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Abstract  
 

This manuscript examines the two-machine open shop scheduling problem where the latter a job is scheduled the longer it takes to process 

this job. The performance is measured by minimizing the makespan. By modifying existing algorithms for the corresponding problem with 

fixed processing times, two new algorithms are developed for the problem under consideration. The proofs of optimality of both algorithms 

are presented. The execution of these algorithms is illustrated by two numerical examples. Finally, both algorithms are further modified to 

solve a more generalized problem where the time demanded to process a job is a general linear function of its beginning time. 
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1. Introduction  
  

A traditional scheduling problem assumes fixed job 

processing times (Enayati et al. 2021, Yavari et al. 2020, 

Behnamian, 2019).  Nevertheless, in many production 

occasions the time needed to process a job can vary and 

rely on the beginning time of its processing. In some 

cases, jobs may get deteriorated while waiting to be 

processed, which will increase their processing times. For 

instance, the time it needs to process an ingot in a steel 

mill will become longer as its waiting time increases. 

Also, at the scene of a fire, the delayed arrival of a fire 

engine will increase the time demanded to extinguish the 

fire. Other real life examples include the time required for 

maintaining a machine tends to grow proportionately to 

the time elapsed from the last maintenance, the time 

needed to remove the dust from an equipment will 

increase over time, the time demanded for the operation 

of a patient usually increases with the delay of the start of 

the operation, the travel time between two points in a 

congested urban area will gradually increase as it 

approaches the rush hour etc. 

Scheduling problems for which the latter a job is 

scheduled the longer it needs to process this job are 

generally known as scheduling with deteriorating jobs, 

and have been broadly examined in the literature. Various 

models have been proposed for scheduling with 

deteriorating jobs including the sequence-related model 

and the time-dependent model. In a sequence-related 

model (Gawiejnowicz, 1996a; Strusevich and Rustogi 

2017), the processing time of a job is determined by its 

order in the schedule. In other words, the time it needs to 

process a job relies on the number of its preceding jobs. 

The time-related model (Alidaee and Womer, 1999; 

Cheng et al., 2004; Gawiejnowicz, 1996b, 2008, 2020b) 

however presumes that the time it takes to process a job is 

a function of its beginning time. The problem examined in 

this manuscript belongs to the time-related model. Time-

related models can be further classified into several 

different models depending on the form of the function 

which defines job processing times. In this manuscript, 

we address the proportional deterioration model where the 

job processing times proportionally deteriorate in time.  

Current research concerning scheduling problems with 

deteriorating jobs mostly examines single-machine and 

parallel-machine problems. Even though a few researches 

have explored this issue for dedicated-machine problems, 

they have focused on flow shop models. The study of 

scheduling with deteriorating jobs for job shop or open 

shop problems has been very limited in literature. This 

manuscript examines the scheduling problem with 

deteriorating jobs for two-machine open shops.  

Open shop is used to model the manufacturing 

environment where each job must visit each machine and 

there is no restriction on the routing of each job through 

the machines. In an open shop, a machine cannot 

simultaneously process exceeding one job and a job 

cannot be simultaneously processed by exceeding one 

machine. Examples of an open shop scheduling model 

include the scheduling of product testing activities and 

equipment maintenance operations, as the order in which 

the testing activities and the maintenance operations are 

performed is immaterial. Also, the open shop scheduling 

problem is often employed to model various problems 

occurring in the healthcare division. For example, patients 

need to go through a series of examinations and 

diagnoses, and the order in which these examinations and 

diagnoses are performed does not matter. The class-
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teacher scheduling problem is another case for which the 

open shop model is a commonly used formulation. The 

reader is referred to Almadian et al. (2021) for more 

applications of open shop models across different sectors. 

The problem investigated in the manuscript is described 

as follows. A set of n independent jobs N={1, 2,…, n} is 

required to be processed by two machines M1 and M2. 

Each job j can first visit machine M1 and then machine M2 

or vice versa. We assume that preemption is not permitted 

and both machines are constantly available from time t0>0 

for processing jobs. The time demanded to process job j 

on machine Mi is pij=bijt, where bij>0 denotes the 

deterioration rate of job j when it is processed by machine 

Mi and t> t0 denotes the beginning time of the processing 

of job j on machine Mi, for i=1, 2 and j=1, 2,…, n. The 

performance measure to be minimized is makespan, Cmax. 

