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Abstract 

In this paper, we first introduce a new category of mathematical programming where the problem coefficients are interval random 
variables. These problems include two different kinds of ambiguity in the problem coefficients which are being interval and being random. 
We use Fractile method to solve these problems. In this method, using the existing method, we change the interval problem coefficients to 
the random mode and then we solve the random problem using Fractile method. Also, a numerical example is presented to show the 
effectiveness of this model. Finally, we emphasize that this approach can be useful for the model with multi-objective as a generalized 
model in the future study. 
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1. Introduction 

The probability theory is one of the basic principles of 

modern mathematics which is related to other fields of 

mathematics such as algebra, topology, analysis, 

geometry, dynamical systems and it is one of the most 

important means to describe the complexity of uncertainty 

of the parameters. Also, its close relationships and 

commonalities with other fields of study such as computer 

sciences, ergodic theory, cryptography, game theory, 

analysis, differential equations, mathematics and physics, 

economics and statistical mechanics (Knill (2009)) has 

caused this theory to be practical in different fields 

including economics (Hildenbrand (1975)), random 

geometry (Matheron (1975)) or to be used in confronting 

with vague and imprecise information. 

In most decision makings, quantities used are not 

accurate data, but are dependent to the environmental 

conditions. Furthermore, collecting accurate information 

so that they are not dependent on the human diagnosis and 

judgment is very difficult or impossible in practice. This 

uncertainty could result from the incomplete, erroneous, 

missing or unknown data in different applications 

(Nasseri and Bavandi (2018)). This uncertainty sometimes 

could happen for a random variable which is called 

stochastic programming. Stochastic programming 

provides a framework for modeling the decision making 

problems which contain inaccurate data (S. H. Nasseri 

and S. Bavandi (2019), Bavandi,  Nasseri and Triki 

(2020)). To formulate a stochastic programming problem, 

we should estimate a proper probability distribution which 

parameters obey. However, the estimation is not always a 

simple task because historical data of some parameters 

cannot be obtained easily especially when we face a new 

uncertain variable, and subjective probabilities cannot be 

specified easily when many parameters exist. Moreover, 

even if we succeeded to estimate the probability 

distribution from historical data, there is no guarantee that 

the current parameters obey the distribution actually. 

There are various approaches in the literature that can be 

used to solve the stochastic programming (Kall and 

Mayer (2004), Sakawa, Yano and Nishizaki (2013)). For 

decision problems under probabilistic uncertainty, from a 

different viewpoint, Charnes and Cooper (1959) proposed 

chance constrained programming which admits random 

data variations and permits constraint violations up to 

specified probability limits. Also Charnes and Cooper 

(1963) considered three types of decision rules, the 

minimum or maximum expected value model, the 

minimum variance model, and the maximum probability 

model for optimizing objective functions with random 

variables, which are referred to as the expectation model, 

the variance model, and the probability model, 

respectively. Moreover, Kataoka (1963) and Geoffrion 

(1967) individually proposed the fractile model. 

Sometimes, accurate measurement of the random data 

is impossible, therefore in these cases each random 

variable would be defined as an interval, so studying the 

Linear Programming models with Interval Coefficients 

(LPIC) (Suprajitno and Mohd (2008)) will be considered. 

Many researchers investigated interval linear 

programming problems on the basis of order relations 

between two intervals (Chanas and Kuchta (1996), 

Inuiguchi and Kume (1994), Jana and Panda (2014), 

Sengupta, Pal and Chakraborty (2001)). Interval linear 

programming problems have been studied by several 

authors, such as Bhurjee and Panda (2016), Ishibuchi and 

Tanaka (1989), Chanas and Kuchta (1996), Hladik 

(2015), Hladik (2014), Gen and Cheng (1997) and Wang 
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and Jin (2019). For example, Ishibuchi and Tanaka 

(1989), studied linear programming problems where the 

objective function has interval coefficients and they 

transformed this problem into a standard objective 

optimization problem. Kruse and Meyer (1987) have 

developed a methodology to solve a nonlinear interval 

optimization problem by transforming that to a general 

optimization problem which is free from interval 

uncertainty. Nasseri and Bavandi (2017), considered a 

Stochastic Interval-Valued Linear Fractional 

Programming problem. In this problem, the coefficients 

and scalars in the objective function are fractional-

interval, and technological coefficients and the quantities 

on the right side of the constraints were random variables 

with the specific distribution. Subulan (2020), proposed a 

novel interval programming and chance constrained 

optimization based hybrid solution approach for a fully 

uncertain, multi-objective and multi-mode resource 

investment project scheduling problem.  

