
Journal of Optimization in Industrial Engineering

Vol.15, Issue 2, Summer & Autumn 2022, 313- 321

DOI: 10.22094/JOIE.2022.1949101.1926

313

Two-Machine Open Shop Scheduling with Proportionally

Deteriorating Jobs and Makespan Objective

Ching-Fang Liaw*

Department of Industrial Engineering and Management, Chaoyang University of Technology, Taichung, Taiwan.

Received 07 January 2022; Revised 16 August 2022; Accepted 17 August 2022

Abstract

This manuscript examines the two-machine open shop scheduling problem where the latter a job is scheduled the longer it takes to process

this job. The performance is measured by minimizing the makespan. By modifying existing algorithms for the corresponding problem with

fixed processing times, two new algorithms are developed for the problem under consideration. The proofs of optimality of both algorithms

are presented. The execution of these algorithms is illustrated by two numerical examples. Finally, both algorithms are further modified to

solve a more generalized problem where the time demanded to process a job is a general linear function of its beginning time.

Keywords: Scheduling; Open shop; Deteriorating jobs; Makespan

1. Introduction

A traditional scheduling problem assumes fixed job

processing times (Enayati et al. 2021, Yavari et al. 2020,

Behnamian, 2019). Nevertheless, in many production

occasions the time needed to process a job can vary and

rely on the beginning time of its processing. In some

cases, jobs may get deteriorated while waiting to be

processed, which will increase their processing times. For

instance, the time it needs to process an ingot in a steel

mill will become longer as its waiting time increases.

Also, at the scene of a fire, the delayed arrival of a fire

engine will increase the time demanded to extinguish the

fire. Other real life examples include the time required for

maintaining a machine tends to grow proportionately to

the time elapsed from the last maintenance, the time

needed to remove the dust from an equipment will

increase over time, the time demanded for the operation

of a patient usually increases with the delay of the start of

the operation, the travel time between two points in a

congested urban area will gradually increase as it

approaches the rush hour etc.

Scheduling problems for which the latter a job is

scheduled the longer it needs to process this job are

generally known as scheduling with deteriorating jobs,

and have been broadly examined in the literature. Various

models have been proposed for scheduling with

deteriorating jobs including the sequence-related model

and the time-dependent model. In a sequence-related

model (Gawiejnowicz, 1996a; Strusevich and Rustogi

2017), the processing time of a job is determined by its

order in the schedule. In other words, the time it needs to

process a job relies on the number of its preceding jobs.

The time-related model (Alidaee and Womer, 1999;

Cheng et al., 2004; Gawiejnowicz, 1996b, 2008, 2020b)

however presumes that the time it takes to process a job is

a function of its beginning time. The problem examined in

this manuscript belongs to the time-related model. Time-

related models can be further classified into several

different models depending on the form of the function

which defines job processing times. In this manuscript,

we address the proportional deterioration model where the

job processing times proportionally deteriorate in time.

Current research concerning scheduling problems with

deteriorating jobs mostly examines single-machine and

parallel-machine problems. Even though a few researches

have explored this issue for dedicated-machine problems,

they have focused on flow shop models. The study of

scheduling with deteriorating jobs for job shop or open

shop problems has been very limited in literature. This

manuscript examines the scheduling problem with

deteriorating jobs for two-machine open shops.

Open shop is used to model the manufacturing

environment where each job must visit each machine and

there is no restriction on the routing of each job through

the machines. In an open shop, a machine cannot

simultaneously process exceeding one job and a job

cannot be simultaneously processed by exceeding one

machine. Examples of an open shop scheduling model

include the scheduling of product testing activities and

equipment maintenance operations, as the order in which

the testing activities and the maintenance operations are

performed is immaterial. Also, the open shop scheduling

problem is often employed to model various problems

occurring in the healthcare division. For example, patients

need to go through a series of examinations and

diagnoses, and the order in which these examinations and

diagnoses are performed does not matter. The class-
*Corresponding author Email address: cfliaw@cyut.edu.tw

Ching-Fang Liaw/ Two-Machine Open Shop Scheduling…

314

teacher scheduling problem is another case for which the

open shop model is a commonly used formulation. The

reader is referred to Almadian et al. (2021) for more

applications of open shop models across different sectors.

The problem investigated in the manuscript is described

as follows. A set of n independent jobs N={1, 2,…, n} is

required to be processed by two machines M1 and M2.

Each job j can first visit machine M1 and then machine M2

or vice versa. We assume that preemption is not permitted

and both machines are constantly available from time t0>0

for processing jobs. The time demanded to process job j

on machine Mi is pij=bijt, where bij>0 denotes the

deterioration rate of job j when it is processed by machine

Mi and t> t0 denotes the beginning time of the processing

of job j on machine Mi, for i=1, 2 and j=1, 2,…, n. The

performance measure to be minimized is makespan, Cmax.