Using the three-column symbolization of scheduling 

problem (Graham et al., 1979), the two-machine open 

shop scheduling problem with proportionally deteriorating 

jobs is denoted as O2/pij=bijt/Cmax. 

The remainder of this manuscript is organized as follows. 

A review of preceding research focusing on the 

scheduling of two-machine open shops with fixed and 

variable processing times to minimize makespan is given 

in the next section. By modifying existing algorithms for 

the problem where processing times are fixed, two new 

algorithms for the problem where processing times 

proportionally deteriorate in time, O2/pij=bijt/Cmax, are 

presented and analysed in section 3. Then, section 4 

examines the extension of the proposed algorithms for 

solving a more generalized problem where the time it 

takes to process a job is proportional to a linear function 

of its beginning time. Finally, conclusions along with 

some possible future research directions are presented in 

section 5. 
 

2. Literature Review 

The open shop scheduling problem where processing 

times are fixed and the performance measure to be 

minimized is makespan was first examined by Gonzalez 

and Sahni (1976). They showed that an optimal schedule 

for the two-machine problem O2//Cmax can be found in 

O(n) time. The problem Om//Cmax with m3 is NP-hard. 

The problem O2//Cmax has a special structure that allows 

different solution methods. Gonzalez and Sahni first 

proposed an O(n)-time algorithm (hereafter called 

algorithm GS) for this problem. Algorithm GS starts with 

partitioning the set of jobs into two subsets. Then, a 

particular job, called the diagonal job, is selected. Finally, 

an optimal schedule is constructed by combining a flow 

shop type schedule with the processing of the diagonal 

job. Pinedo and Schrage (1982) developed the Longest 

Alternate Processing Time (LAPT) rule and verified its 

optimality for the problem O2//Cmax. The key to the LAPT 

rule is the priority of a job processed by one machine is 

decided by its remaining processing time on the other 

machine. de Werra (1989) presented a two-phase 

algorithm (hereafter called algorithm W) for the same 

problem. Algorithm W splits the set of n jobs into three 

batches and finds an optimal schedule to the sequential 

batch processing problem (Gribkovskaia et al., 2006). 

Finally, Soper (2015) introduced another two-phase 

algorithm (hereafter called algorithm S) for the problem 

O2//Cmax. Similar to algorithm GS, algorithm S constructs 

an optimal schedule based on a flow shop type schedule 

with one job absent. 

A number of authors considered the problem O2//Cmax 

with various assumptions on the machine setting and job 

processing constraints. Adiri and Amit (1983) considered 

the problem with route-dependent processing times and 

introduced an O(n)-time algorithm to solve a special case 

with one dominant machine. Strusevich et al. (1999) 

tackled the same problem and proposed a 3/2-

approximation algorithm. Breit et al. (2001) studied the 

problem where one machine is unavailable to process jobs 

for a certain time interval and introduced a 4/3-

approximation algorithm. Mosheiov et al. 

(2018) examined the case in which a single maintenance 

has to be done on one machine and starts within a given 

time interval and developed a 3/2-approximation 

algorithm. Chernykh et al. (2013) explored the problem 

where machines and jobs are located at nodes of a 

network. Instead of delivering jobs to machines for 

processing, machines move through the network to 

process jobs. Initially, two machines are placed at the 

same node and must go back to this node after processing 

all the jobs. For this problem, the authors presented a 

13/8-approximation algorithm. Khramova & Chernykh 

(2021) examined a similar yet even harder problem where 

the common initial node of the machines is not fixed but 

has to be chosen. Tellache et al. (2019) addressed the 

problem under resource constraints where a job can 

simultaneously visit both machines if certain conditions 

are met. The authors examined some special cases and 

proposed polynomial time algorithms. Huang et al. (2019) 

conducted a survey of intelligent algorithms including 

genetic algorithm, particle swarm optimization, cuckoo 

search algorithm and ant colony optimization for solving 

the problem Om//Cmax. The results showed that the cuckoo 

search algorithm is the best one to solve large scale 

problems. Recently, Mejía and Yuraszeck (2020) studied 

the problem Om//Cmax with travel times between machines 

and sequence-dependent setup times. A variable 

neighborhood search algorithm which incorporates a new 

decoding scheme was proposed to solve the problem 

under consideration. The reader is referred to Kubiak 

(2022), Strusevich (2022) and Abreu et al. (2022) for an 

in-depth discussion of new and recent research on the 

open shop problem Om//Cmax. 

