐾 𝑀(48 63) 𝑆(48 63)

𝑓5 𝐾5 𝑀(64 79) 𝑆(64 79)

𝑓5 𝐾
 M (5) S (5)

𝑓 𝐾
 M (6 3) S (6 3)

𝑓 𝐾
 𝑀 (32 47) 𝑆 (32 47)

𝑓 𝐾
 𝑀 (48 63) 𝑆 (48 63)

𝑓 𝐾5
 𝑀 (64 79) 𝑆 (64 79)

H0H1H2H3H

4

H0H1H2H3H

4

Journal of Optimization in Industrial Engineering, Vol.15, Issue 1, Winter & Spring 2022, 207-216

211

Fig. 6. Proposed RIPEMD-160 architecture design

The counter module will generate the round number of

RIPEMD-160 until 80 rounds. It controls the operation of

RIPEMD-160 algorithm. Then, coder module is used to

divide the rounding number into five parts where each

round consists of 16 steps. All the data from both modules

are very important to execute the parallel function of non-

linear function. These five functions will operate the

operation based on the sequence from the previous table

for both left and right sides of this algorithm. This module

is the major process in order to execute the output of hash

code. Five initial values which are the fixed module are

executed first from the mux module in order to process the

parallel function. The first output must be accurate

because it will be feeding back to obtain the second data.

In this case, mux module is used to select the appropriate

input to generate data. This process is repeated until 80

rounds to complete the overall of this design. Hash

module is stored the output of hash value before the output

are converted into little-endian mode. Therefore, the

output of this design will be generated by Hash output

module which is the last output of the RIPEMD-160

design. The usage of register in terms of HDL coding style

also affect the performance of the design.

3.2. RIPEMD-160 unfolding design with factor two

Figure 7 shows the top level of RIPEMD-160 unfolding

design with factor two. The architecture is almost the

same as iterative RIPEMD-160 design with a slightly

different where this architecture has Func module. Some

of these modules needs to be modified by applying the

unfolding transformation technique to the design. The

modules are Coder, KConst, Message and Function

Parallel modules. The rounding numbers of this design

need to be reduced by two. Thus, each round only consists

of 8 rounds instead of 16 rounds in the iterative design.

Overall, the number of looping is 40 rounds.

Fig. 7 Proposed RIPEMD-160 unfolding factor two design

Since this architecture considers both left and right sides

of the design, all the modification needs to perform

parallel data transformation. In order to generate this

design in unfolding transformation factor two, the coder

module is designed based on counter module. Figure 8

shows the block diagram of coder module of RIPEMD-

160 unfolding factor two. It needs to reduce the number of

steps in each round from 16 steps to 8 steps. In this

module, there are five rounds such as Round0, Round1,

Round2, Round3, and Round4. Each round consists of 8

steps. Overall, there are 40 rounds which is divided into 5

parts in coder module.

Fig. 8 Coder module of RIPEMD-160 unfolding factor two

Then, KConst module is a constant module for both left

and right path of RIPEMD-160 design. It operates in

parallel mode of two data from both parts. In other words,

there are four data will generate for each cycle. Two from

the left and two from the right path. Figure 9 shows the

block diagram of KConst of RIPEMD-160 unfolding

factor two. In each module consists of KConsta, KConstb

from the left line and KConst1a, KConst1b from the right

line. Therefore, it is divided into five because The

RIPEMD-160 hash function contains five non-linear

function. Each non-linear function will operate 8 steps for

each round.

