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Abstract 

Accelerated Life Testing (ALT) is very important in evaluating the reliability of highly reliable products. According to ALT procedure, 

products undergo higher stress levels than normal conditions to reduce the failure times. ALTs have been studied for various conditions and 

stresses. In addition to common stresses such as temperature and humidity, random usage can also be considered as another stress that can 

cause failure. Design of ALT plan for products which are exposed to random usage process has not been studied in the literature. 

Therefore, a procedure for designing ALT plan for these products is studied in this paper. To do so, hazard rate of products is formulated 

based on the random usage process and other stresses. Then, the variance of the hazard rate is estimated over a predetermined time period. 

Optimum stress levels and the number of units at every stress level are obtained by numerically minimizing the variance of the hazard rate 

estimate. Numerical example and sensitivity analysis are performed to show the application and robustness of the model to parameter 

deviations. The results show that the proposed procedure is robust to parameter changes and can be used for ALT planning of products 

under random usage.  

Keywords: Accelerated life testing; Reliability; Hazard rate; ALT plans; Random usage  

1. Introduction 

Manufacturers constantly confront the challenge of rapid 

development of new products while striving to enhance 

product quality and reliability. Methods such as 

concurrent engineering and designed experiments are 

being used by engineers to design quality and reliability 

into products (Mostafaeipour (2016)). The need for higher 

reliability products has created the need for early testing 

of materials, components, and systems (Escobar and 

Meeker (2006)). This is consistent with the modern 

quality philosophy in Meeker and Hamada (1995)  and 

Meeker and Escobar (2003) . They believe that “in order 

to produce high reliability products, the design and 

manufacturing processes should be improved and reliance 

on inspection should be avoided” (Escobar and Meeker 

(2006)).  

There are difficulties in estimating failure time 

distribution and reliability measures of components in 

high reliability products. Today, most products are 

produced to function for years without any failure. 

Therefore, few units will fail in a test at normal 

conditions. For example, a satellite is designed to operate 

expectedly for 10 to 15 years, however the design and test 

process may only last eight months. In manufacturing 

industries Accelerated Tests (AT) are applied to measure 

reliability of components and subsystems. These tests are 

used to verify components and spot failure modes so that 

they can be fixed or the products can be provided from 

other manufacturers. Due to rapid technological changes, 

more complex products, higher expectations of customers, 

and rapid development of products, ATs have found great 

importance. However, accelerated testing of complex 

products that have multiple failure mechanisms involves 

different practical and statistical issues. Generally, in 

order to estimate life or long-term performance at normal 

conditions, a statistical model that is reasonable from 

physical viewpoint is used to extrapolate the information 

obtained from high levels of one or more accelerating 

variables such as humidity, temperature, voltage, use rate, 

power cycling, vibration, and mechanical loading to their 

normal levels )Escobar and Meeker (2006)(.  

Accelerated life testing is one of the testing programs that 

accelerates aging process of a product by exposing it to 

conditions in excess of its normal service parameters. 

These testing programs are applied for estimating the 

reliability by using an appropriate statistical model in less 

time than would typically be needed. For more 

information on ALTs readers can refer to Nelson (2009), 

Meeker and Escobar (2014), the references in Nelson 

(2005a), (2005b), Polson and Soyer (2017), Roy and 

Mukhopadhyay (2016), and Ahmadini and Coolen (2020). 
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To obtain accurate estimates of reliability measures, an 

appropriate reliability model is required to find a 

relationship between failure times or failure rates at 

accelerated conditions to those at design conditions. Since 

these models usually predict the reliability in a long 

period of time, their accuracy is of great importance. 