Using the three-column symbolization of scheduling

problem (Graham et al., 1979), the two-machine open

shop scheduling problem with proportionally deteriorating

jobs is denoted as O2/pij=bijt/Cmax.

The remainder of this manuscript is organized as follows.

A review of preceding research focusing on the

scheduling of two-machine open shops with fixed and

variable processing times to minimize makespan is given

in the next section. By modifying existing algorithms for

the problem where processing times are fixed, two new

algorithms for the problem where processing times

proportionally deteriorate in time, O2/pij=bijt/Cmax, are

presented and analysed in section 3. Then, section 4

examines the extension of the proposed algorithms for

solving a more generalized problem where the time it

takes to process a job is proportional to a linear function

of its beginning time. Finally, conclusions along with

some possible future research directions are presented in

section 5.

2. Literature Review

The open shop scheduling problem where processing

times are fixed and the performance measure to be

minimized is makespan was first examined by Gonzalez

and Sahni (1976). They showed that an optimal schedule

for the two-machine problem O2//Cmax can be found in

O(n) time. The problem Om//Cmax with m3 is NP-hard.

The problem O2//Cmax has a special structure that allows

different solution methods. Gonzalez and Sahni first

proposed an O(n)-time algorithm (hereafter called

algorithm GS) for this problem. Algorithm GS starts with

partitioning the set of jobs into two subsets. Then, a

particular job, called the diagonal job, is selected. Finally,

an optimal schedule is constructed by combining a flow

shop type schedule with the processing of the diagonal

job. Pinedo and Schrage (1982) developed the Longest

Alternate Processing Time (LAPT) rule and verified its

optimality for the problem O2//Cmax. The key to the LAPT

rule is the priority of a job processed by one machine is

decided by its remaining processing time on the other

machine. de Werra (1989) presented a two-phase

algorithm (hereafter called algorithm W) for the same

problem. Algorithm W splits the set of n jobs into three

batches and finds an optimal schedule to the sequential

batch processing problem (Gribkovskaia et al., 2006).

Finally, Soper (2015) introduced another two-phase

algorithm (hereafter called algorithm S) for the problem

O2//Cmax. Similar to algorithm GS, algorithm S constructs

an optimal schedule based on a flow shop type schedule

with one job absent.

A number of authors considered the problem O2//Cmax

with various assumptions on the machine setting and job

processing constraints. Adiri and Amit (1983) considered

the problem with route-dependent processing times and

introduced an O(n)-time algorithm to solve a special case

with one dominant machine. Strusevich et al. (1999)

tackled the same problem and proposed a 3/2-

approximation algorithm. Breit et al. (2001) studied the

problem where one machine is unavailable to process jobs

for a certain time interval and introduced a 4/3-

approximation algorithm. Mosheiov et al.

(2018) examined the case in which a single maintenance

has to be done on one machine and starts within a given

time interval and developed a 3/2-approximation

algorithm. Chernykh et al. (2013) explored the problem

where machines and jobs are located at nodes of a

network. Instead of delivering jobs to machines for

processing, machines move through the network to

process jobs. Initially, two machines are placed at the

same node and must go back to this node after processing

all the jobs. For this problem, the authors presented a

13/8-approximation algorithm. Khramova & Chernykh

(2021) examined a similar yet even harder problem where

the common initial node of the machines is not fixed but

has to be chosen. Tellache et al. (2019) addressed the

problem under resource constraints where a job can

simultaneously visit both machines if certain conditions

are met. The authors examined some special cases and

proposed polynomial time algorithms. Huang et al. (2019)

conducted a survey of intelligent algorithms including

genetic algorithm, particle swarm optimization, cuckoo

search algorithm and ant colony optimization for solving

the problem Om//Cmax. The results showed that the cuckoo

search algorithm is the best one to solve large scale

problems. Recently, Mejía and Yuraszeck (2020) studied

the problem Om//Cmax with travel times between machines

and sequence-dependent setup times. A variable

neighborhood search algorithm which incorporates a new

decoding scheme was proposed to solve the problem

under consideration. The reader is referred to Kubiak

(2022), Strusevich (2022) and Abreu et al. (2022) for an

in-depth discussion of new and recent research on the

open shop problem Om//Cmax.

