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Abstract 

One of the main critical steps that should be taken during natural disasters is the assignment and distribution of resources among affected 

people. In such situations, this can save many lives. Determining the demands for critical items (i.e., the number of injured people) is very 

important. Accordingly, a number of casualties and injured people have to be known during a disaster. Obtaining an acceptable estimation 

of the number of casualties adds to the complexity of the problem. In this paper, a location-routing problem is discussed for urgent 

therapeutic services during disasters. The problem is formulated as a bi-objective Mixed-Integer Linear Programming (MILP) model. The 

objectives are to concurrently minimize the time of offering relief items to the affected people and minimize the total costs. The costs 

include those related to locations and transportation means (e.g., ambulances and helicopters) that are used to carry medical personnel and 

patients. To address the bi-objectiveness and verify the efficiency and applicability of the proposed model, the ε-constraint method is 

employed to solve several randomly-generated problems with CLEPX solver in GAMS. The obtained results include the objective 

functions, the number of the required facility, and the trade-offs between objectives. Then, the parameter of demands (i.e., number of 

casualties), which has the most important role, is examined using a sensitivity analysis and the managerial insights are discussed. 
 

Keywords: Medical emergency services; Disaster; Location-routing; Mixed-Integer Linear Programming; ε-constraint method. 

 

1. Introduction 
 

In today’s world, despite the dramatic growth of 

technology, natural disasters (e.g., earthquake, flood, fire 

and volcano eruption) and manmade disasters (e.g., wars, 

terrorist attacks and industrial accidents) are major 

obstacles for growth and developments of nations. Lack 

of preparation for dealing with such incidents imposes 

heavy damages on nations and their assets. Although 

emotional and financial damages caused by such events 

cannot be completely compensated, effective planning can 

significantly reduce damages. Since the scale and severity 

of such events are usually large, the level of demands in 

such situations is high. To respond to such emergencies, 

large-scale relief operations must be conducted. In normal 

conditions, relief agencies can respond to small-scale 

events. However, in the majority of cases, such agencies 

do not have the necessary tools and resources to respond 

quickly to large-scale disasters (Jahre et al., 2007). 

Generally, the humanitarian relief chain aims to offer 

emergency services to people in disaster and to minimize 

the number of fatalities by an effective distribution of 

resources (Tofighi et al., 2015). Since the amount of 

demands in such conditions is not definite and known, 

coordination in this chain is a complex and challenging 

task. Furthermore, there may be some potential dangers 

during the operation of offering relief services to the 

affected people (Balcik et al., 2010). This problem is 

intensified when local infrastructures have been destroyed 

and the amount of resources is limited (Balcik and 

Beamon, 2008). Logistics operations during the disaster 

include several sub-operations, such as evaluation, 

provision, transportation, keeping and distribution of 

goods and equipment, and other services that need to be 

offered to the people. The crucial items have to be 

delivered within the shortest time using the best possible 

locations to the people affected by the crisis. This task 

must be performed accurately based on effective planning 

to respond to the urgent demands of the people (Özdamar 

et al., 2004). 

Establishing an effective and scientific system for the 

logistics operation of disaster management is a critical 

issue. In such a system, the duties of all sub-systems must 

be defined in advance (Douglas, 1997). Improvements in 

logistics operations and relief chains assist to offer relief 

support to people within the shortest time (Balcik and 

Beamon, 2008). Sending critical items, serving medical 

first aids, and transferring injured people to emergency 

centers (e.g., hospitals and temporary infirmaries) are very 

critical for reducing the number of fatalities and 

disabilities in such situations. This is particularly the case 

in the first 72 hours of emergency conditions. Since some 

resources such as ambulances and helicopters are not 

easily accessible, planning for these situations is very 

difficult and challenging. 

According to Talarico et al. (2015), the process of 

responding to emergency conditions includes three steps: 

* Corresponding author Email address: alibozorgi@ut.ac.ir 

 



Hesam Adrang and et al./ Planning for Medical Emergency Transportation… 

186 
 

1) identifying those areas whose needs must be met 

immediately, 2) classification of demands based on 

severity and urgency, and 3) solving the routing problem 

and scheduling of vehicles. Since degrees of injury among 

the affected people are not identical, they must be 

classified based on priorities. This is called triage. 