Further, in order to achieve a greater accuracy in 

reliability prediction, ALT plans are used. In ALT plans, 

the proportion of units at each stress level, the optimum 

stress levels allocated to testing units, and the duration of 

the test are determined. Many researchers have worked on 

the design of ALT plans. Recently, Han (2020) studied a 

simple step‐ stress accelerated life test under progressive 

type I censoring and used 

D‐ optimality, C‐ optimality, A‐ optimality, 

and E‐ optimality to obtain an optimal plan. In another 

work, Han (2020) considered the same problem under the 

practical constraints that the test duration is pre-fixed and 

the total experimental cost does not exceed a pre-specified 

budget. The optimal design was investigated for 

exponential lifetimes with a single stress variable under 

several design criteria. Hakamipour (2020) proposed an 

approximated optimal design for a bivariate step-stress 

accelerated life test under type-I progressive censoring 

and generalized exponential distribution. By minimization 

of the asymptotic variance of the percentile life under the 

usual operating condition the optimum test plan was 

obtained. For more details on ALT plans readers can refer 

to the works of Nelson (2009), (2005a), (2005b), Zhu and 

Elsayed (2013b), (2013a), Yang and Pan (2013), Bai, 

Chung, and Chun (1993), Bai and Chung (1991), Han 

(2017), Lee et al. (2018), Wu and Huang (2019)). As it 

can be seen, previous studies on designing ALT plans 

have focused on products that are under one time-scale. In 

real world applications, systems often age because of two 

or more time-scales (Frickenstein and Whitaker (2003)). 

Sometimes several time-scales should be taken into 

consideration. Readers can refer to the works of Farewell 

and Cox (1979), Kordonsky and Gertsbakh (1997), 

Gertsbakh and Kordonsky (1998), Lawless, Crowder, and 

Lee (2009), Oakes (1995), Lawless and Crowder (2010), 

Duchesne and Lawless (2000), Noorossana and 

Sabri‐ Laghaie (2016), Sabri-Laghaie and Noorossana 

(2016), Asadi, Saidi-Mehrabad, and Fathi Aghdam (2019) 

to obtain more information about systems which are 

exposed to several time-scales. In this regard, 

Singpurwalla and Wilson (1998) developed probabilistic 

models for systems which are subjected to time-scales of 

time and usage. They utilized an additive hazards model 

and stochastic processes to relate the scales and describe 

the usage progress. Noorossana and Sabri‐ Laghaie 

(2016) investigated system reliability under competing 

risks and multiple time scales which follow independent 

Poisson processes. Finkelstein (2004) investigated the 

effect of a usage process on reliability performance of 

systems indexed by two scales. He discussed that the 

shape of the failure rate can be affected by random usage 

process. Sabri-Laghaie and Noorossana (2016) considered 

the effect of random usage on degradation processes and 

developed time-based and condition-based maintenance 

models to maximize availability of the system.  Lawless 

and Crowder (2010) proposed models to predict failures 

of systems exposed to varying levels of usage when data 

are incomplete. 

Despite the vast literature on optimal design of 

accelerated life tests, to the best of our knowledge, the 

optimal design of accelerated life tests for systems under 

multiple time-scales has not been addressed. For example, 

consider a system which may fail during time or due to a 

random usage process. Generally speaking, accelerated 

life tests developed for these systems don’t take into 

account the effect of random usage process in the design 

and implementation of these tests. Therefore, in this paper 

an approach for implementing and a model for optimal 

design of accelerated life tests for such systems are 

proposed. 

In the following section, we describe the problem of 

interest and its assumptions. In Section 3, mathematical 

formulations of the problem are provided. In Section 4, 

performance of the proposed model is presented through a 

numerical example and sensitivity analysis, respectively. 

Section 5 provides our concluding remarks. 

2. Problem Formulation and Assumptions 

As it was stated earlier, the purpose of this research is to 

propose an approach to implement accelerated life tests 

for systems under random usage. Therefore, we need to 

consider the effect of random usage process in applying 

an accelerated life test. Furthermore, we assume that a 

system is under the effect of a random usage according to 

a Poisson process. Hence, we are assuming that a random 

usage process affects the system as well as common 

stresses such as temperature, humidity, and electric field. 

This system should be randomly used while it is under a 

stress. Usage times are random and follow a specific 

probability distribution. Here we assume that time 

between two successive usages follows an exponential 

distribution. For example, suppose that we want to study 

the reliability of insulator coils used in electric motors. 