Random intervals are one of the categories of the 

random set with a wide range of applications in different 

industries and sciences and it is taken into consideration 

of many researchers in recent years. Miranda, Couso and 

Gil (2005) has presented one of the most important 

references for full introduction of the interval random 

variables. This paper considers a linear programming 

problem involving random interval coefficients. A 

random interval programming model is presented by 

extending the Fractile model of stochastic programming. 

The main problem includes interval random variables and 

using the proposed model, it is turned to a certain 

Equivalent.  

This paper is organized as follows: In Section 2, we 

present some basic definitions of the intervals and the 

interval random variables which are required for our 

discussion. We also state some basic concepts and 

characteristics of the probability theory. In Section 3, we 

present Linear Programming with Interval Coefficients 

(LPIC). Also, we define optimistic optimal value and 

pessimistic optimal value. In Section 4, we present a 

model on the basic of the fractile model of stochastic 

programming for solving Linear Programming problem 

involving Random Interval Coefficients (LPRIC). In 

Section 5, provides an illustrative example and the 

corresponding results. Finally, Section 6 is devoted to 

concluding remarks. 

2. Preliminaries 

In this section, we recall some basic concepts of interval 

arithmetic, which is taken from (Moore, Kearfott and 

Cloud (2009)). 

2.1. The Basic Interval Arithmetic 

Definition 2.1. A closed real interval a a[ , ]  denoted by 

A , is a real interval number which can be defined 

completely by 

 = [ , ] = α : α ,αA a a a a  ∈  

Where a  and a  are the left and right limits of A ,

respectively. 

Definition 2.2. An interval is called unbounded, if the 

lower bound or the upper bound are infinity.i.e.

     4   , , 7, , , and etc. 

Definition 2.3. Let      , , , be a binary operation 

on . If A and B  are arbitrary closed intervals, then 

A B a b a A b B   ={ : , }  

In case of division, it is assumed that 0 B .  

Let A be an interval and r   be a constant, then 

   

   

0

0

rA r a a ra ra if r

rA r a a ra ra if r

  


 

 = , , , ,

 = , , , .
 

2.2 Axiomatic Probability 

The primary reference for sections 2.2 and 2.3 are 

(Casella and Berger (2001), Grimmett and Stirzaker 

(2001)). Probability theory is derived from a small set of 

axioms and a minimal set of essential assumptions. The 

first concept in probability theory is the sample space, 

which is an abstract concept containing primitive 

probability events. 

Definition 2.4. The sample space is a set   that contains 

all possible outcomes. 

Definition 2.5. An event   is a subset of the sample 

space . 

An event may be any subsets of the sample space 

)including the entire sample space), and the set of all 

events is known as the event space. 

Definition 2.6. The set of all events in the sample space 

  is called the event space and is denoted    

Assembling a sample space, event space and a probability 

measure into a set produce what is known as a probability 

space. 

Definition 2.7.  A probability space is denoted using the 

tuple P( , ),  where   is the sample space,   is the 

event space and P is the probability set function which 

has the domain .  

2.3 Random Variables 

Studying the behaviour of random variables, and more 

importantly, functions of random variables (i.e. statistics) 
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are essential. This section covers univariate random 

variables. 

Definition 2.8. Let P( , ), be a probability space. If 

X :   is a real-valued function has as its domain 

elements of  , then X is called a random variable. 

A random variable is essentially a function which takes 

   as an input an produces a value x  where is 

the  symbol for the real line. Random variables come in 

one of three forms: discrete, continuous and mixed. 