In the literature, there is very limited research on the open 

shop scheduling problem with variable processing times, 

even for the two-machine case. Cheng and Shakhlevich 

(2007) dealt with the problem for which processing times 

are manageable and can be reduced with extra costs. They 

developed an algorithm with O(n)-time complexity for the 

problem to minimize the reduction cost for a given upper 

bound on the makespan and an O(nlogn)-time algorithm 

to simultaneously minimize the reduction cost and 

makespan. Kononov (1996) and Mosheiov (2002) 

independently showed that the two-machine open shop 
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scheduling problem with proportionally deteriorating 

jobs, O2/pij=bijt/Cmax, can be solved in O(n) time by a 

modification of the algorithm GS. Gawiejnowicz and 

Kolinska (2021) considered the same problem and 

proposed an O(n)-time dispatching rule. This rule, called 

the Largest Alternate Deterioration Rate (LADR) first 

rule, works just as the LAPT rule by Pinedo and Schrage 

(1982) except that deterioration rates (bij) take the place of 

processing times (pij). Li (2011) examined a variant of this 

problem where one machine, called non-bottleneck 

machine, has unlimited capacity. That is, this non-

bottleneck machine can simultaneously process an 

arbitrary quantity of jobs. The author developed an 

algorithm with pseudopolynomial time complexity for a 

specific case of this problem. If the deterioration of 

processing times is changed from a proportional form into 

a linear form, Kononov and Gawiejnowicz (2001) showed 

that the problem, O2/pij=aij+bijt/Cmax, is NP-hard, where aij 

represents the basic time demanded by machine Mi to 

process job j. 

Note that the problem O2/pij=bijt/Cmax is currently the only 

open shop scheduling problem with deteriorating jobs 

which has been shown to be polynomially solvable. The 

problem with three machines O3/pij=bijt/Cmax becomes NP-

hard (Kononov, 1996; Mosheiov, 2002). The reader is 

referred to Gawiejnowicz (2020a, 2020b) for more 

thorough reviews of the research on different time-related 

open shop models. 
 

3. Methodology 

As mentioned above, there are four different algorithms in 

literature for solving the traditional two-machine open 

shop scheduling problem O2 //Cmax, namely algorithm GS, 

LAPT rule, algorithm W and algorithm S. All these 

algorithms have the same time complexity, O(n). Among 

these algorithms, two of them, algorithm GS and LAPT 

rule, have been revised to solve the two-machine open 

shop scheduling problem with proportionally deteriorating 

jobs, O2/pij=bijt/Cmax (Mosheiov, 2002; Gawiejnowicz and 

Kolinska, 2021). In this manuscript, we modify the other 

two algorithms, algorithm W and algorithm S, to solve the 

same problem. For completeness, algorithm W and 

algorithm S are concisely described in the following. For 

ease of expression, for each job j, let               

   , j=1, 2,…, n. 

Algorithm W: 
It contains two phases. In phase 1, the set of jobs N is 

divided into three batches so that certain conditions are 

met. These three batches are then relabeled appropriately 

in phase 2 to ensure that optimality conditions hold. 

Let T=max { ∑   
 
    ∑   

 
   }. Assume that         

for each job j=1, 2,…, n. 

Phase 1: generating three batches 

1. Find the job k such that  

 ∑        
   
            ∑ (     )

 
       

2. Generate three batches as follows: 

  
  {         } 

  
  { } 

  
  {           } 

Note that   
    if k=1 and   

    if k=n. 

Phase 2: relabeling the batches  

For any set of jobs Q, define  ( ) ∑       and 

 ( ) ∑      . Assume that  ( )   ( )  0. 

1. If the condition 

 (  
 )     

       (1) 

is satisfied, go to step 2. Else, go to step 3. 