Under this condition, insulator coils are exposed to high 

temperature. Electric motors may be randomly used 

according to demand. In order to consider the effect of 

random usage in reliability tests we randomly use the 

motor while it is under a temperature stress. Therefore, 

each motor is simultaneously subjected to a random usage 

process and a temperature stress. It is clear that ignoring 

the effect of random usage with a specified time duration 

can distort the reliability analysis. Since reliability tests 

are implemented to predict the reliability of products, it is 

necessary to take into consideration the effect of random 

usage process.  

In this paper, it is supposed that the product is under a 

random Poisson usage process. Therefore, a reliability 

accelerated life test which includes a random usage is 

considered. In addition, it is assumed that the product is 
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exposed to another stress such as temperature or humidity 

too. Therefore, a model for designing accelerated life tests 

is developed by which the variance of the hazard rate 

estimate over a predetermined time period in design 

conditions is minimized and the optimal stress levels of 

test units and the number of units at every stress level are 

obtained. 

 

In this problem following assumptions are adopted: 

 

1- The product is exposed to a single constant stress z. 

2- It is assumed that the cumulative number of usages       

till time t, M(t), follows a Poisson process.  

3- The product, while exposed to stress z, repeatedly goes 

operational (M(t) times)  and each time stays operational 

for a pre-specified amount of time, say 
ut . 

4- In order to relate the reliability performance under 

different stress levels a hazard rate model, ( ; )h t z  is 

proposed.  

5- The baseline hazard function 
0 ( )h t  is: 

 

2

0 0 1 2( )h t t t      

 

where, 0 , 1 , and 2  are unknown parameters and t is 

the base time-scale. Constant, increasing, and decreasing 

hazard rates can be modeled by this type of hazard 

function. Examples of this model are presented in Figure 

1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Examples of baseline hazard function 

 

6- The upper and lower bounds of stress are pre-specified. 

The upper bound is expressed as the maximum possible 

stress level which above that other failure modes may 

occur.  

7- The total number of test units, n, is predetermined. The 

proportion of units allocated to the ith level of stress z is 

represented by ( 1,2,..., )ip i m where m is the number of 

stress levels.  

8- m or number of stress levels is pre-specified. 

9- Test units have independent life times. 

10- A predetermined censoring time,  , is considered for 

test termination. Therefore, the product goes operational 

at most ( )M  times during the test. It is clear that 

( )u Mt     

11- The usage process is not accelerated. 

3. Methodology 

In this section, the methodology for designing ALT plans 

for products exposed to random usage is described. First, 

the hazard rate function is formulated based on the 

random usage process. Then, the parameter estimation 

procedure is specified. The toolbar and its menus. 

3.1. Hazard rate function calculation by considering 

random usage 

As mentioned, the baseline hazard rate of product is  

2

0 0 1 2( )h t t t     (1) 

Therefore, cumulative baseline hazard rate is given as 
2 3

0 0 0 1 2

0

( ) ( )
2 3

t
t t

H t h s ds t     
 

(2) 

Singpurwalla and Wilson (1998) studied a case when one 

additional time scale (random usage) that is time-

dependent increases the hazard rate of the product based 

on a given function. Therefore, the hazard rate of the 

product can be defined as 

0( ) ( ) ( )h t h t M t  (3) 

where, M(t) is the cumulative usage process and   is the 

impact of additional time scale on hazard rate . Also, 
0 ( )h t  

is the base hazard rate of the product. Let M(t) follow a 

Poisson process as  

 
  exp ( ) ( )

Pr ( ) | ( ) 0,1,...
!

u
t t

M t u t u
u

 
    

where ( )t  is the mean of M(t). Again, according to 

Singpurwalla and Wilson (1998), the reliability function 

is given as 

   

0

0

( ) ( )
( ) exp

exp ( )exp
t

H t t
R t

t s s ds  

   
 
 
 

                (4) 

where ( ) ( )t d t dt   . ( )t  can be acquired based on 

the field data about the usage process of the product.  In 
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other words, one can fit a function on the usage count of 

the product over time and approximate ( )t . Therefore, 

 

 ( )

0
0

( ) ( ) ( ) ( ) ( )
t

s tf t dR t dt h t s e ds R t     
        (5) 

 

The hazard rate function, ( )h t , is finally given as 

( )

0
0

( ) ( ) ( ) ( ) ( )
t

s th t f t R t h t s e ds         (6) 

We use relation (6) and propose the following model to 

relate hazard rates in different stress levels.  
2

1 2 ( )
0

0
( ; ) ( ) ( )

zt
z z e s th t z h t e e s e ds

      (7) 

where, 
1  and 

2  are unknown parameters of the model. 