Random variables which mix discrete and continuous 

distributions are generally less important in financial 

economics and so here the focus is on discrete and 

continuous random variables. 

The set of all random variables in  will be shown by 

     . 

Definition 2.9. A random variable is called discrete if its 

range consists of a countable (possibly infinite) number of 

elements. 

While discrete random variables are less useful than 

continuous random variables, they are still commonly 

encountered. 

Discrete random variables are characterized by a 

Probability Mass Function (PMF) which gives the 

probability of observing a particular value of the random 

variable. 

Definition 2.10. The probability mass function for a 

discrete random variable X is defined as f x P x( ) ( ) , 

for all x R X ( ) and 0f x ( ) , for all x R X ( ) , 

where R X( )  is the range of X (i.e. the values for which

X is defined). 

Definition 2.11. A random variable is called continuous if 

its range is uncountably infinite and there exists a non-

negative-valued function f x( )  defined or all 

x   ( , )  such that for any event 

x B

B R X P B f x dx


  ( ), ( ) ( ) and 0f x ( ) , for all 

x R X ( ) , where R X( )  is the range of X (i.e. the 

values for which X is defined). 

The PMF of a discrete random variable is replaced with 

the Probability Density Function (pdf) for continuous 

random variables. 

Definition 2.12. For a continuous random variable, the 

function f is called the Probability Density Function 

(PDF). A function f : is a member of the class of 

continuous density functions if and only if 0f x ( ) for 

all x   ( , ) and 1f x dx





 ( ) . 

Definition 2.13. The Cumulative Distribution Function 

(CDF) of a random variable X is defined as 

F c P x c ( ) ( ) , for all c   ( , ) . 

The cumulative distribution function is used for both 

discrete and continuous random variables. When x is a 

discrete random variable, the CDF is 

 

s x

F x f s


( ) ( ) , 

for  x   ( , )  and when X  is a continuous random 

variable, the CDF is 

 
x

F x f s ds


 ( ) ( ) , 

for x   ( , ) . 

2.4. Random interval variables 

Generally, a random interval variable is a measurable 

function from a probability space to a collection of closed 

intervals. In other words, a random interval variable is a 

random variable which takes interval values. The 

following definition can be used for random interval 

variables which are given from Miranda, Couso and Gil 

(2005). 

Definition 2.13. Given a probability space E P( , , ),

 a a a  ( ) ( ), ( )  is a random interval variable defined 

on Ω, if a a ( ), ( ) are random variables, and for any 

a a   , ( ) ( ) . In the other words, if  E P, , be a 

probability space, where  1 2 m
    , , ...,  and 

1 2 m
  , , ...,  be intervals, then a function X with 

1 1

2 2

m m

I if

I if
X

I if

 

 


 





 

 

,

,
( )

,

 

 

is defined as a random interval variable. 
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3. Linear Programming with Interval Coefficients 

Some or all coefficients are the interval in this linear 

programming and to solve it, numerous problems have to 

be optimized. Therefore, it cannot be solved by the classic 

programming methods and more suitable methods are 

needed. According to Shaocheng method (Shaocheng 

(1994)), to the interval programming problems we can 

divide the problem to two normal programming problems 

and get the optimized answer in an interval, one of the 

answers considers the best and the other considers the 

worst solution. Of course, there are some ways in which 

one normal programming problem is created instead of 

solving two, but we intended to consider the Shaocheng 

method for random linear programming, which will be 

discussed in the following sections. A general form of the 

linear programming with interval coefficients can be 

presented as (Sengupta, Pal and Chakraborty (2001)): 

1

1

 

1

0 1

n

j j j

j

n

ij ij j i i

j

j

Min z c c x

s t a a x b b for i m

x j n





   

       

 





,

. . , , , , ...,

, , ..., .

   (1) 

where 
jx is a decision variable, [     ̅] [     ̅  ]   

[    ̅ ]       and I ( ) is the set of all interval numbers 

in . 