2. If the condition 

 (  
 )     

      (2)  

is satisfied, define      
       

       
     

Else, define      
       

       
   

3. If condition (2) holds, define      
       

     
  

     
Else, go to step 4. 

4. If the condition 

 (  
 )     

      (3) 

is satisfied, define      
       

       
    

Else, define      
       

       
   

The three-batch schedule is constructed as follows. 

Machine M1 handles the batches in the sequence (  ,   , 

  ) and machine M2 handles the batches in the sequence 

(  ,   ,   ). The jobs in batch    first visit machine M1, 

and then machine M2, while the jobs in batches    and    

first visit machine M2, and then machine M1. Note that the 

jobs within each batch can be processed in a random 

sequence without idle time in between and there is no 

unforced idle time between two successive batches. 

Algorithm S: 
Algorithm S is also a two-phase method. A flow shop 

permutation schedule with n-1 jobs, whose makespan is 

no greater than the lower bound T, is found in phase 1. 

An optimal open shop schedule with n jobs is then 

constructed in phase 2.  

It is well known that given a flow shop permutation 

schedule S where jobs are handled in the order 1, 2,…, n, 

its makespan is given by  

                 { ∑    ∑   
 
   

 
    }  

∑    ∑   
 
    

  
   , 

where job   is called the critical job. 

Phase 1: finding an optimal flow shop permutation 

schedule    with n-1 jobs 

1. Set   
  {         } and compute        

    Let 

k(1) be the critical job. 

2. If        
      stop and output   

 . Else, set q=2 

and go to step 3. 
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3. Set   
  {             }. If q+n-2>n, set 

q+j=q+j n for all j>n-q. 

If q=        stop and output   
 . Otherwise, 

compute 

       (  
 )      (    

 )             .  

If     (  
 )     stop and output   

 . Else, set 

q=q+1 and go to step 3. 

Phase 2: finding an optimal open shop schedule S with n 

jobs 

Let    be the schedule output by phase 1, and r be the 

omitted job. Construct an open shop schedule S as 

follows. Machine M1 processes the set of jobs N\{r} first 

in the same order as in schedule   , followed by job r.  

Machine M2 processes job r first, then all jobs in N\{r} in 

the same order as on machine M1. The set of jobs N\{r} 

first visit machine M1, then machine M2, while job r first 

visits machine M2, then machine M1. 

In the following, we propose the modified algorithm W 

(called algorithm W_m) and the modified algorithm S 

(called algorithm S_m) to solve the problem O2 /pij=bijt/ 

Cmax.  It is seen that both algorithms obtain an optimal 

schedule in O(n) time. Without loss of generality, let 

    . For ease of expression, for each job j, let 

 
 
               , j=1, 2, …, n. 

As shown by Mosheiov (2002), a lower bound T on the 

optimal makespan of the problem O2 /pij=bijt/Cmax is given 

by 

      { ∏ (   
 
)   

   ∏ (    ) } 
 
   .  (4) 

We assume that for each job j, (   
 
) (    )   . 

Otherwise, a schedule with makespan (   
 
) (    ) 

for some job j can be obtained as shown in Fig. 1. Since 

the value (   
 
) (    ) is obviously a lower bound 

on the optimal makespan, this schedule is optimal. 

 
Fig.1. A trivial optimal schedule. 

3.1. Algorithm W_m  

Algorithm W_m consists of the following two phases. 

Phase 1 splits the set of jobs N into three batches and 

phase 2 properly relabels the generated batches. It is 

easily seen that algorithm W_m runs in O(n) time. 

Phase 1: generating three batches 

1. Find the job k such that  

∏     
 
       

   
      and 

 ∏     
 
       

 
       

2. Same as the step 2 in phase 1 of algorithm W. 

Phase 2: relabeling the batches  

For any set of jobs Q, let    )=∏     
 
     and 

 ( )=∏          . Define  ( )   ( )  0. 

1. If the condition 

 (  
 )     

       (5) 

is satisfied, go to step 2. Else, go to step 3. 

2. If the condition 

 (  
 )     

       (6)  
is satisfied, define      

       
       

     
Else, define      

       
       

   
3. If condition (6) holds, define      

       
     

  
     

Else, go to step 4. 