In the literature, there is very limited research on the open

shop scheduling problem with variable processing times,

even for the two-machine case. Cheng and Shakhlevich

(2007) dealt with the problem for which processing times

are manageable and can be reduced with extra costs. They

developed an algorithm with O(n)-time complexity for the

problem to minimize the reduction cost for a given upper

bound on the makespan and an O(nlogn)-time algorithm

to simultaneously minimize the reduction cost and

makespan. Kononov (1996) and Mosheiov (2002)

independently showed that the two-machine open shop

Journal of Optimization in Industrial Engineering, Vol.15, Issue 2, Summer & Autumn 2022, 313- 321

315

scheduling problem with proportionally deteriorating

jobs, O2/pij=bijt/Cmax, can be solved in O(n) time by a

modification of the algorithm GS. Gawiejnowicz and

Kolinska (2021) considered the same problem and

proposed an O(n)-time dispatching rule. This rule, called

the Largest Alternate Deterioration Rate (LADR) first

rule, works just as the LAPT rule by Pinedo and Schrage

(1982) except that deterioration rates (bij) take the place of

processing times (pij). Li (2011) examined a variant of this

problem where one machine, called non-bottleneck

machine, has unlimited capacity. That is, this non-

bottleneck machine can simultaneously process an

arbitrary quantity of jobs. The author developed an

algorithm with pseudopolynomial time complexity for a

specific case of this problem. If the deterioration of

processing times is changed from a proportional form into

a linear form, Kononov and Gawiejnowicz (2001) showed

that the problem, O2/pij=aij+bijt/Cmax, is NP-hard, where aij

represents the basic time demanded by machine Mi to

process job j.

Note that the problem O2/pij=bijt/Cmax is currently the only

open shop scheduling problem with deteriorating jobs

which has been shown to be polynomially solvable. The

problem with three machines O3/pij=bijt/Cmax becomes NP-

hard (Kononov, 1996; Mosheiov, 2002). The reader is

referred to Gawiejnowicz (2020a, 2020b) for more

thorough reviews of the research on different time-related

open shop models.

3. Methodology

As mentioned above, there are four different algorithms in

literature for solving the traditional two-machine open

shop scheduling problem O2 //Cmax, namely algorithm GS,

LAPT rule, algorithm W and algorithm S. All these

algorithms have the same time complexity, O(n). Among

these algorithms, two of them, algorithm GS and LAPT

rule, have been revised to solve the two-machine open

shop scheduling problem with proportionally deteriorating

jobs, O2/pij=bijt/Cmax (Mosheiov, 2002; Gawiejnowicz and

Kolinska, 2021). In this manuscript, we modify the other

two algorithms, algorithm W and algorithm S, to solve the

same problem. For completeness, algorithm W and

algorithm S are concisely described in the following. For

ease of expression, for each job j, let

 , j=1, 2,…, n.

Algorithm W:
It contains two phases. In phase 1, the set of jobs N is

divided into three batches so that certain conditions are

met. These three batches are then relabeled appropriately

in phase 2 to ensure that optimality conditions hold.

Let T=max { ∑

 ∑

 }. Assume that

for each job j=1, 2,…, n.

Phase 1: generating three batches

1. Find the job k such that

 ∑

 ∑ ()

2. Generate three batches as follows:

 { }

 { }

 { }

Note that
 if k=1 and

 if k=n.

Phase 2: relabeling the batches

For any set of jobs Q, define () ∑ and

 () ∑ . Assume that () () 0.

1. If the condition

 (
)

 (1)

is satisfied, go to step 2. Else, go to step 3.

2. If the condition

 (
)

 (2)

is satisfied, define

Else, define

3. If condition (2) holds, define

Else, go to step 4.

4. If the condition

 (
)

 (3)

is satisfied, define

Else, define

The three-batch schedule is constructed as follows.

Machine M1 handles the batches in the sequence (, ,

) and machine M2 handles the batches in the sequence

(, ,). The jobs in batch first visit machine M1,

and then machine M2, while the jobs in batches and

first visit machine M2, and then machine M1. Note that the

jobs within each batch can be processed in a random

sequence without idle time in between and there is no

unforced idle time between two successive batches.

Algorithm S:
Algorithm S is also a two-phase method. A flow shop

permutation schedule with n-1 jobs, whose makespan is

no greater than the lower bound T, is found in phase 1.

An optimal open shop schedule with n jobs is then

constructed in phase 2.

It is well known that given a flow shop permutation

schedule S where jobs are handled in the order 1, 2,…, n,

its makespan is given by

 { ∑ ∑

 }

∑ ∑

 ,

where job is called the critical job.

Phase 1: finding an optimal flow shop permutation

schedule with n-1 jobs

1. Set
 { } and compute

 Let

k(1) be the critical job.

2. If
 stop and output

 . Else, set q=2

and go to step 3.

Ching-Fang Liaw/ Two-Machine Open Shop Scheduling…

316

3. Set
 { }. If q+n-2>n, set

q+j=q+j n for all j>n-q.

If q= stop and output
 . Otherwise,

compute

 (
) (

) .

If (
) stop and output

 . Else, set

q=q+1 and go to step 3.

Phase 2: finding an optimal open shop schedule S with n

jobs

Let be the schedule output by phase 1, and r be the

omitted job. Construct an open shop schedule S as

follows. Machine M1 processes the set of jobs N\{r} first

in the same order as in schedule , followed by job r.