According to the operations of interval numbers, each 

inequality i in (1) can be transformed into 12n  different 

extreme inequalities, such as: 

1 1 2 2 n n
a x a x a x b   ... ,                     (2) 

where  j ij ij
a a a ,  and   {    ̅ }           

        

Consider one inequality i of (1), and let 
k

S  be the set of 

solutions for the thk  extreme inequality version among 

the 12n  different extreme inequalities of i .  

Now, let  

12

1

n

k

k

S S





 and  

12

1

n

k

k

S S





  

Figure 1 illustrates how S and S  might appear for an 

interval inequality having just two possible extreme 

versions. 

Two below definitions are taken from Shaocheng (1994) 

that will be useful in our discussion. 

Definition 3.1. For each constraint inequality i in (1), the 

inequality
1

,
n

j j

j

a x b


 where j ij ij
a a a  , and 

i i
b b b  ,  is called the characteristic formula for the 

inequality i in (1). 

Definition 3.2.  For each constraint inequality in (1), if 

there exists one characteristic formula such that its 

solution set is the same as S or S , then this characteristic 

formula is called the maximum value range or minimum 

value range inequality, respectively. 

 
(a)                                                (b)                              

Fig. 1. The feasible solution set of two different inequalities. 

(a)The intersection of the set of solutions of both inequalities, 

(b) The union of the set of solutions of both inequalities. 

The following theorem shows that how to determine the 

maximum and minimum value range inequalities for an 

interval constraint when 0
j

x  . Shaocheng (1994) 

originally stated this theorems without proof and hence 

we now give the proof here. 

Theorem 3.1.  Suppose that we have the interval 

inequality
1

n

j j j

j

a a x b b


       , , , where 0.
j

x   Then 

1

n

j j

j

a x b


  and 
1

n

j j

j

a x b


  are respectively the 

maximum value range and minimum value range 

inequalities. 

Proof: To prove 

1

n

j j

j

a x b



 is the maximum value of 

the inequality interval, we have to show that the result set 

of this formula is .S  For 

1

, ,

n

j j j

j

a a x b b



       the 

characteristic formula of 

1

,

n

j j

j

a x b



 where 

1 1 1

,

n n n

j j j j j j

j j j

a x a x a x

  

 
 
  

   and ,b b b    for each 
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specific answer is  1 2, ,..., nx x x x . Then for each 

specific answer of 0,jx   we will have 

1 1

.

n n

j j j j

j j

a x a x

 

   Also, we have 

1 1

.

n n

j j j j

j j

b b a x a x

 

     Therefore, any answer of 

the characteristic formula of 

1

n

j j

j

a x b



  will apply in 

1

n

j j

j

a x b



 . So

1

n

j j

j

a x b



   is the largest interval 

value. Similarly, we will have  

1 1

.

n n

j j j j

j j

b b a x a x

 

     As a result, the answers of  

1

n

j j

j

a x b



 will apply in the answers of the 

characteristic formula of 

1

,

n

j j

j

a x b



  so 

1

n

j j

j

a x b





is the least interval value, therefore the theorem is proved. 

 

Theorem 3.2. Suppose 
1

n

j j j

j

Z c c x


    , be a given 

objective function with 0
j

x  , then 

1 1

n n

j j j j

j j

c x c x
 

  ,  

for any given vector 
1 2

,
n

x x x x ( , , ..., ) where 

0 1 .jx j n , , ...,  

Proof: It is obviously that for 0,jx  and using the 

common interval properties we have 

1 1 1 2 2 2

1

1 2 2 2 1 1 2 2

n

j j j n n n

j

n n n n

c c x c c x c c x c c x

c x c x c x c x c x c x



                 

        

 , , , ... ,

... , ...

 

Hence, 

1 1 2 2 1 2 2 2n n n n
c x c x c x c x c x c x      ... ...  

and then we obtain 

1 1

n n

j j j j

j j

c x c x
 

   

Definition 3.3. For an interval linear programming 

problem in minimization form in which 0,
j

x   the linear 

function 
1

n

j j

j

c x


 is called the most favourable objective 

function and also 
1

n

j j

j

c x


  is called the least favourable 

objective. 