4. If the condition 

 (  
 )     

       (7) 
is satisfied, define      

       
       

    
Else, define      

       
       

   

Without loss of generality, let  

       ∏ (   
 
)  ∏ (    )

 
         

   . 

That is, the workloads on both machines are equal. A 

dummy job can be introduced if necessary. More 

specifically, if           , a dummy job j with  
 
   

and    
    

    
   is introduced. Otherwise, if       

    , a dummy job j with      and  
 
 

    

    
   is 

introduced. 

Lemma 1. For the problem O2 /pij=bijt/ Cmax, if there exist 

three batches       and    of jobs such that the 

following inequalities hold, 

                (8) 

                (9) 

                 (10) 

then an optimal schedule S with makespan T can be 

generated by processing the batches in the order 

(        ) on machine M1 and the order (        ) on 

machine M2. 

Proof: We remark that in schedule S the jobs in batch    

first visit machine M1, and then machine M2, while the 

jobs in batches    and    first visit machine M2, and then 

machine M1. Fig. 2 shows the four possible structures of 

schedule S. Since its makespan has the same value as the 

lower bound T, schedule S is clearly optimal. Now, it is 

sufficient to show that in schedule S the processing of 

each job on different machines do not overlap. That is, 

schedule S is feasible. Let     and    , respectively, be the 

beginning time and finishing time of the processing of 

batch    on machine i, i=1, 2; l=1, 2, 3. We need to show 

that        ,         and        . 
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If condition (8) is satisfied, we have 

                    .  

If condition (9) holds, then  

               
 

     
 

 

     
           

         

Due to inequality (10) we have 

          
 

     
                     

Therefore, the schedule S is feasible and hence optimal.  

Fig. 2. Four possible structures of an optimal schedule S. 

 

Lemma 2. For each batch   , l=1, 2, 3, generated by 

algorithm W_m, the following condition holds. 

                 (11) 

Proof: Since            , we have  

          .     (12) 

The job k in step 1 of phase 1 exists, and hence inequality 

(11) holds for l=1. As we assume for each job j, (  

 
 
) (    )   , j=1, 2, …, n, inequality (11) holds for 

l=2. Finally, since 

 ∏     
 
       

 
                          , 

due to inequality (12) we have that             . 

Thus, inequality (11) holds for l=3.  □ 

Theorem 1. The three batches       and    generated by 

algorithm W_m satisfy inequalities (8)-(10). 

Proof: The result of Lemma 2 guarantees that condition 

(10) is satisfied. If both conditions (5) and (6) are 

satisfied, then conditions (8) and (9) are satisfied. There 

are four cases to be considered. 

Case 1: inequality (5) is valid and inequality (6) is not 

valid 

We have  (  
 )     

   and  (  
 )     

  . Since 

           , it follows that  (  
 )     

  . Hence, 

conditions (8) and (9) hold for      
       

     
  

   

Case 2: inequality (5) is not valid and inequality (6) is 

valid 

We have  (  
 )     

   and  (  
 )     

  . Since 

           , it follows that  (  
 )     

  . This 

implies that conditions (8) and (9) are satisfied for 

     
       

       
   

Case 3: both inequalities (5) and (6) are not valid and 

inequality (7) is valid 

As inequality (5) is not valid and inequality (7) is valid, 

we have  (  
 )     

   and  (  
 )     

  . Similarly, 

since            , it follows that  (  
 )     

  . 
This result together with inequality (7) implies that 

conditions (8) and (9) hold for      
       

     
  

   

Case 4: all the inequalities (5), (6) and (7) are not valid 

As both inequalities (5) and (7) are not valid, we have 

 (  
 )     

   and  (  
 )     

  . It is seen that 

conditions (8) and (9) are satisfied for      
     

  
       

     

Example 1: A problem instance of O2 /pij=bijt/Cmax. 

j 1 2 3 4 5 

b1j= j 2 3 1 2 4 

b2j= j 4 1 2 3 1 

 

By definition, the lower bound  

T=     { ∏ (    )
 
    ∏ (    )

 
    } 

        {                   }        

Phase 1: 

1. Since ∏     
 
       

 
                  

and 
 ∏     

 
       

 
                     ,  

it follows that k=3. 