Initially, the concept of triage was used for war-affected 

zones and areas influenced by natural disasters. Later, it 

was utilized for other environments such as urgency 

centers in the hospitals, because injured people were taken 

to hospitals without any pre-planning and pre-defined 

timetable. In the triage mechanism, each group of injured 

people is defined by a color: red, orange, yellow, green, 

and blue. Also, an urgent time is defined for each group of 

injured people. If a proper response to the needs is not 

provided during this time, the probability of death 

increases. For example, those suffering from breathing 

problems and also those injured people in the neck and 

head are classified in the red group. The emergency time 

for this group is 10 minutes. In natural disasters, the triage 

system must be used for disaster management. For 

problem simplification, injured people can be divided into 

two general groups: those who can be treated at the site 

and those who must be transferred to the hospital 

(Talarico et al, 2015). 

Since the service time during a disaster is very limited, the 

distribution of resources among affected people should be 

carried out optimally. The process of service includes the 

treatment of outpatients and the transfer of more serious 

cases to hospitals. An important point to note during the 

disaster is that emergency vehicles should avoid fuel 

shortages. This is a problem that may seriously disrupt 

relief operations. This problem can be avoided by proper 

fuel planning. Barbarosoğlu et al. (2002) presented a 

model for relief operation by the Turkish army during a 

disaster. They discussed the impact of such an operation 

on reducing the time of supporting the affected people 

during a disaster. 

This paper presents a model for relief support planning in 

urban areas during a disaster. In this problem, there is a 

group of injured people with different degrees of severity. 

The relief system includes ambulances and helicopters. 

This study aims is to find a proper plan for emergency 

vehicles. In the first phase of the planning, the best 

location for emergency vehicles and temporary 

infirmaries are determined, and in the second phase, 

optimal routes and refueling planning for vehicles are 

determined to complete the process of servicing injured 

people considering different severities of injured people 

within the shortest possible time and real-world 

restrictions. New issues addressed in the present study are 

concerned with the main decisions taken in offering relief 

support. This includes making decisions on the locations 

of transportation centers and temporary hospitals, finding 

the optimal routes for vehicles, minimizing the time of 

responding to the demands, and planning for vehicles 

refueling. Since the time of transporting people from the 

affected areas to hospitals is critically important and the 

shortage of fuel may disrupt transportation operation, 

planning for vehicles refueling is a very crucial issue. 

In Section 2, the literature in this field is reviewed. In 

Section 3, the problem is described and a mathematical 

model for its solution is suggested. Section 4 provides the 

computational results for the model. At last, conclusions 

and some suggestions for future studies are presented in 

Section 5.  
 

2. Literature Review 
 

The first serious studies on transportation during the 

disaster were conducted by Knott (1987), whose study 

focuses to fulfill the customers’ demand by employing the 

available vehicles in the warehouse. Barbarosoğlu et al. 

(2002) developed an emergency relief model considering 

the aerial mode of transportation. The problem consists of 

two stages. In the first stage, decisions are made on fleet 

management, flights, and the number of flights. In the 

second stage, operational decisions such as optimal 

routes, rescue, and refueling are taken. Özdamar et al. 

(2004) conducted a study on logistics planning 

considering a disastrous situation. They developed a 

network to define a dynamic time-dependent 

transportation problem for generating optimal solutions 

within given time intervals repeatedly. Özdamar (2011) 

focused on the planning of helicopters in disasters (for 

transferring injured people, medicines and urgent 

commodities). The model minimizes the total servicing 

time of injured people. Also, the loading time was 

considered in the proposed model.   

Doerner et al. (2007) studied the possibility of minimizing 

total uncovered demand in a disaster using covering tours. 

They presented a model in which a central depot, a fleet 

of vehicles, and a set of potential medical service centers 

were considered. In this model, the optimal routes of 

vehicles should be determined to have in time delivery of 

required items. Moreover, demand points are considered 

small villages with a low population and a short distance 

from each other. The problem was solved by a heuristic 

algorithm based on TSP assumptions, and the obtained 

results were compared. Nolz et al. (2010) presented a bi-

objective model for dispatching medicines and foods and 

providing shelters for regions affected by the disaster. 

They employed a genetic algorithm based on the 

neighborhood search algorithm. This algorithm was used 

for real data of an earthquake in Ecuador. Then, it was 

compared with the ε constraint method.  

Huang et al. (2012) studied models of routing and 

resource assignment to relieve injured people during a 

disaster. They introduced three critical factors for routing 

and resource assignment during a disaster: efficiency, 

usefulness, and equal enjoyment. To consider these 

factors, they presented a basic mathematical model with 

different objective functions. They defined efficiency as 

the minimization of the costs of routing and resource 

provision. Usefulness was defined as the minimization of 

the time of sending the needed items to the affected 

people. Equal enjoyment was defined as the minimization 

of differences among the services offered to the affected 

people. These three objectives were examined in similar 

problems, and the outputs for each criterion were 

obtained. 