 

Using Theorems 3.1 and 3.2, we will enable to calculate 

the best and the worst optimized answers to the linear 

programming problem with interval coefficients. First, we 

use the most favorable version of the objective function 

(Theorem 3.2) and the maximum value range inequalities 

(Theorem 3.1) to determine the best optimal solution, and 

then we use the least favorable version of the objective 

function and the minimum value range inequalities to 

determine the worst optimal solution. 

Definition 3.4. Suppose we have the following LPIC 

problem: 

1

1

1

0

n

j j j

j

n

ij ij j i i

j

j

Min z c c x

s t a a x b b for i m

x





   

       







,

. . , , , , ..., (4) 

Then the best optimum and worst optimum of the 

objective function are computed respectively as follows: 

1

1

1

0 1

n

j j

j

n

ij j i

j

j

Min z c x

s t a x b i m

x j n







 

 



. . , , ..., ,

, , ..., ,

     (5) 

and 

1

1

1

0 1

n

j j

j

n

ij j i

j

j

Min z c x

s t a x b i m

x j n







 

 



. . , , ..., ,

, , ..., .

        (6) 

The problem (5) and (6), respectively, is called as the 

optimistic and pessimistic problems. the general form of 

the optimal value of the objective function of the LPIC 

problem (4) will be  Z z z , , in the other words the 

optimal value of the problem will be between z (the best 

case scenario) and z (the worst case scenario), depending 

on the coefficient setting of each interval coefficient. 

 

Theorem 3.3. Given an LPIC problem, if for the best 

optimum we have an infeasible region (i.e. the best 

optimum does not exist), then the worst optimum has an 

infeasible region as well, and the original LPIC problem 

is infeasible. 

 

Proof: Since the region generated by the minimum value 

range inequalities is a subset of the region generated by 

the maximum value range inequalities, therefore, the set 

of minimum value range inequalities is infeasible (i.e. the 

worst optimum does not exist), if the set of maximum 

value range inequalities is infeasible. 
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4. Linear Programming with Random Interval 

Coefficients 

In this section, we present a novel approach on the basis 

of the Fractile model of stochastic    programming for 

solving linear programming problem involving random 

interval coefficients. Consider the following linear 

programming problem:  

0

s

s s

Min z c x

s t A x b

x







. .                              (7) 

where 
1

s s s

n
c c c ( , ..., )  so that 1s

i
c i n, , ...,  is a random 

interval variable, 
1

T

n
x x x ( , ..., )  is an n-dimensional 

column vector of decision variables, s s

ij
A a     is a 

m n  matrix of random interval variables, and 

1

s s s T

m
b b b ( , ..., ) is an m-dimensional column vector of 

random interval variables. In this paper, we call this 

problem by LPRIC problem and also suppose all random 

variables in the upper and lower bound of random 

intervals are normally distributed. 

 

 

Considering that the constraints 
s sA x b  of the 

stochastic linear programming problem (7) need not hold 

almost surely, but they can instead hold with given 

probabilities, Charnes and Cooper in 1959 initiated the 

chance-constrained programming. To be more precise, the 

original m constraints 

1

1
n

s s

ij j i

j

a x b i m


  , , ...,                  (8) 

Thus, using the concept of chance constrained 

programming, the constraints of the model of (7) are 

interpreted as 

    
1

1
n

s s

ij j i i

j

a x b i m


 
    
 
 , , ...,          (9) 

where P means probability, and 
1 m
 , ...,  are given 

probabilities of the extents to which constraint violations 

are admitted. We refer to 
i

  as the satisficing probability 

level in this paper. The inequalities (9) are called chance 

constraints meaning that the i th constraint may be 

violated, but at most 1
i

 proportion of the time. 

It is obvious that problem (7) is not well-defined due to 

randomness and intervalness of the coefficients involved 

in the objective function. In this situation, we cannot 

optimize the problem likewise deterministic cases.  

Here, it is significant to realize that the objective function 

of problem (7) involves randomness, and it can be 

regarded as a kind of stochastic programming problems. 