Based on relation (7) and 
0

( ; ) exp( ( ; ) )
t

R t z h x z dx  , 

reliability and failure probability distribution functions 

can be given as follows. 

 

    

1 0

2
0

exp ( ) ( )
( ; ) exp

( )exp exp
t

z H t t
R t z

s z s t ds



  

  
 
  
 

 
   (8) 

 

 
 

 

     

0 1

2

2
0

( ) exp

( ; ) exp
exp exp ( )

; ; ;

t

h t z

f t z z
z s ds

s t

R t z Q t z R t z




  



  
  

   
      

  


 

   (9) 

where, 

   

 
 

 

0 1

2

2
0

; ( )exp

exp
exp exp ( )

t

Q t z h t z

z
z s ds

s t




  





 
  

  


 
(10) 

We utilize maximum likelihood estimation (MLE) 

procedure to obtain the values of the model parameters. 

3.2. Parameter estimation 

In this section, the log likelihood function of an 

observation t under stress z with type І censoring is 

specified. Here, the indicator function ( )I I t    is 

defined in terms of censoring time τ as follows. 

 

Failure observed before time t  1

( )

0

I I t 




   



 

Censored at time t  

Log likelihood of a type І censored observation at stress z 

is given as 

     

    

1 0

2
0

; ; exp ( ) ( )

( )exp exp
t

Ln L t z I LnQ t z z H t t

s z s t ds



  

  

 
      (11) 

where,  ;Q t z  is given by equation (10). 

 

Let ith observation denoted as 
it  correspond to stress level 

iz  where its log likelihood is given as li. The sample log 

likelihood l  for n independent observations is as defined 

as  

... nl l l l   1 2  

 

For an individual observation, the partial derivatives with 

respect to the model parameters are 

(12) 
   

 
 1

1

0

; exp
exp

;

Ln L t z I z
t z

Q t z







 


 

(13) 
   

 
 

2
1

1

1

; exp
exp

; 2

Ln L t z I t z t
z

Q t z







 



 

(14) 
   

 
 

2 3
1

1

2

; exp
exp

; 3

Ln L t z I t z t
z

Q t z







 


 

(15) 

   

 

 

0 1

1

0 1

; ( ) exp

;

( ) exp

Ln L t z I h t z z

Q t z

H t z z














 

(16) 
 

    

 
 

 

   
   

2

20

2

2

2

0
2

exp exp

1

exp( );

;

exp
exp

t

t

z z s t

I z
s ds

z s tLn L t z

Q t z

z s t
s z s t ds

z

  




 



 
 





  
 

   


  
  

 





 

(17) 

 

 

 
 

 

 

 

 
  

2 2

2
0

2

0
2

;

exp 1 exp( )
exp

;

exp
exp

t

t

Ln L t z

z z
I z s ds

s ts t

Q t z

z
s s t ds

s t z



 
 






 






    
         

 
  

   





 

The maximum likelihood estimations of model 

parameters can be found by summing equations (12) to 

(17), equating them to zero, and simultaneously solving 

the resulting set of equations. Here, we just consider the 

correlation among parameters
0 ,

1 , and
2 . Second 

partial derivatives are accessible through appendix I. The 

elements of the Fisher information matrix for an 

individual observation that are the negative expectations 

of second partial derivatives can also be found in 

appendix II. The Fisher information matrix F for all units 

is represented as 

0 0 1 1 2 2 ... m mF n p F n p F n p F n p F      

In which, n is the total number of units under test, 
0p is 

the proportion of test units allocated to stress level
0z , 

1p is the proportion of test units allocated to stress 

level
1z , etc., and mp is the proportion of test units 

allocated to stress level
mz . In this regard, 

0F  is the 

Fisher information matrix for a unit under test 

condition
0z , 

1F  is the Fisher information matrix for a 

unit under test condition
1z , etc., and

mF  is the Fisher 

information matrix for a unit under test condition 
mz .  