Machine M2 processes job r first, then all jobs in N\{r} in

the same order as on machine M1. The set of jobs N\{r}

first visit machine M1, then machine M2, while job r first

visits machine M2, then machine M1.

In the following, we propose the modified algorithm W

(called algorithm W_m) and the modified algorithm S

(called algorithm S_m) to solve the problem O2 /pij=bijt/

Cmax. It is seen that both algorithms obtain an optimal

schedule in O(n) time. Without loss of generality, let

 . For ease of expression, for each job j, let

 , j=1, 2, …, n.

As shown by Mosheiov (2002), a lower bound T on the

optimal makespan of the problem O2 /pij=bijt/Cmax is given

by

 { ∏ (

)

 ∏ () }

 . (4)

We assume that for each job j, (

) () .

Otherwise, a schedule with makespan (

) ()

for some job j can be obtained as shown in Fig. 1. Since

the value (

) () is obviously a lower bound

on the optimal makespan, this schedule is optimal.

Fig.1. A trivial optimal schedule.

3.1. Algorithm W_m

Algorithm W_m consists of the following two phases.

Phase 1 splits the set of jobs N into three batches and

phase 2 properly relabels the generated batches. It is

easily seen that algorithm W_m runs in O(n) time.

Phase 1: generating three batches

1. Find the job k such that

∏

 and

 ∏

2. Same as the step 2 in phase 1 of algorithm W.

Phase 2: relabeling the batches

For any set of jobs Q, let)=∏

 and

 ()=∏ . Define () () 0.

1. If the condition

 (
)

 (5)

is satisfied, go to step 2. Else, go to step 3.

2. If the condition

 (
)

 (6)
is satisfied, define

Else, define

3. If condition (6) holds, define

Else, go to step 4.

4. If the condition

 (
)

 (7)
is satisfied, define

Else, define

Without loss of generality, let

 ∏ (

) ∏ ()

 .

That is, the workloads on both machines are equal. A

dummy job can be introduced if necessary. More

specifically, if , a dummy job j with

and

 is introduced. Otherwise, if

 , a dummy job j with and

 is

introduced.

Lemma 1. For the problem O2 /pij=bijt/ Cmax, if there exist

three batches and of jobs such that the

following inequalities hold,

 (8)

 (9)

 (10)

then an optimal schedule S with makespan T can be

generated by processing the batches in the order

() on machine M1 and the order () on

machine M2.

Proof: We remark that in schedule S the jobs in batch

first visit machine M1, and then machine M2, while the

jobs in batches and first visit machine M2, and then

machine M1. Fig. 2 shows the four possible structures of

schedule S. Since its makespan has the same value as the

lower bound T, schedule S is clearly optimal. Now, it is

sufficient to show that in schedule S the processing of

each job on different machines do not overlap. That is,

schedule S is feasible. Let and , respectively, be the

beginning time and finishing time of the processing of

batch on machine i, i=1, 2; l=1, 2, 3. We need to show

that , and .

Journal of Optimization in Industrial Engineering, Vol.15, Issue 2, Summer & Autumn 2022, 313- 321

317

If condition (8) is satisfied, we have

 .

If condition (9) holds, then

Due to inequality (10) we have

Therefore, the schedule S is feasible and hence optimal.

Fig. 2. Four possible structures of an optimal schedule S.

Lemma 2. For each batch , l=1, 2, 3, generated by

algorithm W_m, the following condition holds.

 (11)

Proof: Since , we have

 . (12)

The job k in step 1 of phase 1 exists, and hence inequality

(11) holds for l=1. As we assume for each job j, (

) () , j=1, 2, …, n, inequality (11) holds for

l=2. Finally, since

 ∏

 ,

due to inequality (12) we have that .

Thus, inequality (11) holds for l=3. □

Theorem 1. The three batches and generated by

algorithm W_m satisfy inequalities (8)-(10).

Proof: The result of Lemma 2 guarantees that condition

(10) is satisfied. If both conditions (5) and (6) are

satisfied, then conditions (8) and (9) are satisfied. There

are four cases to be considered.

Case 1: inequality (5) is valid and inequality (6) is not

valid

We have (
)

 and (
)

 . Since

 , it follows that (
)

 . Hence,

conditions (8) and (9) hold for

Case 2: inequality (5) is not valid and inequality (6) is

valid

We have (
)

 and (
)

 . Since

 , it follows that (
)

 . This

implies that conditions (8) and (9) are satisfied for

Case 3: both inequalities (5) and (6) are not valid and

inequality (7) is valid

As inequality (5) is not valid and inequality (7) is valid,

we have (
)

 and (
)

 . Similarly,

since , it follows that (
)

 .
This result together with inequality (7) implies that

conditions (8) and (9) hold for

Case 4: all the inequalities (5), (6) and (7) are not valid

As both inequalities (5) and (7) are not valid, we have

 (
)

 and (
)

 . It is seen that

conditions (8) and (9) are satisfied for

Example 1: A problem instance of O2 /pij=bijt/Cmax.

j 1 2 3 4 5

b1j= j 2 3 1 2 4

b2j= j 4 1 2 3 1

By definition, the lower bound

T= { ∏ ()

 ∏ ()

 }

 { }

Phase 1:

1. Since ∏

and
 ∏

 ,

it follows that k=3.