Journal of Optimization in Industrial Engineering,  Vol.13, Issue 2, Summer & Autumn 2020, 185-197 

 
 

187 

 

Wohlgemuth et al. (2012) presented a model for dynamic 

routing in pre-disaster conditions. In the proposed model, 

it was assumed that relief items can be sent to any point in 

the affected area. They showed that the model could 

shorten the period of loading and unloading. In the given 

model, the travel time between two points was dynamic 

(some routes were impassable) and the objective is to 

minimize the time of sending a single item by several 

vehicles. Azimi et al. (2012) presented a model for 

locating intermediate relief points (stations) and the 

routing. They declared that relief equipment cannot visit 

all these stations. Therefore, relief points must be in the 

nearest points so that people in all affected areas can have 

access to the needed items. Relief centers must be 

established at the proper points to keep all demand points 

in a distance shorter than the maximum allowable distance 

from a relief station. In their model, necessary items are 

sent from a central depot by homogeneous vehicles to the 

affected areas. Their model aimed to minimize the 

distance that must be covered by each vehicle. They 

applied a heuristic algorithm to solve the model, and its 

efficiency was compared with the exact method. 

Some research works are reviewed as follows to clarify 

the importance of the basic problem related to Location-

Routing Problems (LRPs). A location-routing model was 

studied by Walter and Gutjahr (2014) in which emergency 

relief was planned for injured people. They concluded that 

temporary intermediate warehouses play a highly 

significant role to fulfill the necessities of the affected 

people in the minimum time possible. A triple-objective 

model was also suggested to minimize short- and mid-

term costs and maximize the quantity of dispatched 

humanitarian commodities. To solve the model, the ε-

constraint method was employed and compared to 

Variable Neighborhood Search (VNS). 

Abounacer et al. (2014) conducted a similar study, in 

which the optimal number of relief centers and 

humanitarian aid distribution were determined. Also, the 

optimal routes for transferring aids from distribution 

centers to demand points were introduced. The problem 

had three contradictive objectives: minimizing the total 

transferring time, minimizing the number of centers and 

minimizing the quantity of unmet demands. Two 

constraints were included in the problem: firstly, the 

travel time between two certain points had to be less than 

a certain period and secondly, the capacities of different 

vehicles were different. Every vehicle in every travel 

visited one demand point. Then, it returned to its original 

distribution center or another center. Finally, by 

employing the ε-constraint method, the Pareto-optimal 

solutions were presented for randomly generated 

problems. 

Halskau (2014) studied a routing problem for marine 

helicopters to minimize the number of victims during a 

disaster. Since helicopter flight might be disrupted by 

potential dangers, a proper plan of routing was found to 

minimize the number of fatalities. In this problem, aids 

were transferred through hubs. In this case, naval facilities 

were hubs. Based on the findings of this study, using 

several hubs instead of one hub was more effective for 

relief operations. Knyazkov et al. (2015) presented a 

model to find the optimal routes for transferring injured 

people by ambulances in Saint Petersburg. Their goal was 

to reduce the transferring time of injured people by 

presenting the optimal route. They concluded that the 

traffic condition highly affects the decision-making 

process and may change all the routes and decisions. 

Another study on health emergency services was done by 

Chen and Yu (2016). According to the demand level in a 

disastrous situation, a location-routing problem was 

presented to heighten the servicing level. For this purpose, 

an integer programming model and a graph network were 

developed to determine the optimal locations of facilities, 

and Lagrange’s method was employed for solving the 

problem. Ultimately, they tested the model by conducting 

a case study. By reviewing the literature, it is 

demonstrated that the problem of simultaneous routing for 

ambulances and helicopters has rarely been studied. Also, 

the problem of minimizing the time to reach the final 

point of the route has not been properly addressed. 

Another issue neglected in the literature is planning for 

vehicles refueling in the operation zones. Maghfiroh et al. 

(2018) proposed a dynamic Vehicle Routing Problem 

(VRP) for the last mile distribution during a disaster. They 

developed a modified Simulated Annealing (SA) and 

VNS algorithm to solve the problem and minimize the 

total traveling time.  

An improved shuffled frog leaping algorithm (SFLA) was 

employed by Duan et al. (2018) to investigate the 

dynamic emergency vehicle dispatching problem. They 

regarded response time, accident severity, and accident 

time windows as the main factors to propose an 

emergency vehicle dispatching model. 