2. By construction,   
  {   }   

  { }  and 
  

  {   }. 

Phase 2: 

As  (  
 )            

     and  

    
           (  

 )       ,  

define      
  {   }      

  {   }      
  

{ }  

The schedule generated by algorithm W_m is shown in 

figure 3. As its makespan is the same as the lower bound 

value T, the schedule is obviously optimal. 
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Fig. 3.Schedule obtained by algorithm W_m for instance in 

example 1. 

3.2. Algorithm S_m 

Given a flow shop permutation schedule S where both 

machines process jobs in the order 1, 2,…, n, its 

makespan is given by 

           
     

{ ∏   
     

 
  ∏   

        } 

 ∏ (   
 
) ∏ (    )

 
       

       (13) 

where job    is called the critical job of schedule S. For an 

arbitrary value of q,      , define by   
  {    

         } the flow shop permutation schedule 

where jobs are handled in the order             
 . In the following, by an abuse of notation, we set 

 
 
  

   
 and         for all j n.  Algorithm S_m 

consists of the following two phases. It is apparent the 

algorithm has an O(n) time complexity. 

Phase 1: finding an optimal flow shop permutation 

schedule    with n-1 jobs 

1. Set   
  {         } and compute 

       
      

       
{ ∏   

     
 
  ∏   

          } 

 ∏   
    

    
 
 ∏      

           

where k(1) is the critical job of schedule   
 . 

2. If        
      stop and output   

 . Else, set 

q=2 and go to step 3. 

3. Set   
  {             }.  

If q=        stop and output   
 . Else, compute 

     (  
 )      (    

 )  (        ) (   
   

).  

If     (  
 )     stop and output   

 . Else, set q=q+1 and 

go to step 3. 

Phase 2: finding an optimal open shop schedule S with n 

jobs 

Same as phase 2 of algorithm S. 

  
Lemma 1. Consider a permutation flow sop schedule 

    
  {             } with     (    

 )    in 

phase 1 of algorithm S_m. Let k(q-1) be the critical job of 

schedule     
 . If q k(q-1), then     (  

 )  

    (    
 )  (        ) (   

   
), where   

  

{             }.  

Proof: Note that if a critical job for schedule   
  is the 

same as that of schedule     
 , i.e., k(q)=k(q-1), we have 

    (  
 )  ∏   

      
    

 
  ∏        

     
       

 ∏     
      

    
 
  ∏        

     
       

 (        ) (   
   

) 

     (    
 )  (        ) (   

   
) 

Hence, it is sufficient to show that a critical job for 

schedule   
  is the same as that for schedule     

 , for each 

q k(q-1). Considering schedule     
 , we have 

    (    
 )  ∏     

      
    

 
  ∏        

     
        

If ∏ (    )  
     
        ∏ (   

   
)

     
        , then 

    (    
 )  ∏     

      
    

 
  ∏        

     
   

      ∏     
     

    
 
  ∏   

     
 
    

which is contradictory to the assumption     (    
 )  

 . Thus, it follows that  

∏ (    )  
     
        ∏ (   

   
)

     
          (14) 

As shown in Fig. 4, by construction we must have 

∏ (   
 
)  

      
   ∏ (      )

      
   , for l=q, q+1,…, 

k(q-1)      (15) 

Inequality (15) with l=q+1 together with inequality (14) 

implies that a critical job of schedule   
  is the same as 

that of schedule     
 , i.e., k(q)=k(q-1). □ 

 

Fig. 4. A permutation flow shop schedule     
 . 

 

Lemma 2. Phase 1 of algorithm S_m finds a schedule 

   such that       
     for a permutation flow shop 

with n-1 jobs. 

Proof: Consider the permutation flow shop schedules 

  
  {             }, q=1, 2,…, k(1). If 

       
   T, we are done. Otherwise, as shown in 

lemma 1, we can set k(q)=k(1) provided that 

    (  
 )  T for each q k(1). If there is a value q k(1) 

such that     (  
 )  T,we are done. Otherwise, we need 

to show that     (  
 )  T for q=k(1)+1, i.e., 

    (       
 )  T. 