2. By construction,
 { }

 { } and

 { }.

Phase 2:

As (
)

 and

 (

) ,

define
 { }

 { }

{ }

The schedule generated by algorithm W_m is shown in

figure 3. As its makespan is the same as the lower bound

value T, the schedule is obviously optimal.

Ching-Fang Liaw/ Two-Machine Open Shop Scheduling…

318

Fig. 3.Schedule obtained by algorithm W_m for instance in

example 1.

3.2. Algorithm S_m

Given a flow shop permutation schedule S where both

machines process jobs in the order 1, 2,…, n, its

makespan is given by

{ ∏

 ∏

 }

 ∏ (

) ∏ ()

 (13)

where job is called the critical job of schedule S. For an

arbitrary value of q, , define by
 {

 } the flow shop permutation schedule

where jobs are handled in the order
 . In the following, by an abuse of notation, we set

 and for all j n. Algorithm S_m

consists of the following two phases. It is apparent the

algorithm has an O(n) time complexity.

Phase 1: finding an optimal flow shop permutation

schedule with n-1 jobs

1. Set
 { } and compute

{ ∏

 ∏

 }

 ∏

 ∏

where k(1) is the critical job of schedule
 .

2. If
 stop and output

 . Else, set

q=2 and go to step 3.

3. Set
 { }.

If q= stop and output
 . Else, compute

 (
) (

) () (

).

If (
) stop and output

 . Else, set q=q+1 and

go to step 3.

Phase 2: finding an optimal open shop schedule S with n

jobs

Same as phase 2 of algorithm S.

Lemma 1. Consider a permutation flow sop schedule

 { } with (

) in

phase 1 of algorithm S_m. Let k(q-1) be the critical job of

schedule
 . If q k(q-1), then (

)

 (
) () (

), where

{ }.

Proof: Note that if a critical job for schedule
 is the

same as that of schedule
 , i.e., k(q)=k(q-1), we have

 (
) ∏

 ∏

 ∏

 ∏

 () (

)

 (
) () (

)

Hence, it is sufficient to show that a critical job for

schedule
 is the same as that for schedule

 , for each

q k(q-1). Considering schedule
 , we have

 (
) ∏

 ∏

If ∏ ()

 ∏ (

)

 , then

 (
) ∏

 ∏

 ∏

 ∏

which is contradictory to the assumption (
)

 . Thus, it follows that

∏ ()

 ∏ (

)

 (14)

As shown in Fig. 4, by construction we must have

∏ (

)

 ∏ ()

 , for l=q, q+1,…,

k(q-1) (15)

Inequality (15) with l=q+1 together with inequality (14)

implies that a critical job of schedule
 is the same as

that of schedule
 , i.e., k(q)=k(q-1). □

Fig. 4. A permutation flow shop schedule
 .

Lemma 2. Phase 1 of algorithm S_m finds a schedule

 such that
 for a permutation flow shop

with n-1 jobs.

Proof: Consider the permutation flow shop schedules

 { }, q=1, 2,…, k(1). If

 T, we are done. Otherwise, as shown in

lemma 1, we can set k(q)=k(1) provided that

 (
) T for each q k(1). If there is a value q k(1)

such that (
) T,we are done. Otherwise, we need

to show that (
) T for q=k(1)+1, i.e.,

 (
) T.

Set q=k(1)+1 and k(q-1)=k(1). Considering the schedule

 as shown in Fig. 4 with job index k(q-1) replaced by

k(1), it follows that

Journal of Optimization in Industrial Engineering, Vol.15, Issue 2, Summer & Autumn 2022, 313- 321

319

∏ (

)
 ∏ ()

for l=k(1), k(1)+1,…,q+n-3. (16)

Since (
) T, inequality (16) holds. That is,

∏ (

)

∏ (

)

 ∏ ()

∏ ()

 (17)

Combining inequalities (16) and (17), we get

∏ (

)
 ∏ ()

for l=k(1), k(1)+1,…,q+n-2. (18)

Inequality (18) can be further rewritten as

∏ (

)

 ∏ ()

for l=k(1)+1, k(1)+2,…,k(1)+n. (19)

As
 { }, a

critical job of schedule
 can happen at k(1)+1,

k(1)+2,…,k(1)+n-1. Suppose a critical job of schedule

 occurs at k(1)+h, where . By

construction, we have

 (
) ∏

 ∏

Inequality (19) with l=k(1)+h, where ,

implies that

 (
) ∏

 ∏

 ∏
 ∏

Thus, a permutation flow shop schedule with

 must be found by Phase 1 of algorithm

S_m. □

Lemma 3. Phase 2 of algorithm S_m finds an open shop

schedule S with n jobs such that .