Fig. 9 KConst module of RIPEMD-160 unfolding factor two

U1

Counter

U2

Coder

U3

KConst

U4

Message

U5

Mux

U6

Function

P

a

r

a

U7

Hash

U8

Hash

Output

IV

Clk

U1

Counter
U2 Coder

U3

KConst

U4

Message
U5 Mux

U6

Function

parallel

U8

Hash

U9 Hash

Output

IV

Clk

U7

Func

Coder

Round4

Round3

Round2

Round1

Round0

round

round5 (8)

round5 (8)

round5 (8)

round5 (8)

round5 (8)

KConst

KConsta

KConstb

KConst1a

KConst1b

KConsta

KConstb

KConst1a

KConst1b

KConsta

KConstb

KConst1a

KConst1b

KConsta

KConstb

KConst1a

KConst1b

KConsta

KConstb

KConst1a

KConst1b

round

5

Shamsiah Binti Suhaili and et al./ Throughput Improvement of RIPEMD-160 Design…

212

Similarly, message module also generates the output for

both left and right path of this design. It consists of

message and shift values as shown in the previous table.

First, all the data input of RIPEMD-160 will be divided

into 16 parts. Each part comprises 32-bit of data. This data

is stored in the 16-memory location. The counter will

generate the input in order to execute the correct sequence

of the data. Figure 10 shows the block diagram of message

module of RIPEMD-160 unfolding factor two. In this

message module design, message and shift values are

combined into one 8-bit block where the first 4 bits is for

message input and shift value will be for the second 4 bits.

Overall, there are eight data will be generated from this

module, 4 data are for message value left and right. Then,

4 data are for shift value left and right.

Fig. 10. Message module of RIPEMD-160 unfolding factor two

The last module that need to be modified in this design is

Function parallel module. Figure 11 shows the Function

parallel module of RIPEMD-160 unfolding factor two.

There are two non-linear function will be executed in the

parallel mode. The first non-linear function consists of

input B, C, and D as shown in the Equation (2) and (8) for

both left and right. Let say the output for first non-linear

function is func_rmda and func_rmd1a. Both outputs

represent data from both left and right data. Then, at the

same time, the second non-linear function need to

generate the output from three different inputs.

Fig. 11. Function parallel of RIPEMD-160 unfolding factor two

The following Algorithm 1 shows the derivation input for

second non-linear function. Messagea, KConsta and shifta

are message, constant and shift value for left path.

Message1a, KConst1a and shift1a represent data for right

path. The output for both second non-linear function are

func_rmdb and func_rmd1b. Three different inputs for this

function are obtained from Algorithm 1. The algorithm

illustrates the compression function of RIPEMD-160

algorithm for both parts.
27. Algorithm 1: Compression Function of RIPEMD-160

28. func_rmda(B,C,D)

29. func_Ta = A + func_rmda + Messagea + KConsta

30. rot1_la = func_Ta << shifta

31. rot2_la = func_Ta >> (32 – shifta)

32.
33. func__rmd1a(B1,C1,D1)

34. func_T1a = A + func_rmd1a + Message1a + KConst1a

35. rot1_ra = func_T1a << shifta

36. rot2_ra = func_T1a >> (32 – shifta)

37.
38. aux_func_Ta = (rot1_la | rot2_la) + E

39. aux_func_T1a = (rot1_ra | rot2_ra) + E1

40.
41. func_rmdb (aux_func_Ta, B, {C[21:0],C[31:22]})

42. func_rmd1b (aux_func_T1a,B1,{C1[21:0],C1[31:22]})

There are two non-linear functions will operate in one

cycle. From Algorithm 1, func_rmda and func_rmd1a

refer to the first non-linear function for both left and right

path. Then func_rmdb and func_rmd1b represent the

second non-linear function for both left and right path. In

RIPEMD-160 unfolding factor two, two non-linear

function will operate at the same time which is func_rmda

and func_rmdb with three different input. In conventional

compression function, there is only one non-linear

function. The structure of compression function of

conventional design is not really complicated compared

with unfolding factor two. The input for second non-linear

function, func_rmdb must be correct in order to obtain the

result. The final output of this function generate output in

the func module. The output will be different from

compression function as shown in Figure 4 because there

are two parallel data execute at the same time in one cycle

in order to fulfill the unfolding transformation technique.

Finally, the output of hash code is obtained after 40

rounds of looping.