Furthermore, there are several decision making models 

such as the expectation optimization model, the variance 

minimization model, the probability maximization model 

by Charnes and Cooper (1959) and the fractile 

optimization model by Geoffrion (1967) for handling 

stochastic programming problems.  

Here, we use an extension of the fractile model of 

stochastic programming to solve the LPRIC problem 

which is defined in (7). In this model, a target variable to 

the objective function is minimized, provided that the 

probability of the objective function value is smaller than 

the target variable is guaranteed to be larger than a given 

assured level. 

Considering the constraints in the stochastic linear 

programming problem (7) as chance constraints 

introduced in (9), the fractile model minimizing the target 

variable f under the probabilistic constraints with the 

assured probability level   for the objective function and 

the satisficing probability 1
i

i m , , ..., for the original 

constraints is formulated as  

1

1

1

0 1

n
s

j j

j

n
s s

ij j i i

j

j

Min f

s t c x f

a x b i m

x j n









 
   
 

 
    
 

 





. .

, , ..., ,

, , ...,

    (10) 

where   is an assured level specified by the decision 

maker. 

 Definition 4.1.  The decision variable and the target 

variable of x *   and f *  are respectively said to be an 

optimal solution and optimistic optimal value, if and only 

if there does not exist another x , 
sc  and 0f   such that 

sc x f   ( )  and f f * . The corresponding values 

of  coefficient 1 2s

i
c i n*

, , , ...,  are said to be optimistic 

optimal coefficient. 

Definition 4.2  The decision variable and the target 

variable of x *   and f *  are respectively said to be a 

optimal solution and pessimistic optimal value, if and 

only if there does not exist another x  and 0f  where 

for all the 
sc such that sc x f   ( )  and f f * . The 

corresponding values of coefficient 1 2s

i
c i n*

, , , ...,  are 

said to be pessimistic optimal coefficient. 

By using Theorems 3.1 and 3.2, problem (10) will be 

transformed into the following equivalent problems: 

1

1

11

1 12

0 1

n
s

j j

j

n
s s

ij j i i

j

j

Min f

s t c x f

a x b i m

x j n












      
  


       
  

  





. . ( )

, , ..., ( )

, , ...,

(13) 

where  ̅  
    

    
       , and also 

1

1

14

1 15

0 1

n
s

j j

j

n
s s

ij j i i

j

j

Min f

s t c x f

a x b i m

x j n












      
  


       
  

  





. . ( )

, , ..., ( )

, , ...,

(16) 
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where     
    

 
   

 
      , and             

           
For finding deterministic constraints which are equivalent 

to the chance constraints, assume that 
s

i
b and 

s

ij
a  in the 

chance constraints (12) are random interval variables. Let 

s
ib

m and 
2

s
ib

  be the mean and the variance of 
s

i
b , 

respectively. Also let s
ija

m  be the mean of 
s

ij
a  and s

ia
V  be 

the variance–covariance matrix of the vector 

1

s s s

i i in
a a a ( , ..., ) . Moreover, assume that 

s

i
b and 

s

ij
a  are 

independent of each other. 

Since the random variable 

 

1 1

2
1

s s
ij i

s s
i i

n n
s s

ij j i ja b
j j

T

b a

a x b m x m

i m
x V x

 

 
   

 




 
, , ...,   (17) 

is standard normal random variable 0 1N ( , )  with mean 0  

and variance 21 , it follows that 

Ρ =

= 1-Φ ,

s s
ij i

s s
i i

s s
ij i

s s
i i

s s
i ij

s s
i i

n n
s s

ij j i a bn
j =1 j =1s s

ij j i
2 T

j =1
b a

n

ja b
j =1

2 T

b a

n

jb a
j =1

2 T

b a

a x - b - m - m

a x b
σ + x V x

- m x - m

σ + x V x

m - m x

σ + x V x

  
  

    
  
  




 
 
 





 
 
 
 
 
 

 






≥ ≥

 (18) 

where  is the distribution function of the standard 

normal distribution 0 1N ( , ) . 