Zhang et al. (2018) introduced a sustainable multi-depot 

LRP by taking into account the uncertain information. 

They concurrently considered the travel time, emergency 

relief costs, and CO2 emissions in their model via the 

uncertainty theory. A hybrid Genetic Algorithm (GA) and 

uncertain simulations were used to solve the problem. An 

integrated Location-Inventory-Routing Problem (LIRP) 

was suggested for pre- and post-disaster management by 

Tavana et al. (2018). They proposed a multi-echelon 

humanitarian logistics network to provide an appropriate 

flow of relief products. The problem was solved by an 

improved Non-dominated Sorting Genetic Algorithm 

(NSGA-II) algorithm. According to the discussed 

literature so far, the proposed model in this paper 

considers vehicles refueling and the use of helicopters 

together with ambulances. Liu et al. (2018) developed an 

RO model for relief logistics planning considering 

uncertain demands and transportation time. The model 

was applied to a case study problem in a city in China that 

had recently suffered from an earthquake. The authors 

proposed optimal management policies using sensitivity 

analyses. 

The contributions of the current study are explained as 

follows. After reviewing the background of the research, 

it is clarified that considering the concurrent 

transportation planning of ambulances and helicopters has 

not been investigated adequately. On the other hand, there 
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has been a lack of attention to response time as the main 

objective against the total cost minimization. Moreover, 

time plays a critical role in providing relief services. More 

importantly, during a disaster, ambulances as the main 

service-providers should not be confronted with fuel 

supply issues as this disrupts the relief operations and 

increases the response time. This subject has not been 

taken into account in most studies as well. Furthermore, 

the effect of a second objective (i.e., total cost) is analyzed 

to provide a trade-off between time-oriented and cost-

oriented objectives. To this end, an exact solution 

technique (i.e., the ε-constraint method) is employed and 

the model is implemented in CPLEX solver of GAMS 

software to obtain the Pareto fronts. Finally, a sensitivity 

analysis is performed to investigate the behavior of the 

objective functions in response to the changes in 

parameters and managerial insights and decision are 

provided. 
 

3. Problem Description 
 

Suppose there is a graphical network of regular hospitals, 

potential temporary hospitals, transfer points, ambulance 

stations, helicopter stations, demand points, and refueling 

stations. The number of these locations is determined at 

the beginning. Such a network is created in the operation 

area during a disaster when a large number of injured 

people are waiting to receive treatment. Also, a fleet of 

heterogeneous vehicles with certain capacities are used. 

Emergency vehicles are sent from stations to affected 

areas. Based on the severity level of injured people, 

injured people may need to be treated at the site or 

transferred to the hospital. During relief operation, 

planning is made for vehicles refueling. In the real world, 

helicopters are responsible for transferring severely 

injured people to the treatment centers and ambulances 

are in charge of both treating at the site and transferring 

injured people to the treatment centers. The aim of solving 

this problem is to find the optimal locations for relief 

facilities, find the best routes for vehicles, minimize costs 

of operation, and shorten the time of operation. These had 

to be done by this objective that all affected people 

receive services. 

The general structure of the relief network is shown in 

Figure 1. In this figure, red points show that injured 

people in that point belong to the red group (i.e., severe 

injured people), the green points show that inured people 

belong to the green group, blue circles are ambulance 

stations, blue triangles are transfer points, blue hexagons 

denote potential temporary hospitals, blue squares 

represent regular hospitals, blue triangles express 

helicopter stations, and blue dodecagons show petrol 

stations.  

In this problem, the following assumptions are 

considered.  

1. The distance between different points of the network is 

given. 

2. Ambulances and helicopters have limited capacity for 

providing services for patients. 

3. Ambulances have limited fuel consumption. 

4. There are several potential points for the construction 

of temporary hospitals and transfer points. 

5. Patients are divided into two groups of green and red. 

6. Each ambulance can carry one or more red patients up 

to its capacity to the hospitals or transfer points. 

7. Each ambulance can initially handle a green-type 

patient and then carry the red-type patient to the hospital 

or the transfer point.  

8. Hospitals have sufficient capacity to service all the red-

type patients. 

9. The number of patients after the incident is uncertain. 

10. A hard time window is defined for each of the affected 

areas (demand point). 

11. Each helicopter should land at a transfer station and 

then transfer patients to hospitals. 
 