Set q=k(1)+1 and k(q-1)=k(1). Considering the schedule 

    
  as shown in Fig. 4 with job index k(q-1) replaced by 

k(1), it follows that 
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∏ (   
   

)   
      ∏ (    )

 
        

for l=k(1), k(1)+1,…,q+n-3.        (16) 

Since     (    
 )  T, inequality (16) holds. That is, 

∏ (   
   

)  
     
        

∏ (   
   

)
        
       ∏ (    )  

     
      

∏ (    )
        
       (17) 

Combining inequalities (16) and (17), we get  

∏ (   
   

)   
      ∏ (    )

 
        

for l=k(1), k(1)+1,…,q+n-2.    (18) 

Inequality (18) can be further rewritten as 

∏ (   
 
)   

        ∏ (    )
   
        

for l=k(1)+1, k(1)+2,…,k(1)+n.   (19) 

As        
  {                        }, a 

critical job of schedule        
  can happen at k(1)+1, 

k(1)+2,…,k(1)+n-1. Suppose a critical job of schedule 

       
  occurs at k(1)+h, where        . By 

construction, we have 

    (       
 )  ∏        

          
 
  ∏        

               

Inequality (19) with l=k(1)+h, where        , 

implies that  

    (       
 )  ∏      

               ∏        
               

  ∏      
                ∏   

          

Thus, a permutation flow shop schedule    with 

      
     must be found by Phase 1 of algorithm 

S_m. □ 

Lemma 3. Phase 2 of algorithm S_m finds an open shop 

schedule S with n jobs such that          . 

Proof: Phase 2 of algorithm S_m constructs an open shop 

schedule S with n jobs from the flow shop permutation 

schedule    with n-1 jobs obtained in phase 1 of algorithm 

S_m. Let r be the job in schedule S but not in schedule   . 

Given a schedule S, let       be the finishing time of the 

final job processed by machine Mi, i=1, 2. 

By construction, all the n jobs are continuously processed 

by machine M1. Thus,        ∏          
   . Let 

       be the total idle time of machine M2 in schedule   . 
As all the jobs in schedule    first visit machine M1, then 

machine M2, the processing of jobs on machine M2 can be 

arbitrarily delayed if needed. Since in schedule S machine 

M2 processes job r first, the processing time of job r is 

equal to   . If          , i.e., the total idle time is no 

less than the time needed to handle job r on machine M2, 

we have             
    . Otherwise, the 

processing of some of the jobs in    on machine M2 will 

be delayed due to the handle of job r on machine M2 and 

the resulted schedule S will have no idle time on machine 

M2. In this case, we have       ∏          
   . □ 

Theorem 2. Algorithm S_m finds an optimal schedule for 

the problem O2 /pij=bijt/ Cmax. 
 

Proof: It is easily seen that the open shop schedule 

generated by algorithm S_m has no overlapping jobs and 

hence is feasible. Since its makespan, by lemma 3, is less 

than or equal to T, a lower bound on the optimal 

makespan, the open shop schedule generated by algorithm 

S_m is optimal for the problem O2/pij=bijt/Cmax. □ 

Example 2: Consider again the problem instance in 

example 1. 

Phase 1: 

1. Set   
 ={1, 2, 3, 4} and compute 

       
 )=max{360, 288, 288, 288}=360 with k(1)=1. 

2. As        
 )  =360, output schedule   

 . 

Phase 2: 

The omitted job is job 5 (r=5). Machine M1 processes the 

set of jobs {1, 2, 3, 4} in the order 1, 2, 3, 4, followed by 

job 5. Machine M2 processes job 5 first, then the set of 

jobs {1, 2, 3, 4} in the order 1, 2, 3, 4. Jobs 1, 2, 3 and 4 

first visit machine M1 and then machine M2, while job 5 

first visit machine M2 and then machine M1. The resulted 

schedule is shown in Fig. 5. Given that its makespan is the 

same as the lower bound value T, the schedule is clearly 

optimal.  

 

Fig. 5.Schedule obtained by algorithm S_m for instance in 

example 1. 