Proof: Phase 2 of algorithm S_m constructs an open shop

schedule S with n jobs from the flow shop permutation

schedule with n-1 jobs obtained in phase 1 of algorithm

S_m. Let r be the job in schedule S but not in schedule .

Given a schedule S, let be the finishing time of the

final job processed by machine Mi, i=1, 2.

By construction, all the n jobs are continuously processed

by machine M1. Thus, ∏
 . Let

 be the total idle time of machine M2 in schedule .
As all the jobs in schedule first visit machine M1, then

machine M2, the processing of jobs on machine M2 can be

arbitrarily delayed if needed. Since in schedule S machine

M2 processes job r first, the processing time of job r is

equal to . If , i.e., the total idle time is no

less than the time needed to handle job r on machine M2,

we have
 . Otherwise, the

processing of some of the jobs in on machine M2 will

be delayed due to the handle of job r on machine M2 and

the resulted schedule S will have no idle time on machine

M2. In this case, we have ∏
 . □

Theorem 2. Algorithm S_m finds an optimal schedule for

the problem O2 /pij=bijt/ Cmax.

Proof: It is easily seen that the open shop schedule

generated by algorithm S_m has no overlapping jobs and

hence is feasible. Since its makespan, by lemma 3, is less

than or equal to T, a lower bound on the optimal

makespan, the open shop schedule generated by algorithm

S_m is optimal for the problem O2/pij=bijt/Cmax. □

Example 2: Consider again the problem instance in

example 1.

Phase 1:

1. Set
 ={1, 2, 3, 4} and compute

)=max{360, 288, 288, 288}=360 with k(1)=1.

2. As
) =360, output schedule

 .

Phase 2:

The omitted job is job 5 (r=5). Machine M1 processes the

set of jobs {1, 2, 3, 4} in the order 1, 2, 3, 4, followed by

job 5. Machine M2 processes job 5 first, then the set of

jobs {1, 2, 3, 4} in the order 1, 2, 3, 4. Jobs 1, 2, 3 and 4

first visit machine M1 and then machine M2, while job 5

first visit machine M2 and then machine M1. The resulted

schedule is shown in Fig. 5. Given that its makespan is the

same as the lower bound value T, the schedule is clearly

optimal.

Fig. 5.Schedule obtained by algorithm S_m for instance in

example 1.

4. Discussion

Another problem which can be viewed as a generalization

of the one examined in this manuscript is the open shop

scheduling problem with two machines and

proportionally-linear deteriorating jobs,

O2/pij=bij(a+ct)/Cmax, where and . The

problem reduces to O2/pij=bijt/Cmax when a=0 and c=1. We

remark that both the algorithms proposed in section 3 for

the problem O2/pij=bijt/Cmax can be slightly modified to

solve the problem O2/pij=bij(a+ct)/Cmax. The proof is

straightforward and hence is omitted.

Again, assume that . Based on the results by

Kononov (1998), a lower bound on the optimal makespan

for the problem O2/pij=bij(a+ct)/Cmax is given by

 { ∏ ()

 ∏ () }

 (20)

Here, the trivial case where the optimal makespan is

equivalent to the total processing time of a single job is

excluded. Equality (20) is a counterpart of equality (4) for

problem O2/pij=bijt/Cmax, where

 ∏ (

)

 is the workload of machine

M1 and

 ∏ ()

 is the workload of

machine M2. For ease of execution, let

 { ∏ (

)

 ∏ () }

 . The

modified algorithms, named algorithm W_m2 and

Ching-Fang Liaw/ Two-Machine Open Shop Scheduling…

320

algorithm S_m2, for solving the problem

O2/pij=bij(a+ct)/Cmax are given as follows:

Algorithm W_m2：

Phase 1: generating three batches

1. Find the job k such that

∏

 and

 ∏

2. Same as the step 2 in phase 1 of algorithm W_m.

Phase 2: relabeling the batches

Same as the phase 2 of algorithm W_m except that for any

set of jobs Q,)=∏

 and ()=∏

 .

Algorithm S_m2：

Phase 1: finding an optimal flow shop permutation

schedule with n-1 jobs

1. Set
 { } and compute

{ ∏

 ∏

 }

 ∏

 ∏

where k(1) is the critical job of schedule
 .

2. If
 stop and output

 . Else, set q=2 and

go to step 3.

3. Set
 { }.

If q= stop and output
 . Else, compute

 (
) (

) () (

).