 
 

Fig. 1. Relief network. 
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3.1. Mathematical model 

 

The proposed mathematical model of the problem is 

defined by using the following notations: 

 

Sets and indices: 

  Set of total points 

  Set of regular hospitals   

     Set of transfer points   

     Set of temporary hospitals   

   Set of ambulance stations   

   Set of helicopter stations  

   Set of affected areas that demand some 

items  

   Set of petrol stations  

  Set of ambulances 

   Set of helicopters 

          Indices 

  Index of ambulances 

  Index of helicopters 

 

Parameters: 

    Travel time between i and j 

    Capacity of ambulance k 

        Capacity of helicopter h 

          The available time for using ambulance k 

    Number of injured people belonging to the 

red group at point i 

      Number of injured people belonging to the 

green group at point i     

    Time of service to injured people belonging 

to the green group at point i 

    Initial fuel of  ambulance k 

    The fuel of each ambulance after being 

refueled in petrol stations   
   The lower boundary of the time window for 

injured people belonging to the red group at 

point i   
   The upper boundary of the time window for 

injured people belonging to the red group at 

point i     

      A binary parameter: 1 if helicopter h is in the 

helicopter station i at the start time 

α Transformation coefficient of the time spent 

to consume fuel by ambulances 

     Travelling cost from i to j by an ambulance 

          Travelling cost from i to j by a helicopter 

         Establishment cost for the transfer center i 

          Establishment cost for the temporary hospital 

i 

 

Decision variables: 

   
 

       1 if ambulance k is at station i at the beginning 

of the movement; 0, otherwise   

   
 

         1 if ambulance k is in hospital i at the beginning 

of the movement; 0, otherwise   

   1  if transfer center i is established; 0, otherwise 

    1  if temporary hospital i is established; 0, 

otherwise     

          1 if ambulance k travels the path between points 

i and j; 0, otherwise   

     1 if helicopter h travels the path between points 

i and j; 0, otherwise   

       Remaining fuel in ambulance k at the arriving 

time at point i    

   
         Time spent for ambulance k to arrive at point i    

   
    

 Time when ambulance k leaves point i   

     Number of injured people (group red) 

transferred from point i by ambulance k   

     Number of injured people (group red) 

transferred to transportation center i by 

ambulance k   

      Number of injured people (group red) 

transferred to hospital i by ambulance k  

       Number of injured people (group green) treated 

by ambulance k at the point i    

      Number of injured people (group red) 

transferred from point i to hospital j   

 

 

Mathematical Formulation: 

(1-1) Min        *   
    
+ 

(1-2)        ∑∑∑         

   

∑∑∑        
   

 ∑    
 

 ∑      
 

 

s.t. 

(2) ∑    
 

    

 ∑    
 

   

                

(3) ∑     

   

   
                  

(4) ∑     
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 ∑     
   

                     

(8)             
               

(9)             
              

(10)                 (      )                     

(11)          ∑    
   

               

(12)    
          

          (      )                  

(13) ∑         
   

              

(14) ∑         
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(16) ∑          ∑     
       

                  

(17) ∑          ∑     
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(19) ∑   
  

   

                        

(20) ∑         
   

              

(21) ∑                      

    

 

(22) ∑      ∑     
         

                  

       

 

(24) ∑ ∑      
       

 ∑        

       

                 

    

 

(25) ∑ ∑          
          

           

(26) ∑ ∑       ∑        

   

             

          

 

(27)                                    

(28)                               

(29) ∑      
    

                    

(30) ∑ ∑     
    

     
   
           

   

 

(31) 
   
     

            ,           *   + 

        
          

    
    
    

      ,                            
  

The first objective function (1-1) minimizes the maximum 

time required for ambulances to departure from the 

affected area. This objective aims to provide equity in 

allocating ambulances during the response phase besides 

improving the efficiency and effectiveness of services 

(Gutjahr and Nolz, 2016). The second objective function 
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(1-2) minimizes the total cost. This includes minimizing 

the cost of vehicle routing and finding locations for 

temporary hospitals and transfer centers. 

According to Constraint (3), at the starting point, every 

ambulance is either at a hospital or one of the stations. 

According to Constraint (4), ambulances must start their 

trip from a station they belong to. Based on Constraint (4), 

ambulances must start their trip from the hospitals they 

belong to. As Constraint (5), a vehicle cannot directly 

return to its original point. Moreover, based on Constraint 

(6), when an ambulance reaches a certain point, it has to 

leave that point. According to Constraint (7), the 

destination of every ambulance is either a transfer station 

or a hospital. Constraints (8) and (9) the amount of fuel 

required for an ambulance to travel. Constraint (10) 

calculates the relation of fuel consumption in routes 

traversed by ambulances. Constraint (11) is related to 

refueling the ambulance at petrol stations. Constraint (12) 

shows the arriving time by ambulances in affected areas.  