Hence, the chance constraints (12) can be transformed 

into 

 

1 2

1

1s s s s
ij i i i

n
T

j ia b a b
j

m x x V x m 



    ( ) ,   (19) 

for        . In the specific case, if for each   

     , the parameters s

i
a  are independent, then the 

chance constraints (19) can be transformed into 

 

1 2

1 1

1s s s
ij i i

n n
s

j i ija b b
j j

m x Var a m 

 

    ( ) ( ) , (20) 

 

Now let 1

s s s

n
c c c ( , ..., )  be a multivariate normal random 

variable with a mean vector 
1

s s s
nc c c

m m m ( , ..., )  and an 

n n  variance-covariance matrix. Assuming 0,x   the 

random variable  

s

s

s

c

T

c

c x m x

x V x


                            (21) 

is standard normal random variable 0 1N ( , ) . Using (21), 

it follows that 

 

s s

s s

s

s

s

c cs

T T

c c

c

T

c

c x m x f m x
c x f

x V x x V x

f m x

x V x

  
     
  
 

 
  
  
 

( )

,

      (22) 

 

Therefore, the probabilistic constraint 

s

s

c

T

c

f m x

x V x


 
  
  
 

,                     (23) 

where  is the distribution function of the standard 

normal distribution. Let 1 be the inverse of  , and 

then (23) is also equivalent to 

1
s s

T

c c
f m x x V x  ( )              (24) 

Since minimizing   is equivalent to minimizing the right-

hand side of (24), the fractile model with the chance 

constraints (13) can be equivalently transformed to 

1

1

1 2

1

1

0 1

s s
j

s s s s
ij i i i

n
T

jc c
j

n
T

j ia b a b
j

j

Min m x x V x

s t m x x V x m

x j n



 











   

 





( )

. . ( )

, , ..., .

 (25) 

Similarly, with a similar transformation, we have 

 

1

1

1 2

1

1

0 1

s s
j

s s s s
ij i i i

n
T

jc c
j

n
T

j ia b a b
j

j

Min m x x V x

s t m x x V x m

x j n



 











   

 





( )

. . ( )

, , ..., .

(26) 

5. Numerical example 

Consider the following problem with random interval 

variable coefficients, where the coefficients of the left-

hand sides and the right-hand are independent random 

variables with the normal distribution: 

1 1 1 2 2 2

11 11 1 12 12 2 1 1

21 21 1 22 22 2 2 2

31 31 1 32 32 2 3 3

1 2
0 0

s s s s

s s s s s s

s s s s s s

s s s s s s

Min z c c x c c x

s t a a x a a x b b

a a x a a x b b

a a x a a x b b

x x

       

          

          

          

 

, ,

. . , , ,

, , ,

, , ,

,

    (27) 
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For the above normal random interval variables, assume 

that  

  
               

 
            

   
               

 
             

   
                

 
            

and 

 
Table 1 
The expectations and variances of the objective coefficients 

2
sc  1

sc  2
sc  1

sc  
 

5 5.  4  5  3 5.  E (.)  

2  1  1  1  Var(.)  

also  

Table 2 

The expectations and variances of the technical coefficients 

32
sa

 

31
sa

 

22
sa

 

21
sa

 

12
sa

 

11
sa

 

32
sa

 

31
sa

 

22
sa

 

21
sa

 

12
sa

 

11
sa

 

 

3  6

 

17

 

5

 

1 5 .

 

4

 
2

 
5

 

16  4  2

 
3  E (.)  

0 25.

 

0 5. 0 5.

 
1  1  0 5.

 

0 25.

 
1  0 5.

 

0 5.

 
1  0 5.

 

Var(.)  

Assume that the Decision Maker (DM) specifies the 

satisficing probability levels as 0 8 1 2 3
i

i  . , , , and 

provides the assured probability level for the probabilistic 

constraint with respect to the objective function as 

0 8  . . 

Problem (27) by using Definition 3.3 be transformed into 

the following equivalent problems 

 

1 1 2 2

11 1 12 2 1

21 1 22 2 2

31 1 32 2 3

1 2
0 0

s s

s s s

s s s

s s s

Min z c x c x

s t a x a x b

a x a x b

a x a x b

x x

 

 

 

 

 

. .