If (
) stop and output

 . Else, set q=q+1 and

go to step 3.

Phase 2: finding an optimal open shop schedule S with n

jobs

Same as phase 2 of algorithm S_m.

We remark that in these two algorithms only parameter c

is used to resolve the order jobs are handled by each

machine, while parameter a is used when the actual

finishing time of every job is calculated. Obviously, both

algorithms have O(n)-time complexity.

5. Conclusion

In this manuscript, we study the two-machine open shop

scheduling problem with proportionally deteriorating

processing times and the performance measure of

minimizing makespan. Currently, there are two exact

methods in literature with complexity O(n) for solving

this problem. Two new algorithms with the same

complexity O(n) are developed. This manuscript also

proved theoretically that both algorithms proposed can

optimally solve the problem O2/pij=bijt/Cmax. Two

numerical examples are given to demonstrate the

execution of these algorithms. Also, both algorithms are

further revised to solve a more generalized problem where

the time it takes to process a job is a general linear

function of its beginning time. This manuscript

contributes to some extent to the development of solution

methods and theoretical properties for the problem

O2/pij=bijt/Cmax.

For the open shop scheduling problem with two machines

and makespan objective, this manuscript considers two

basic models of deteriorating processing times,

proportional deterioration and proportionally-linear

deterioration. One possible direction for future research is

to explore other different models of deteriorating

processing times, for example linear deterioration,

exponential deterioration, generally-nonlinear

deterioration, etc. Another possible future research

direction is to examine these problems with other

objectives, such as total completion times and total

tardiness. To the authors’ knowledge, the two-machine

open shop scheduling problem with makespan objective

and shortening job processing times has never been

studied. Hence, an appealing area for future research is to

examine various models for shortening job processing

times of the open shop scheduling problem with two

machines and makespan objective.

References

Abreu, L.R., Prata, B.A., Framinan, J.M. & Nagano, M.S.

(2022). New efficient heuristics for scheduling open

shops with makespan minimization. Computers &

Operations Research, 142 (2022) 105744.

doi.:10.1016/j.cor.2022.105744.

Adiri, I. & Amit, N. (1983). Route-dependent open-shop

scheduling. IIE Transactions, 15(3), 231-234.

Ahmadian, M.M., Khatami, M., Salehipour, A. & Cheng,

T.C.E. (2021). Four decades of research on the open-

shop scheduling problem to minimize the makespan.

European Journal of Operational Research, 295,

399-426.

Alidaee, B. & Womer, N.K. (1999). Scheduling with time

dependent processing times: Review and

extensions. Journal of the Operational Research

Society, 50, 711–720.

Behnamian, J. (2019). Diversified Particle Swarm

Optimization for Hybrid Flowshop Scheduling.

Journal of Optimization in Industrial Engineering,

12(2), 107- 119. doi: 10.22094/JOIE.2018.671.1433.

Breit, J., Schmidt, G. & Strusevich, V.A. (2001). Two-

machine open shop scheduling with an availability

constraint. Operations Research Letters, 29, 65-77.

Cheng, T.C.E. & Sharkhlevich, N,V. (2007). Two-

machine open shop problem with controllable

processing times. Discrete Optimization, 4, 175-184.

Cheng, T.C.E., Ding, Q. & Lin, B.M.-T. (2004). A

concise survey of scheduling with time-dependent

processing times. European Journal of Operational

Research, 152, 1–13.

Chernykh, I., Kononov, A. & Sevastyanov, S. (2013).

Efficient approximation algorithms for the routing

open shop problem. Computers and Operations

Research, 40(3), 841-847.

de Werra, D. (1989). Graph-theoretical models for

preemptive scheduling. Advances in Project

Scheduling (p171-185). Elsevier, Amsterdam,

Netherlands.

Journal of Optimization in Industrial Engineering, Vol.15, Issue 2, Summer & Autumn 2022, 313- 321

321

Enayati, M., Asadi-Gangraj E. & Paydar, M.M. (2021).

Scheduling on Flexible Flow Shop with Cost-related

Objective Function Considering Outsourcing

Options. Journal of Optimization in Industrial

Engineering, 14(2), 53-72. doi:

10.22094/JOIE.2020.1873983.1674

Gawiejnowicz, S. & Kolinska, M. (2021). Two- and

three-machine open shop scheduling using LAPT-

like rules. Computers & Industrial Engineering, 157,

(2021) 107261. doi: 10.1016/j.cie.2021.107261.

Gawiejnowicz, S. (1996a). A note on scheduling on a

single processor with speed dependent on a number

of executed jobs. Information Processing Letters, 57,

297–300.

Gawiejnowicz, S. (1996b). Brief survey of continuous

models of scheduling. Foundations of Computing

and Decision Sciences, 21, 81–100.