Constraint (13) shows that all injured people belonging to 

the red group must be transported from affected areas by 

ambulances. Constraint (14) states that if a transportation 

station is established, injured people belonging to the red 

group can be transferred there. Constraint (15) states that 

ambulances can go only to the established stations. 

Constraint (16) is related to the number of injured people 

(red group) in transfer stations. Constraint (17) is 

concerned with the number of injured people (red group) 

that are directly transferred to hospitals by ambulances. 

According to Constraint (18), the time required for an 

ambulance to leave a point is equivalent to the total of 

needed time to reach the destination and the servicing 

time at the site. According to Constraint (19), all injured 

people belonging to the green group must be treated. 

According to Constraint (20), each ambulance has a 

certain capacity. Also, regarding Constraint (21), 

helicopters can enter those transfer centers that have 

already been established.  

According to Constraint (22), if a helicopter leaves a 

helicopter station or another transfer center, it goes to a 

certain transfer center and leaves that center for another 

transfer center or another hospital. Concerning Constraint 

(23), only those helicopters that stop in one of the transfer 

stations can go to hospitals. Constraint (24) expresses the 

capacity of helicopters. According to Constraint (25), all 

injured people (red group) transferred to transportation 

stations must be transported to hospitals by helicopters. 

Also, based on Constraint (26), if a helicopter does not 

stop in a transportation center, it cannot transport injured 

people from that point to another point. According to 

Constraints (27) and (28), injured people can be 

transferred to only temporary hospitals that have been 

already established. As Constraint (29), helicopters can go 

only to those temporary hospitals that have been already 

established. Constraints (30) and (31) show decision 

variables. 

 

 

 

 

3.2. Linearization 

 

Equation (1-1) and Constraints (16) and (17) make the 

suggested mathematical model non-linear. These 

equations can be linearized using the definition of the 

auxiliary variables (Gupte et al., 2013). In this way, a 

Mixed-Integer Linear programming (MILP) model can be 

obtained.  

A binary variable of    
  is defined to linearize Equation 

(1-1). Thus, we have: 

(1-1)        *   
    
+ 

(32)       
    

   (     
 )  

          

(33)       
    

     (     
 ) 

          

(34)    
    

    
    

  (     
 ) 

                 
(35) ∑   

 

 

                 

(36)    
  *   +               

For constraints (16) and (17), since the value of  
ijk

i I

x


  

is equal to 1 or zero, the following transformation can be 

used. 

According to constraint (16): 

(16) 
∑          ∑     

       

  

          
(37) 

∑          
    

              

(38)                            
(39)       ∑    

   

               

(40)            (  ∑    )

   

 

          
(41)       

                   
 

Referring to Constraint (17): 

(17) ∑          ∑    
       

  

             
(42) ∑           

    

    

            
(43)                          

(44)        ∑    
   

   

            
(45)             (  ∑    )

   

 

            
(46)        
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4. Solution Procedure 
 

One of the important features in multi-objective 

optimization is the priority of objectives. Accordingly, the 

improvement in one of the objectives deteriorates the 

other objectives. This is shown by Pareto-optimal 

solutions. Therefore, the ε-constraint method is employed 

to solve the proposed bi-objective model. The following 

subsection describes this method.  

The ε-constraint method is a popular method for solving 

problems with more than one objective. Pareto fronts are 

easily generated by the ε-constraint method (Mavrotas, 

2009). One of the advantages of the ε-constraint method is 

its ability to generate the desired number of efficient 

Pareto solutions, which is impossible in the other 

methods, such as weighted sum method (Tirkolaee et al., 

2019). 

In the ε-constraint method, the objective function with the 

utmost impotence is considered as the Main Objective 

Function (MOF) and the other objectives are considered 

as new constraints of the problem. In other words, the ε-

constraint method converts a multi-objective model to a 

single-objective model with extra constraints. For the 

proposed problem, the ε-constraint method is employed 

through Equations (47)-(49). 

(47)       ( ) 
(48)     

(49)   ( )     

... 

  ( )     

In the proposed problem, we have: 

(50) Min f=f1 

(51)     

(52) f2(X) ≤ε2 

The first objective is the MOF. Main steps in the ε-

constraint method are as follows: 

1) Considering one of the objectives as the MOF, 

2) Solving the problem based on each objective function, 

and then, the optimal values of objective functions are 

obtained. 