,

                  (28) 

and also, 

 

1 1 2 2

11 1 12 2 1

21 1 22 2 2

31 1 32 2 3

1 2
0 0

s s

s s s

s s s

s s s

Min z c x c x

s t a x a x b

a x a x b

a x a x b

x x

 

 

 

 

 

. .

,

                  (29) 

 

Now by using the Fractile model with the chance 

constraints, the problem (28) can be transformed into the 

following equivalent problem: 

 

 

1 2 2

1 2 1 2

1 2 2 2

1 2 1 2

1 2 2 2

1 2 1 2

1 2 2 2

1 2 1 2

1 2

3 5 5 0 8

4 1 5 0 2 2 0 5 4

5 17 0 2 1 0 5 16

6 3 0 2 0 5 0 5 0 25 8

0 0

Min z x x x x

s t x x x x

x x x x

x x x x

x x









   

    

    

    

 

. ( . )

. . . ( . ) .

( . ) .

( . ) . . .

,

 (30) 

 

Then, by using the software LINGO (ver. 11.0), we obtain 

the optimistic optimal solution and the optimistic value of 

the objective function as follows: 

 

1 2
1 711782 0 5386476

10 20983

x x

z





* *

*

( , ) ( . , . )

.
 

 

 Also, again by using the Fractile model with the chance 

constraints, problems (29) be transformed into the 

following equivalent problem: 

 

1 2 2

1 2 1 2

1 2 2 2

1 2 1 2

1 2 2 2

1 2 1 2

1 2 2 2

1 2 1 2

1 2

4 5 5 0 8 2

3 2 0 2 3 0 5 5

4 16 0 2 2 0 5 0 5 17

5 2 0 2 2 0 25 12

0 0

Min z x x x x

s t x x x x

x x x x

x x x x

x x









   

    

    

    

 

. ( . )

. . ( . ) .

( . ) . .

( . ) .

,

 (31) 

 

Also, by using software LINGO (ver. 11.0), we obtain the 

pessimistic optimal solution and the pessimistic optimal 

value of the objective function as follows: 

 

1 2
3 027234 0 4622879

17 28399

x x

z





* *

*

( , ) ( . , . )

.
 

 

As a result, the general solution of the problem (27) as 

follows: 

10 20983 17 28399z z z [ , ] [ . , . ].
 

 

The other optimistic and pessimistic optimal solutions and 

the associated optimistic and pessimistic optimal values of 

the objective function is given in Table 3. 

 

6. Conclusions 

In this presented paper, we have considered linear 

programming problem with random interval coefficients. 

We have used an extension of fractile  model of stochastic 

programming for solving it. we saw the mentioned 

approach is so practical to the real situations. In the 

proposed approach, we reduced the main model to two 

sub-problem for determining the optimistic and 

pessimistic optimal solution. In particular, we solved a 

numerical example to show the fractile model can prepare 

a solving process. The main discussion based on the taken 

results in numerical example part is as follows: 
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 The best solution for problem (27) is occurred, based 

on Fractile model in       and      . 

 Generally 
1

1
2


 

 
 

, is a constant that determined by 

the decision maker. From the stochastic point of view, 

if the value of   was lower than 
1

2
, it means the given 

constraint would occur with the lower probability 

which is not a suitable solution for the problem. 

 In the discussed problem, two optimistic and 

pessimistic solutions were gained. The optimistic 

solution is achieved by considering the lower bound 

parameters available in problem constraints and as a 

result of the development of the feasible region. 

 This solution would give a better optimum value to 

interval programming problem because it is chosen in 

a wider range in compare with the pessimistic 

solution. 

 In stochastic interval programming, the result will 

ensure with the percentage of confidence because the 

parameters available in lower and upper bound of 

problem are random. 

 

 

 

 

 

 

 

 

 

Tableb3  
The optimistic and pessimistic solutions for all assured probability levels 
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