The Fisher information matrix is a function of 
0 , 

1 , 

2 , 
1 , 

2 , ,  1,...,iz i m , and 

 1,...,ip i m . The asymptotic variance-covariance 
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matrix 
~

 of maximum likelihood estimates of 
0̂ , 

1̂ , 

2̂ , 
1̂ , 

2̂ , and ̂  is equal to the inverse of the Fisher 

information matrix F . 

 

         

         

         

   

0 0 1 0 2 0 1 0 2 0

0 1 1 1 2 1 1 1 2 1

0 2 1 2 2 2 1 2 21 2

~
0 1 1 1

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) , , , , ,

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, ( ) , , , ,

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , ( ) , , ,

ˆ ˆˆ ˆ ˆ, ,

Var Cov Cov Cov Cov Cov

Cov Var Cov Cov Cov Cov

Cov Cov Var Cov Cov Cov

Cov Cov Cov

          

          

          

    


     

         

         

1

2 1 1 1 2 1

0 21 1 21 2 21 1 2 2 2

0 1 2 1 2

ˆ ˆ ˆ ˆ ˆ ˆ, ( ) , ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ, , , , ( ) ,

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , , ( )

F
Var Cov Cov

Cov Cov Cov Cov Var Cov

Cov Cov Cov Cov Cov Var

     

          

          



 
 
 
 
 
 

 
 
 
 
 
 
  

 

Each ALT plan is described by stress levels, proportion of 

allocated units to each stress level, total number of 

available test units, and censoring time. Here, it is 

supposed that maximum and design stress levels, total 

number of available test units, and censoring time are pre-

determined. As Elsayed and Zhang (2007) proposed, the 

objective is to determine the stress levels and proportion 

of allocated test units to each level, such that the 

asymptotic variance of the MLE estimate of the hazard 

function at design conditions is minimized. This is a non-

linear optimization problem which is stated as follows. 

 

  1

2
2

ˆ2

0 1 2

( )
0

0

ˆ ˆ ˆ

Min  d
( )

z

z
T

t
z e s t

t t e
Var t

e s e ds




 

  

 

   
 
 
  




 

s.t. 

0 1, 0,1,...,ip i m  
 

0

1,
m

i

i

p



 

1

~

,F 
 

0 1 1 ,L m m Hz z z z z z     
 

0,1,...,

MNL,i
i m

np




 
where, T  is the time period that the hazard rate estimate 

is found over it and MNL is the least number of allocated 

units to stress levels. Stresses 
Lz and 

Hz are respectively 

the lowest and highest applicable stress levels under 

which other failure modes than the ones at normal 

conditions will not occur.  In fact, 
Lz is the normal 

condition.  

Here, Delta method is used to calculate 

 
2

1 2
ˆ ˆ ˆ( )

0 0
ˆ( ) ( ) d

ztz z e s tVar h t e e s e s
    

  
 

as below 

 

 

2
1 2
ˆ ˆ ˆ2 ( )

0 1 2
0

0 1 2 1 2

~0 1 2 0 1 21 2 1 2

ˆ ˆ ˆ ˆ ( ) d

ˆ ˆˆ ˆ ˆ ˆ ˆ, , , , ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
, , , , , , , , , , .

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

zt
z z e s tVar t t e e s e s

Var

     

      

           

          

   
  

 
 


              

    
             





 

Numerical methods should be utilized to solve this non-

linear optimization problem. 

 

4. Results and Discussion 

In this section, a procedure for executing ALT and 

collecting data is proposed. Then, a numerical example 

and sensitivity analysis on model parameters are given.  

 

4.1. Data collection procedure 

Here, a procedure for executing ALT and collecting 

failure data is proposed. Therefore, the following steps are 

considered: 

 

1- Determine censoring time, , of the 

test. 

2- According to the characteristics of the 

product and its usage conditions determine the 

usage time, ut . In other words, specify the time 

that the product should stay operational when it 

is used.  