3.3. RIPEMD-160 unfolding design with factor four

Modification on top level RIPEMD-160 design need to be

designed in order to apply the unfolding transformation

with factor four. In this method, the number of cycles in

RIPEMD-160 architecture are reduced from 40 cycles to

20 cycles. By reducing number of cycles of the design the

number of latencies will be reduced. Thus, this leads to

high throughput of the RIPEMD-160 design. Similar with

previous section which is unfolding with factor two, the

modification needs to be designed for some modules such

as Coder, KConst, Message and Function parallel. Figure

12 shows Coder module of RIPEMD-160 unfolding factor

four. In this design, coder module consists of five rounds

where each round comprises four steps.

Message

m_ripemda

m_ripemdb

l_ripemda

l_ripemdb

round

Function parallel

func_rmda

func_Ta

aux_func_Ta

func_rmd1a

func_T1a

aux_func_T1a

func_rmdb

func_Tb

aux_func_Tb

func_rmd1b

func_T1b

aux_func_T1b

round

Journal of Optimization in Industrial Engineering, Vol.15, Issue 1, Winter & Spring 2022, 207-216

213

Fig. 12. Coder module of RIPEMD-160 unfolding factor four

Figure 13 shows KConst module of RIPEMD-160

unfolding factor four. KConst module provides constant

value for both left and right path. In each round, there will

be eight constants execute in parallel form. Message

module needs a slight modification where the round is

reduced into 20 rounds and the data for both message and

shift value are compress into eight data of 8-bit input.

From this figure, four data from the left and fours data

from the right, KConst1a, KConst1b, KConst1c,

KConst1d.

Fig. 13. KConst module of RIPEMD-160 unfolding factor four

Figure 14 shows message module of RIPEMD-160

unfolding factor four. In message module, it consists of

message and sh value. There are eight output of messages,

four from the left path which is m_ripemda, m_ripemdb,

m_ripemdc, m_ripemdd and four from the right path

which is l_ripemda, l_ripemdb, l_ripemdc, l_ripemdd.

This module will operate the operation in 20 rounds.

Fig. 14. Message module of RIPEMD-160 unfolding factor four

Figure 15 shows Function parallel module of RIPEMD-

160 unfolding factor four. As we know, there are non-

linear function in this module which is based on

RIPEMD-160 algorithm. In order to generate unfolding

transformation with factor four, the non-linear function

need to be increased into four. In other words, there will

be four parallel non-linear functions generate at the same

time in order to produce the output in one cycle. Similar

like previous section, unfolding transformation with factor

two. Three different input of non-linear function need to

be identified. The output func_rmda, func_rmd1a,

func_rmdb and func_rmd1b represent first and second

non-linear function for both left and right respectively.

While for the third and fourth non-linear function in this

module, it is represented by func_rmdc, func_rmd1c,

func_rmdd and func_rmd1d respectively.

Fig. 15. Function parallel module of RIPEMD-160 unfolding

factor four

The Algorithm 2 shows the three different input for both

left and right path of four non-linear function in this

module. The new idea is comprised in this paper

especially the unfolding transformation with factor four

where all the non-linear function needs to be executed in

four parallel transformation.

Algorithm 2: Input for four non-linear function

func_rmda(B,C,D)

func__rmd1a(B1,C1,D1)

func_rmdb (aux_func_Ta, B, {C[21:0],C[31:22]})

func_rmd1b (aux_func_T1a,B1,{C1[21:0],C1[31:22]})

func_rmdc (aux_func_Tb, aux_func_Ta, {B[21:0],B[31:22]})

func_rmd1c (aux_func_T1b,aux_funcT1a,B1[21:0],B1[31:22])

func_rmdd(aux_func_Tc,aux_func_Tb,{aux_func_Ta[21:0],

aux_func_Ta[31:22])

func_rmd1d(aux_func_T1c,aux_func_T1b,{aux_func_T1a[21:

0], aux_func_T1a[31:22])