4. Discussion 

Another problem which can be viewed as a generalization 

of the one examined in this manuscript is the open shop 

scheduling problem with two machines and 

proportionally-linear deteriorating jobs, 

O2/pij=bij(a+ct)/Cmax, where     and    . The 

problem reduces to O2/pij=bijt/Cmax when a=0 and c=1. We 

remark that both the algorithms proposed in section 3 for 

the problem O2/pij=bijt/Cmax can be slightly modified to 

solve the problem O2/pij=bij(a+ct)/Cmax. The proof is 

straightforward and hence is omitted. 

Again, assume that     . Based on the results by 

Kononov (1998), a lower bound on the optimal makespan 

for the problem O2/pij=bij(a+ct)/Cmax is given by 

 

     
 

 
     { ∏ (     )   

   ∏ (     ) }
 
    

 

 
 (20) 

Here, the trivial case where the optimal makespan is 

equivalent to the total processing time of a single job is 

excluded. Equality (20) is a counterpart of equality (4) for 

problem O2/pij=bijt/Cmax, where 

   
 

 
 ∏ (    

 
)  

 

 
   

    is the workload of machine 

M1 and    
 

 
  ∏ (     )  

 

 
   

    is the workload of 

machine M2. For ease of execution, let 

       { ∏ (    
 
)   

   ∏ (     ) } 
 
   . The 

modified algorithms, named algorithm W_m2 and 
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algorithm S_m2, for solving the problem 

O2/pij=bij(a+ct)/Cmax are given as follows: 

Algorithm W_m2： 

Phase 1: generating three batches 

1. Find the job k such that  

∏      
 
        

   
       and  

 ∏      
 
        

 
        

2. Same as the step 2 in phase 1 of algorithm W_m. 

Phase 2: relabeling the batches 

Same as the phase 2 of algorithm W_m except that for any 

set of jobs Q,    )=∏      
 
     and  ( )=∏       

    . 

 

Algorithm S_m2： 

Phase 1: finding an optimal flow shop permutation 

schedule    with n-1 jobs 

1. Set   
  {         } and compute 

       
      

       
{ ∏   

      
 
  ∏   

           } 

 ∏   
    

     
 
 ∏      

            

where k(1) is the critical job of schedule   
 . 

2. If        
       stop and output   

 . Else, set q=2 and 

go to step 3. 

3. Set   
  {             }.  

If q=        stop and output   
 . Else, compute 

     (  
 )      (    

 )  (         ) (    
   

).  

If     (  
 )      stop and output   

 . Else, set q=q+1 and 

go to step 3. 

Phase 2: finding an optimal open shop schedule S with n 

jobs 

Same as phase 2 of algorithm S_m. 

We remark that in these two algorithms only parameter c 

is used to resolve the order jobs are handled by each 

machine, while parameter a is used when the actual 

finishing time of every job is calculated. Obviously, both 

algorithms have O(n)-time complexity. 

5. Conclusion 

In this manuscript, we study the two-machine open shop 

scheduling problem with proportionally deteriorating 

processing times and the performance measure of 

minimizing makespan. Currently, there are two exact 

methods in literature with complexity O(n) for solving 

this problem. Two new algorithms with the same 

complexity O(n) are developed. This manuscript also 

proved theoretically that both algorithms proposed can 

optimally solve the problem O2/pij=bijt/Cmax. Two 

numerical examples are given to demonstrate the 

execution of these algorithms. Also, both algorithms are 

further revised to solve a more generalized problem where 

the time it takes to process a job is a general linear 

function of its beginning time. This manuscript 

contributes to some extent to the development of solution 

methods and theoretical properties for the problem 

O2/pij=bijt/Cmax. 

For the open shop scheduling problem with two machines 

and makespan objective, this manuscript considers two 

basic models of deteriorating processing times, 

proportional deterioration and proportionally-linear 

deterioration. One possible direction for future research is 

to explore other different models of deteriorating 

processing times, for example linear deterioration, 

exponential deterioration, generally-nonlinear 

deterioration, etc. Another possible future research 

direction is to examine these problems with other 

objectives, such as total completion times and total 

tardiness. To the authors’ knowledge, the two-machine 

open shop scheduling problem with makespan objective 

and shortening job processing times has never been 

studied. Hence, an appealing area for future research is to 

examine various models for shortening job processing 

times of the open shop scheduling problem with two 

machines and makespan objective. 
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