3- According to a Poisson process with 

mean ( ) , generate m random numbers,
iM  for 

1,...,i m .  
iM is the maximum number of 

usage for stress level i during the test. 

4- Based on the values of  ut  and  

 make a timetable for implementing the usage 

process of the products. 

5- Put the units under stress levels and 

according to the timetable in step 4 implement 

the usage process on each unit. 

6- Record failure times for failed units and 

censoring times for the units that have not failed 

at time  . Failure times can be recorded by a 

device that detects failure or can be detected at 

some predetermined inspection intervals.  

4.2. A numerical example 

The type of testing in this article needs special conditions 

and has not already been considered in the literature. The 

testing equipment should be able to apply random usage 

to the units in addition to common stresses. Here, a set of 

failure times as represented in Table 1 is considered for 

the analysis. It is supposed that the failure data belong to a 

typical device and has been collected under accelerated 

life testing with a random usage. This product is exposed 

to three levels of temperature, 40, 60, and 80 degrees 

Celsius. The objective is to find if the product can meet 

the desired hazard rate in 5000 hours of testing and 30000 

hours of functioning in ambient temperature of 10 degrees 

Celsius. In addition to the mentioned conditions it is also 

assumed that the products are subjected to a random 

usage process with rate ( )t t  . The results of this test 

are presented in Table 1. 
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Table 1  

Accelerated life test data for a typical device 

Temperature 

( C ) 
No. of units Condition Hour 

10 30 Censored 5000 

40 1 Failed 1298 

40 1 Failed 1390 

40 1 Failed 3187 

40 1 Failed 3241 

40 1 Failed 3261 

40 1 Failed 3313 

40 1 Failed 4501 

40 1 Failed 4568 

40 1 Failed 4841 

40 1 Failed 4982 

40 90 Censored 5000 

60 1 Failed 581 

60 1 Failed 925 

60 1 Failed 1432 

60 1 Failed 1586 

60 1 Failed 2452 

60 1 Failed 2734 

60 1 Failed 2772 

60 1 Failed 4106 

60 1 Failed 4674 

60 11 Censored 5000 

80 1 Failed 283 

80 1 Failed 361 

80 1 Failed 515 

80 1 Failed 638 

80 1 Failed 854 

80 1 Failed 1024 

80 1 Failed 1030 

80 1 Failed 1045 

80 1 Failed 1767 

80 1 Failed 1777 

80 1 Failed 1856 

80 1 Failed 1951 

80 1 Failed 1964 

80 1 Failed 2884 

80 1 Censored 5000 

 

According to data in Table 1, ML estimates of parameters 

are given as:
0

ˆ 99.304  ,
1̂ 95.065  , 

2
ˆ 43.119  ,

1
ˆ 2247.916  - ,

2
ˆ 0.2393   and 

ˆ 36.646  . We have divided all data to 10000 and then 

estimated the parameters.   

Now, we find the optimal test plan according to the 

estimated parameters. We aim to acquire the reliability 

estimates in design conditions and in a period of 30000 

hours. Design condition is in temperature 10 C . Higher 

bound for temperature is 100 C . Allowed time for testing 

is 5000 hours and 200 units are under test. At least 10 

units should be allocated to each stress level. The 

objective is to find optimal levels of temperature and 

proportion of units allocated to these levels. Here, three 

levels for temperature is considered. Therefore, test plan 

is determined as: 

1- Based on Arrhenius model we use the following term 

as accelerating variable z in the ALT model  

1

Absolute Temp.
 

2- Estimates of parameters are found 

as:
0

ˆ 99.304  ,
1̂ 95.065  ,

2
ˆ 43.119  ,

1
ˆ 2247.916  - , 

2
ˆ 0.2393   and ˆ 36.646  . 

3- Optimization problem is formulated as 

 

  1

2

ˆ2

0 1 2

ˆ ˆ ( )
0

0

ˆ ˆ ˆ

Min  d
ˆ ( ) d

z
T

t
z s t

t t e
Var t

e s e s



 

  

 

  
 
   




 

s.t. 