The compression function of RIPEMD-160 unfolding

factor four almost similar to RIPEMD-160 unfolding

factor two as shown in Figure 12. By adding other two

Coder

Round4

Round3

Round2

Round1

Round0

round

round5 (4)

round5 (4)

round5 (4)

round5 (4)

round5 (4)

K
C

o
n

st

K
C

o
n

st
a

K
C

o
n

st
b

K
C

o
n

st
c

K
C

o
n

st
d

K
C

o
n

st
1
a

K
C

o
n

st
1
b

K
C

o
n

st
a

K
C

o
n

st
b

K
C

o
n

st
c

K
C

o
n

st
d

K
C

o
n

st
1
a

K
C

o
n

st
1
b

K
C

o
n

st
a

K
C

o
n

st
b

K
C

o
n

st
c

K
C

o
n

st
d

K
C

o
n

st
1
a

K
C

o
n

st
1
b

K
C

o
n

st
a

K
C

o
n

st
b

K
C

o
n

st
c

K
C

o
n

st
d

K
C

o
n

st
1
a

K
C

o
n

st
1
b

K
C

o
n

st
a

K
C

o
n

st
b

K
C

o
n

st
c

K
C

o
n

st
d

K
C

o
n

st
1
a

K
C

o
n

st
1
b

ro
u
n
d
5

Message

m_ripemda

m_ripemdb

m_ripemdc

m_ripemdd

l_ripemda

l_ripemdb

l_ripemdc

l_ripemdd

roun

d

Function parallel

func_rmda

func_Ta

aux_func_Ta

func_rmd1a

func_T1a

aux_func_T1a

func_rmdb

func_Tb

aux_func_Tb

func_rmd1b

func_T1b

aux_func_T1b

func_rmdc

func_Tc

aux_func_Tc

func_rmd1c

func_T1c

aux_func_T1c

func_rmdd

func_Td

aux_func_Td

func_rmd1d

func_T1d

aux_func_T1d

roun

d

Shamsiah Binti Suhaili and et al./ Throughput Improvement of RIPEMD-160 Design…

214

non-linear function from both left and right which are

func_rmdc, func_rmd1c, func_rmdd, and func_rmd1d.

The three different input for each non-linear function for

unfolding factor four are shown in algorithm 2. The three

different input must be evaluated correctly. This is the

most important part in designing unfolding design. The

five output of RIPEMD-160 hash function depends on the

correct result because it will be looping until the last

rounds in order to obtain the hash value from the Equation

(14) until (18).

After getting the result from four non-linear function. The

output for A, B, C, D, and E for both left and right paths

of this design are computed. The following equation

shows the final output from the left which are l_A, l_B,

l_C, l_D, and l_E. While the output from the right path are

r_A, r_B, r_C, r_D and r_E. These outputs are looping

until 20 rounds because of the implementation of

unfolding transformation with factor four. Finally, all

these outputs are combined by using the formula from

Equation (14) to (18) to obtain the hash codes. All the

outputs need to be converted to little endian mode because

the result for RIPEMD-160 is in little endian format.

Unfolding technique will reduce the number of latency of

the RIPEMD-160 design. High throughput will be

obtained if the unfolding factor increase which is based on

Equation (19). From this equation, the number of cycles of

RIPEMD-160 unfolding will reduce based on the number

of unfolding factor. If the number of unfolding factor

increase, the number of cycles reduce. This leads to high

throughput of RIPEMD-160 unfolding transformation

technique.

4. Results and Discussions

4.1. Testing and verification

In this project, there are three proposed RIPEMD-160

algorithms are designed such as iterative, unfolding

RIPEMD-160 with factor two and unfolding RIPEMD-

160 with factor four using Verilog HDL code. The

RIPEMD-160 designs are compiled with Arria II GX in

order to identify the area, maximum frequency and

throughput of the designs. By using Quartus II advisors,

the performance of the design can be improved.