3) Dividing the difference between two optimal values of 

the second objective function into several pre-determined 

parts. A table of values for 2  , , n  is then generated. 

4) Solving the problem by the main objective function and 

2  , , n  .    

5) Reporting the Pareto-optimal solutions. 

 

5. Numerical Results 

 

In this section, random samples are produced and the data 

of each sample are described. The problem was solved by 

GAMS (version 24.1) and CPLEX solver. The validity of 

the model was tested by solving the samples. In the ε-

constraint method, six breakpoints were considered for 

each objective function. Six Pareto points for each of the 

problems were generated in total. 

To produce a sample problem at a small size (P1), 

medium size (P2), and large size (P3) in two-dimensional 

space, n points were examined: points of regular hospitals, 

points of potential temporary hospitals, points of transfer 

stations, points of ambulance stations, points of helicopter 

stations, points of affected areas (demand points), and 

points of petrol stations. In defining some parameters, 

uniform distribution was used. These are shown in Table 

1. In Table 2, the first column is related to random 

samples, the second column includes several points in 

graph network, the third column represents the number of 

ambulances, the fourth column indicates the number of 

helicopters, the sixth column indicates the number of 

regular hospitals, the seventh column presents the number 

of potential temporary hospitals, the eighth column 

indicates the number of transfer stations; the ninth column 

represents the number of ambulance stations; the tenth 

column indicates the number of helicopter stations, and 

the eleventh column presents the number of petrol 

stations. 

 

5.1. Single-objective Results 

 

In this section, results obtained from the solution of 

random samples are presents. These include the number of 

ambulances, helicopters, transfer centers and temporary 

hospitals with various sizes. These are reported in Table 

3. It should be noted that since the first objective is the 

main one in providing relief operations during a disaster, 

the solution with the lower value for the first objective is 

considered as the best solution (see Table 3). 

According to Table 3, the best solutions for the first and 

second objective functions can be found among Pareto 

points. In this table, the values for the first objective 

function of different problems are almost identical. It is a 

clear point because it states the maximum time required 

for leaving the affected areas. The second objective 

function is obtained in problems with various sizes and 

large differences because they are very different in terms 

of fixed costs. Figures 2 and 3 show these differences. 

 

5.2. Pareto Results 

 

This section provides Pareto solutions for different 

problems. One of the most powerful decision-making 

tools in multi-objective optimization is the Pareto front as 

the decision-maker can observe the relationships and 

trade-offs between all different objectives. These Pareto 

fronts are given in Figures 4-6. 
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                                                        Table 1 

                                                        Parameter values

Values Parameters 

Uniform(1,10)     

8     

50     

5000     

Uniform(2,5)     

Uniform(9,15)     

Uniform(5,10)     

100     

150     

1    

uniform(1000,2000)    

1       

0.8 α 

Uniform(10,15)      

Uniform(30,45)      

10000    

12000     
 

 

Table 2 

 Random samples. 

Problem I K HC AA H TH TP WS HS FP 

P1 10 2 1 4 1 1 1 1 1 1 

P2 25 6 2 12 3 3 2 2 1 2 

P3 40 10 4 21 5 3 3 3 2 3 

  
 

Table 3 

 Computational results. 

Problem 
First objective 

function 

Second objective 

function 

Number of employed 

ambulances 

Number of employed 

helicopters 

Number of 

transfer centers 

Number of 

temporary  hospitals 

P1 114.113   10081.493   2 1 1 1 

P2 135.351 20202.703   6 2 2 3 

P3 123.528   30478.420   10   3 4 4 

Mean 124.330 20254.205 - - - - 
 

 

 
 

Fig. 2. The first objective function in problems with various sizes. 
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Fig. 3. The second objective function in problems with various 

sizes. 

 

 
Fig 4. Pareto front of the 1st problem. 

 

 
Fig. 5. Pareto front of the 2nd problem. 

 

 
Fig. 6. Pareto front of the 3rd problem. 

 

According to Figures 3-5, different problems have 

different Pareto fronts with different dispersion degrees. 

The obtained trade-offs clarify that the objectives are 

contradictive. In fact, by increasing the value of one of 

them, the other one decreases. Furthermore, the dispersion 

of the Pareto fronts in each problem is different. 

 

5.3. Sensitivity Analysis 

 

To investigate the sensitivity of the model to the 

parameters, a sensitivity analysis is conducted for two key 

parameters (    and    ) of the problem (respectively, 

the number of injured people in red and green groups). 