0 1, 0,1,2ip i  
 

2

0

1,i

i

p



 

1

~

,F 
 

0

0 1

1 2

2

50 C 1 273.15,

1 273.15 1 273.15,

1 273.15 1 273.15,

1 273.15 100 C,

z

z z

z z

z

 

  

  

 

 

0,1,2

MNL,i
i

np




 
 

where, MNL 0.05 200  , 30000T  , 200n , 5000  , 

and other parameters are as in step 2. In this 

problem
0 1 2 0 1 2[ , , , , , ]x z z z p p p .  

4- We apply numerical methods to solve this optimization 

problem. In this regard, optimization toolbox of Matlab 

software is used to optimize this problem. Since the 

optimization model is non-linear and we are not aware of 

the convexity of the objective function, we test different 

initial points to find the optimal solution.  

5- The optimal solution which minimizes the objective 

function and satisfies the constraints is given as 

 
* o *

0 0 079.1 273.15 C,772 0.37898T z p     

* *

1 1 184.71 273.15 C,73 0.3 9 68 6T z p     

* *

2 2 299.1 273.15 C773 0.25, 206T z p     

4.3. Sensitivity analysis 

In order to solve the optimization model, we should first 

estimate the parameters. Since the estimations are point 

estimates we need to study the sensitivity of the model to 

changes in the important parameter estimates. Therefore, 

in this section the sensitivity of the results of the obtained 

ALT plan to parameter deviations is analyzed. If a slight 

change in a parameter results in a pretty big change in the 

results of the optimal ALT plan, that plan would be 
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sensitive to that parameter. In addition, some parameters 

in the non-linear optimization plan are assigned arbitrary 

values or their values are determined based on 

engineering judgments, for example censoring time  , 

minimum number of required units in each stress level 

MNL, and overall time period, T, are instances of these 

parameters. If the results of the optimal ALT plan are 

sensitive to the parameters then we should make changes 

in these parameters to have an accurate estimation of the 

reliability in design condition.  

In order to analyse the sensitivity of the model to input 

parameters, we change the value of one parameter while 

the values of other parameters are fixed. Then, the non-

linear optimization problem is solved to acquire the 

optimal ALT plan. If a slight change in a parameter 

results in a pretty big change in the optimization results, it 

is said that the ALT plan is not robust to that parameter. 

The results of the sensitivity analysis are shown in Table 

2. As it can be seen, the results are robust to model 

parameters. However, the estimates of some parameters 

like
0̂ ,

1̂ ,
2̂ ,

1̂ , T , and   show less robustness, 

therefore accurate estimation or appropriate determination 

of these parameters is necessary for having an optimal 

ALT plan. 

5. Conclusion 

In this paper, we designed an optimum ALT plan for 

products which are exposed to a random usage process. 

We supposed that random usage process affects hazard 

rate of the products. In the optimum ALT plan, the levels 

of stress and the number of allocated test units to each 

level are determined so that the variance of hazard rate 

estimate at normal operating conditions over a specified 

period of time is minimized. The proposed ALT plan is 

illustrated through a numerical example. A sensitivity 

analysis is also performed on the model and the results 

show that the ALT plan is not sensitive to parameters 

deviations. We also proposed a data collection procedure 

for ALT plan of products which are under a random usage 

process. For future research, one can develop other types 

of accelerating tests such as Accelerated Degradation 

Tests (ADTs) for products which are subjected to random 

usage.   

 

Table 2 

 Sensitivity analysis: effect of uncertainty in model parameters on stress levels and allocated proportions 
*

2p  *

1p  *

0p  *

2T  *

1T  *

0T  Change (%) Parameter 

0.28443 0.33879 0.37679 100 89.881 80 -20% 
0

ˆ 99.304   
0.13242 0.42878 0.4388 99.748 89.063 79.748 +20% 

0.32271 0.27723 0.40006 98.818 93.818 78.818 -20% 
1̂ 95.065   

0.35035 0.28929 0.36036 100 93.936 80 +20% 
0.36364 0.26272 0.37365 100 86.373 80 -20% 