TimeQuest Timing Analyzer is used to obtain the

maximum frequency of the RIPEMD-160 design. By

giving the appropriate clock constraint to the designs, the

timing requirement of the design will be met. This process

is repeated until the RIPEMD-160 design achieve the

target of the timing requirement of the design. In this

project, 8 ns clock constraint was given to the all designs

namely RIPEMD-160 iterative, RIPEMD-160 unfolding

with factor two and RIPEMD-160 unfolding with factor

four. All the RIPEMD-160 designs meet the timing

requirement.

4.2. Result and simulation waveform

Table 4 shows the synthesis and implementation results of

three proposed RIPEMD-160 designs. Other previous

RIPEMD-160 design is also shown in this table for

comparison. They are evaluated from the viewpoints of

the area, maximum frequency and throughput of the

design. The throughput of the design can be calculated

using the following Equation (29). The number of clock

cycles for each design is different because of the structure

of RIPEMD-160 design. For iterative design, the number

of clock cycles is 101.50. While for unfolding with factor

two design, the number of clock cycles is 60.5. Finally,

unfolding with factor four design, the number of clock

cycles is reduced to 39.5.

5

 (19)

Table 4

Synthesis and implementation results of RIPEMD-160
Design Device ALUTs

/ CLBs

Reg FMax

(MHz

)

Throughpu

t (Mbps)

RIPEMD-
160

(iterative)

Arria II GX 1269
ALUTs

677 133.0
3

671.05

RIPEMD-
160

(Unfolding

-2)

Arria II GX 2015
ALUTs

530 125.1
9

1059.46

RIPEMD-

160

(Unfolding
-4)

Arria II GX 3224

ALUTs

101

1

135.2

8

1753.50

RIPEMD-

160

(iterative)

[6]

Xilinx Virtex 300E 1004

CLBs

- 42.9 65

RIPEMD-

160
(iterative)

[7]

EPF10K50SBC35

6-1

- - 26.6 84

RIPEMD-

160
(iterative)

[8]

XC2VP30 4410

ALUTs

- 100.0

5

624

RIPEMD-
160

(iterative)

[9]

XC2V250 14911
LUTs

- 43.47 137.4

There are several other FPGA family devices such as

Stratix for high-performance and Cyclone for low-cost

FPGAs. Hence, in order to obtain balance of power and

performance, Arria II GX device was chosen because

Arria series provide low-cost transceiver of FPGAs

device. Besides, it also delivers optimal performance and

power efficiency. The proposed RIPEMD-160 design can

increase the frequency maximum of the design. The

improvement of frequency maximum because of the

number of registers required in designing the RIPEMD-

160 design. By using unfolding and following the

guidelines of writing of better HDL coding, the frequency

of design can be improved significantly. Besides, the

architecture of FPGA device also plays important roles in

designing the RIPEMD-160 design. By selecting an

appropriate FPGA device, the performance of MD5 design

can be enhanced. Table 4 shows the previous

implementation of RIPEMD-160 design. It is difficult to

find the same device for the same design because of the

limitation of budget and devices.

From this table, the area implementation of the design

increase from iterative design to unfolding design.

Journal of Optimization in Industrial Engineering, Vol.15, Issue 1, Winter & Spring 2022, 207-216

215

However, the throughput of the RIPEMD-160 unfolding

with factor four design increase significantly. The

percentage of increment is about 62%. Furthermore, this

design shows the highest throughput if compared with

other RIPEMD-160 designs. Based on Equation (29), the

number of cycles for RIPEMD-160 unfolding factor two is

reduced by two which is from 80 cycles to 40 cycles.

Then, the improvement of throughput will be obtained.