Gawiejnowicz, S. (2020a). A review of four decades of

time-dependent scheduling: main results, new topics

and open problems. Journal of Scheduling, 23, 3-47.

Gawiejnowicz, S. (2020b). Models and algorithms of

time-dependent scheduling. Springer, Berlin-

Heidelberg, Germany. doi:10.1007/978-3-662-

59362-2.

Gawiejnowicz, S. (2008). Time-dependent scheduling.

Springer, Berlin, Germany.

Gonzalez, T. & Sahni, S. (1976). Open shop scheduling to

minimize finish time. Journal of the Association for

Computing Machinery, 23, 665-679.

Graham, R.L., Lawler, E.L., Lenstra, J.K. & Rinnooy

Kan, A.H.G. (1979). Optimization and

approximation in deterministic sequencing and

scheduling: A survey. Annals of Discrete

Mathematics, 5, 287-326.

Gribkovskaia, I.V., Lee, C.-Y., Strusevich, V.A. & de

Werra, D. (2006). Three is easy, two is hard: open

shop sum-batch scheduling problem refined.

Operations Research Letters, 34, 459-464.

Huang, Z., Zhuang, Z., Cao, Q., Lu, Z., Guo, L. & Qin,

W. (2019). A survey of intelligent algorithms for

open shop scheduling problem. Procedia CIRP 83

(2019) 569–574.

Khramova, A.P. & Chernykh, I. (2021). A new algorithm

for the two-machine open shop and the polynomial

solvability of a scheduling problem with

routing. Journal of Scheduling, 24, 405–412.

doi:10.1007/s10951-021-00694-7.

Kononov, A. & Gawiejnowicz, S. (2001). NP-hard cases

in scheduling deteriorating jobs on dedicated

machines. Journal of the Operations Research

Society, 52, 708-718.

Kononov, A. (1996). Combinatorial complexity of

scheduling jobs with simple linear deterioration.

Discrete Analysis and Operations Research, 3, 15-

32. (In Russian)

Kononov, A. (1998). Single machine scheduling problems

with processing times proportional to an arbitrary

function. Discrete Analysis and Operations

Research, 5, 17-37. (In Russian)

Kubiak, W. (2022). A book of Open Shop Scheduling:

Algorithms, Complexity and Applications. Springer

Nature, Berlin, Germany. doi:10.1007/978-3-030-

91025-9.

Li, S.-S. (2011). Scheduling proportionally deteriorating

jobs in two-machine open shop with a non-

bottleneck machine. Asia-Pacific Journal of

Operations Research, 28, 623-631.

Mejía G. & Yuraszeck, F. (2020). A self-tuning variable

neighborhood search algorithm and an effective

decoding scheme for open shop scheduling problems

with

travel/setup times. European Journal of Operational

Research, 285, 484-496.

Mosheiov, G. (2002). Complexity analysis of job-shop

scheduling with deteriorating jobs. Discrete Applied

Mathematics, 117, 195-209.

Mosheiov, G., Sarig, A., Strusevich, V.A. & Mosheiff, J.

(2018). Two-machine flow shop and open shop

scheduling problems with a single maintenance

window. European Journal of Operational

Research, 271, 388-400.

Pinedo, M. & Schrage, L. (1982). Stochastic shop

scheduling: A survey. Deterministic and Stochastic

Scheduling (p181-196). Springer, Berlin, Germany.

Soper, A.J. (2015). A cyclical search for the two machine

flow shop and open shop to minimise finishing time.

Journal of Scheduling, 18(3), 311-314.

Strusevich, V.A. & Rustogi, K. (2017). Scheduling with

time-changing effects and rate-modifying activities.

Springer, Berlin, Germany.

Strusevich, V.A., Van De Waart, A. & Dekker, R. (1999).

A 3/2 algorithm for two-machine open shop with

route-dependent processing times. Journal of

Heuristics, 5(1), 5-28.

Strusevich, V.A. (2022). Complexity and approximation

of open shop scheduling to minimize the makespan:

A review of models and approaches. Computers &

Operations Research, 144 (2022) 105732. doi:

10.1016/j.cor.2022.105732.

Tellache, N.E., Boudhar, M. & Yalaoui, F. (2019). Two-

machine open shop problem with agreement graph.

Theoretical Computer Science, 796, 154-168.

Yavari, S., Azab, A., Baki, M.F., Alcelay, M. & Britt, J.

(2020). Machine Scheduling for Multitask

Machining. Journal of Optimization in Industrial

Engineering, 13(2), 1-15. doi:

10.22094/JOIE.2020.1869865.1660

This article can be cited: Liaw, C. (2022). Two-Machine Open Shop Scheduling with

Proportionally Deteriorating Jobs and Makespan Objective. Journal of Optimization in

Industrial Engineering, 15(2), 313-321. Doi: 10.22094/joie.2022.1949101.1926