2
ˆ 43.119   

0.33 0.33 0.34 100 95 80 +20% 
0.33 0.33 0.34 100 94.98 80 -20% 

1
ˆ 2247.916  -  

0.25206 0.36896 0.37898 99.773 84.773 79.772 +20% 
0.25206 0.36896 0.37898 99.773 84.773 79.772 -20% 

2
ˆ 0.2393   

0.25206 0.36896 0.37898 99.773 84.773 79.772 +20% 
0.25206 0.36896 0.37898 99.773 84.773 79.772 -20% ˆ 36.646   
0.25206 0.36896 0.37898 99.773 84.773 79.772 +20% 
0.25206 0.36896 0.37898 99.773 84.773 79.772 -20% 30000T   
0.13242 0.42878 0.4388 99.748 89.063 79.748 +20% 
0.28443 0.33879 0.37679 100 89.881 80 -20% 1   
0.25206 0.36896 0.37898 99.773 84.773 79.772 +20% 
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Appendix I 

Second partial derivatives of the log Likelihood function are given as follows. 
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Appendix II 

The elements of Fisher information matrix for an individual observation are as follows. 

(32)
 

   

 
 

2

1

2 0
0

; exp 2
; d

;

Ln L t z z
E R t z t

Q t z

 



 
   

 
  

(33)
 

   

 
 

2 2

1

2 0
1

; exp 2
; d

;

Ln L t z t z
E R t z t

Q t z

 



 
   

 
  

(34)
 

   

 
 

2 4

1

2 0
2

; exp 2
; d

;

Ln L t z t z
E R t z t

Q t z

 



 
   

 
  

(35)
 

   

 
 

2

1

0
0 1

; exp 2
; d

;

Ln L t z t z
E R t z t

Q t z

 

 

 
   

  
  

(36)
 

   

 
 

2 2

1

0
0 2

; exp 2
; d

;

Ln L t z t z
E R t z t

Q t z

 

 

 
   

  
  

(37)
 

   

 
 

2 3

1

0
1 2

; exp 2
; d

;

Ln L t z t z
E R t z t

Q t z

 

 

 
   

  
  

(38)
 

        
 

 

     

2
0 1 0 1

2 0
1

2

0 1
0

( )exp ; ( )exp;
; d

;

( )exp ; ; d

z h t z zQ t z z h t zLn L t z
E R t z t

Q t z

z H t z Q t z R t z t

  






 
    

 

 





 

(39)
 

   

 
 

2

1

0
0

; exp ( ; )
; d

;

Ln L t z z J t z
E R t z t

Q t z

 

 

 
   

  
  

(40)
 

   

 
 

2

1

0
1

; exp ( ; )
; d

;

Ln L t z t z J t z
E R t z t

Q t z

 

 

 
   

  
  

(41)
 

   

 
 

2 2

1

0
2

; exp ( ; )
; d

;

Ln L t z t z J t z
E R t z t

Q t z

 

 

 
   

  
  

 



Journal of Optimization in Industrial Engineering, Vol.14, Issue 2, Summer & Autumn 2021, 1-11 

(42) 

 

 

           

        

 
 

       

2

2

2

2 2

2 2 2 2
0 0

2 2 2

2 2 2
0

0

2 2 2
0 0

;

( ) exp exp ( ) 1 exp ; d d

; ( )exp exp ( ) 1 d ( ; )
; d

;

( ) ( ) ( ) exp exp exp

t

t

t

Ln L t z
E

z s t z s t z s z z s t R t z s t

Q t z z s t z s t z s z s T t z
R t z t

Q t z

z s t s z s t z z z s t z







       

     

      


 
  

  

      

    
 

     

 




 d ds t

 

 

(43)
 

 

              

           

 
 

             

2

2

2 2 2 2
0 0

2

2 2 2
0

0

2 2

2 2
0 0

;

exp exp exp 1 exp( ) ; d d

; exp exp exp ( ; )
; d

;

exp exp exp ; ; d d

t

t

t

Ln L t z
E

z z s t z s t s z s t R t z s t

I Q t z z z s t s z s t ds I J t z
R t z t

Q t z

s s t z z s t Q t z R t z s t







      

    

   


 
  

  

     

  
 

   

 




 

 

 

 