These parameters are demand parameters. These 

parameters make the problem uncertain (Bozorgi Amiri et 

al., 2011) and their effects should be analyzed. To this 

end, the proposed sensitivity analysis is conducted for 

problem P2, which is a medium-sized problem. The 

parameters may be changed within a range of %20. 

Results obtained from the best Pareto points are presented 

in Tables 4 and 5. 

 
                      Table 4 

                      Sensitivity analysis for    . 

 

Obtained results for the changes in the number of injured people (red group) in point i of     

0.75 0.8 0.9 1 1.1 1.2 

Objective function 1 89.201 102.015 116.810 135.351 157.12 183.621 

Objective function 2 10772.425 20202.703 20202.703 20202.703 20202.703 20202.703 
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                    Table 5 

                    Sensitivity analysis for    . 

 

Obtained results for the changes in the number of injured people (red group) in point i of     

0.75 0.8 0.9 1 1.1 1.2 

Objective function 1 89.201 102.015 116.810 135.351 157.12 183.621 

Objective function 2 10772.425 20202.703 20202.703 20202.703 20202.703 20202.703 

 

In the following, the schematic forms of results are 

illustrated. In Figure 7, as a result of changes in    , the 

first objective function is changed. The maximum steep is 

between %10 and %20. There is a direct relationship 

between     and objectives. 

 

 
Fig. 7. The first objective function for the changes in    . 

 

 
Fig. 8. The second objective function for the changes    . 

 

According to Figure 8, in the second objective function, 

when     is increased by %20, no changes take place. 

Also, when this parameter decreased by %20, no changes 

occur. However, when there is a 25% reduction in the 

value of    , the second objective experiences a major 

change. 

Regarding the changes in parameter    : 

 
Fig. 9. The first objective function for the changes in      

 

According to Figure 9, when      is changed, the first 

objective function is changed linearly. This shows that 

there is a direct relationship between this parameter and 

the first objective function. 

In summary, it is concluded that the first objective 

function is more sensitive to the number of injured people 

in red group. When the number of the red group increases, 

the first objective increases with a greater slope rather 

than the green-labelled injured people. Therefore, this 

parameter must have a salient role in the process of 

decision-making at the managerial level. 

Managers can determine the optimal values of the 

objectives by providing the required resources, 

equipment, and facility for the system limitations, such as 

the budget constraint. However, the main focus is on the 

first objective. To this end, an efficient rescue team 

including relief experts, ambulances, and helicopters can 

directly affect the value of this objective. Thus, it is 

suggested that managers consider the results of the 

sensitivity analysis and provide the required equipment 

before a disaster occurs. 

 

6. Conclusion 

 

In this paper, relief support planning in urban areas during 

the disaster was investigated. It was assumed that the 

degree of severity of injured people is different across the 

affected areas. The relief system included ambulances and 

helicopters. In real situations, helicopters had the duty of 

transporting people with severely injured people. The 

ambulances were responsible for relieving at the site and 

transporting the injured people to treatment centers. The 

study concentrated on planning emergency services 

through developing a novel bi-objective mathematical 

model. The objectives were to provide the required 

services considering the maximum time of leaving the 
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affected area by ambulances and to minimize the network 

total cost concurrently.  

In the first stage, the proper locations of emergency 

service vehicles and temporary treatment centers were 

determined. In the second phase, routes for transporting 

injured people throughout the different points in the 

network were determined. The purpose was to offer relief 

services to injured people with different degrees of 

severity within the shortest possible time considering the 

limitations and real situations. To verify the efficiency of 

the proposed model, different-sized problems were 

investigated and the obtained results were analyzed 

according to the objective function values, the number of 

the needed facilities and the trade-offs generated between 

objectives. As the value of the first objective vitally 

affects the decision-making, managers can determine its 

optimal value by providing the required resources, 

equipment, and facility regarding the system limitations. 

Eventually, a sensitivity analysis was done for the demand 

parameter and it was revealed that any changes in the 

number of injured people may result in different behaviors 

of objective functions. The changes in both objectives 

showed their high sensitivity to the red group. Therefore, 

it can be suggested that the managers need to pay special 

attention to this issue to reduce the sensitivity by using 

more equipment.  

For future studies, approaches for solving large size 

samples (e.g., meta-heuristics) can be investigated, like 

those proposed by Tirkolaee et al. (2018), Goli et al. 

(2019), and Sangaiah et al. (2019). Moreover, uncertainty 

approaches such as fuzzy programming (Mostafaeipour et 

al., 2019) and robust optimization (Golpîra and Tirkolaee, 

2019; Tirkolaee et al., 2020) can be employed to make the 

problem closer to the real world. 
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