Similarly, the RIPEMD-160 unfolding factor four will

reduce by four which is the number of cycles reduce from

80 cycles to 20 cycles. The small number of cycles can

increase the throughput of the design as well as

performance of the design. Figure 16 shows the simulation

results for RIPEMD-160 unfolding design with factor

four. The message input for this simulation is ‘abc’ which

is ‘616263’ in hexadecimal form. The message input

needs to be padded before start the processing. The output

hash code is

‘8eb208f7305d987a9b044a8e98c6b087f15a0bfc’. From

the simulation waveform, the output hash code provides

the correct results in terms of both functional and timing

simulation.

Fig. 16. Simulation of RIPEMD-160 unfolding with factor four

design

4.3. Performance to area ratio

The proposed RIPEMD-160 achieves high throughput

with unfolding transformation design. RIPEMD-160

designs are compared in terms of performance to area

ratio. The comparison of performance to area ratio is

shown in Table 5. From the results, the performance to

area ratio of RIPEMD-160 with factor four increase about

1.51% if compared with iterative design of RIPEMD-160.

By using the unfolding technique, the throughput of the

RIPEMD-160 can be improved significantly with the

increment of performance to area ratio. For these design

implementations, performance(bps), area (the number of

ALUTs/CLBs) and performance to area ratio

(Mbps/ALUTs or CLBs) are evaluated.

Table 5

Comparison of performance to area ratio
Design RIPEM

D-160

(iterati

ve)

RIPEM
D-160

(Unfoldi

ng-2)

RIPEM
D-160

(Unfoldi

ng-4)

RIPEM
D-160

(iterati

ve) [6]

RIPEM
D-160

(iterati

ve) [8]

RIPEM
D-160

(iterati

ve) [9]

Mbps/AL

UTs

0.5288 0.5257 0.5439 0.0647 0.1415 0.009

5. Conclusion

In conclusion, implementation of unfolding transformation

can improve the performance of RIPEMD-160 hash

function by reducing the number of cycles where the data

generate in parallel transformation. This leads to high

throughput of RIPEMD-160 design. From the results, it

shows that the maximum frequency of RIPEMD-160

unfolding with factor four gives the highest maximum

frequency among others. The throughput of RIPEMD-160

design also increase significantly by using this

methodology which is about 1753.50 Mbps.

Acknowledgment

The authors would like to thank Universiti Malaysia

Sarawak (UNIMAS) for providing opportunity and

facilities to support this project.

References

Rodriguez-Henriquez, Saqib, F., Diaz-Perez, N.A. Kaya,

& Koc A. C. (2006), Cryptographic Algorithms on

Reconfigurable Hardware, Springer Series on Signals

and Communication Technology, pp. 211-242.

Abu Bakar, Rosbi,N. Uzaki S., K. (2017), Cryptocurrency

Framework Diagnostics from Islamic Finance

Perspective: A New Insight of Bitcoin System

Transaction, International Journal of Management

Science and Business Administration, 4(1),19-28.

 K. Parhi, K. (1999), VLSI Digital Signal Processing

Systems: Design and Implementation, John Wiley &

Sons, Inc., 119-140.

Dobbertin, H. Bosselaers, A. & Preneel B. (1996),

RIPEMD-160, a strengthened version of RIPEMD,

Fast Software Encryption, LNCS 1039, Springer-

Verlag, 71-82.

Dominikus S. (2002), A hardware implementation of

MD4-family hash algorithms, Proceeding 9th

International Conference on Electronics, Circuits and

Systems, 3, 1143-1146.

Ng, C., Ng T. & Yip, K. (2004), A Unified Architecture of

MD5 and Ripemd-160 Hash Algorithms,

Proceedings of the 2004 International Symposium on

Circuits and Systems, ISCAS'04, .2,889-892.

Kneˇzevi´c, M. Sakiyama, K., Lee Y. K., & Verbauwhede

I. (2008), On the High-Throughput Implementation

of RIPEMD-160 Hash Algorithm, International

Conference on Application-Specific Systems,

Architectures and Processors,2008. ASAP 2008,

Leuven, 85 – 90.

Khan, E., Watheq El-Kharashi, M., Gebali, F. & Abd-El-

Barr, M. (2017), Design and Performance Analysis

of a Unified, Reconfigurable HMAC-Hash Unit,

IEEE Transaction on Circuits and Systems, pp. 2683-

2695.

Wang, X. Lai, X. Feng, Chen, D. H. & Yu, X. (2005),

Cryptanalysis of the hash functions and MD4 and

Shamsiah Binti Suhaili and et al./ Throughput Improvement of RIPEMD-160 Design…

216

RIPEMD. Advances in Cryptology, EUROCRYPT

2005.

Mendel, F. Pramstaller, Rechberger, N. C. & Rijmen, V.

(2006), On the Collision Resistance of RIPEMD-

160, International Conference on Information

Security, ISC 2006, LNCS 4176, 101–116.

Michail, H. E., Gregoriades, Kelefouras, A. V.,

Athanasiou,G., Kritikakou, A. & Goutis, C. (2020),

Authentication with RIPEMD-160 and Other

Alternatives: A Hardware Design Perspective, New

Advanced Technologies, book chapter, 103 – 124.

Giechaskiel, I. & Cremers ,C. & Rasmussen, K. B. (2018),

When the Crypto in Cryptocurrencies Breaks:

Bitcoin Security under Broken Primitives, IEEE

Security & Privacy Journal, 16(4), 46 -58

Abbas, A. Voß, R., Wienbrandt , L. Schimmler, M.

(2014), An efficient implementation of PBKDF2

with RIPEMD-160 on multiple FPGAs, 2014 20th

IEEE International Conference on Parallel and

Distributed Systems (ICPADS), 454 – 461

Kuznetsov, A. Shekhanin, K. Kolhatin,A Kovalchuk,. D.

Babenko,V. & Perevozova, I. (2019), Performance of

Hash Algorithms on GPUs for Use in Blockchain,

2019 IEEE International Conference on Advanced

Trends in Information Theory (ATIT), 166 – 170.

Michail, H. Gregoriades, A. V Kelefouras,. Kotsiolis, A.

Papagianopoulou,D. & Goutis, C. (2010), HW/SW

co-Design Integrating High – Speed Authentication

Module for IPSec/IPv6, 2010 Fifth International

Conference on Digital Telecommunications, 138 -

142.

Lee, Y. K., Chan, H. & Verbauwhede, I. (2008), Design

Methodology for Throughput Optimum

Architectures of Hash Algorithms of the MD4-class,

Journal of Signal Processing Systems, 53, 89–102.

Al-Mhadawi, M. M., & AlbahranA. A. i (2019), Hybrid

Method as Pseudo-Random Bits Generator, 2019

International Conference of Computer and Applied

Sciences (CAS2019), 250-255.

Dewi, A. & Setiawan,S. H. (2019), Implementation of

SHA-256 and AES-256 for Securing Digital Al

Quran Verification System, 2019 Fourth

International Conference on Informatics and

Computing (ICIC)

Michail, H., Thanasoulis,V., Schinianakis,

Panagiotakopoulos, D. G. & Goutis, C. (2008),

Application Of Novel Techniques In RIPEMD-160

Hash Function Aiming At High-Throughput, 2008

IEEE International Symposium on Industrial

Electronics, Cambridge, UK.

Michail, H. E., Thanasoulis,V. N., Panagiotakopoulos,G.

A. A., Kakarountas,P. & Goutis, C. E. (2008),

Efficient Pipelined Hardware Implementation of

RIPEMD-160 Hash Function, World Academy of

Science, Engineering and Technology, International

Journal of Electrical and Computer Engineering, 2(

2).

This article can be cited:

Suhaili, S., Watanabe, T., Julai, N. (2022). Throughput Improvement of RIPEMD-160 Design using

Unfolding Transformation Technique. Journal of Optimization in Industrial Engineering, 15(1), 207-216.

http://www.qjie.ir/article_686437.html

DOI: 10.22094/joie.2021.1941138.1896

