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Abstract 

This paper investigates a flexible flow shop scheduling problem with the aim of minimizing the operational costs as a new objective 

function. In this production system, there are some unrelated parallel machines with different performances and different technology levels 

in the first stage and each other stage consists of a single machine. Setup times are assumed as sequence-dependent and are need when a 

machine starts to process a new job. Some of the parallel machines in the first stage are multifunctional and can do several processes on 

jobs. So, the jobs that are assigned to these machines do not need to be processed in some next stages. This problem is described with an 

example, and its parameters and decision variables are defined. Then a mathematical model based on mixed-integer linear programming 

(MIP) is developed to solve the problem in small-sized scales. As this problem is discussed in an Np-hard environment, the Genetic 

Algorithm (GA) is applied to solve the considered problem on practical-sized scales. Due to the result, the operational costs conflict with 

makespan as a common objective function in scheduling problems. Therefore, the supplementary analysis has been presented considering a 

restriction on the makespan.  

Keywords: Scheduling; Flexible flow shop; Unrelated parallel machines; Operational costs 

1. Introduction 

Production planning and control is one of the most 

activities for operational managers. Due to the increasing 

effects of internal and external factors in the nowadays 

competitive environment, the importance of production 

planning has been increased. Especially, considering the 

rising trend of the cost of production and marketing, it is 

essential that we have a perfect production plan in order 

to increase resource productivity as a competitive 

approach for manufacturing industries. Scheduling as an 

important shop floor planning activity is one of the most 

critical issues in production planning and control systems 

that are interacting with the internal and external factors 

of a production system. This is because of the strong 

competition and limitation of resources in our 

environment (Cummings and Egbelu 1998;Maleki-

Darounkolaei et al. 2012).  Product sequencing and 

resource allocation are two important tasks in the 

scheduling process. Sequencing is related to the 

processing order of jobs on each machine or stage, and 

allocation refers to select a machine for processing each 

job. Both jobs and machines may have specific 

characteristics and limitations that can affect resource 

productivity and the cost of production. These 

complexities are more tangible in make to order (MTO) 

manufacturing systems. Flow shop is an important aspect 

of MTO manufacturing systems that has many 

applications in the real world (Enayati et al. 2021). In 

order to increase flexibility in producing different 

products and raising reliability, this manufacturing system 

is extended to the flexible flow shop in which we have 

more than one machine in some stages. Using a flexible 

flow shop causes reduction effects of disturbances 

especially in case of disturbance in machines such as 

unexpected breakdown and other resource availability. 

The flexible flow shop that also called hybrid flow shop 

(HFS), compound flow shop, and multi-processor flow 

shop is a generalization of the flow shop in such a way 

that every job can be processed by one among several 

machines on each processing stage (Gupta and Tunc 

1991; Li 1997; Fattahi et al. 2013b; Raissi et al. 2019). 

Flexible flow shops are common manufacturing 

environments in which a set of   jobs are needed to be 

processed in a series of   stages optimizing a given 

objective function. The common assumptions and 

characteristics of the classic flexible flow shop have been 

defined as bellows in the last studies (Huang and Li 1998; 

Fattahi et al. 2013a; Hosseini 2016) : 

1. The number of processing stages ( ) is at least 2. 

2. Each stage   consists of  ( ) machines in parallel 

format ( ( )     for all stages and  ( )    for at least 

one stage). 
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3. All jobs are processed following the same 

production flow: stage 1, stage 2, . . ., stage  . A job 

might skip any number of stages provided it is processed 

in at least one of them. 

4. Each job   requires a processing time     in stage  .  

In this problem,      is the processing times of the job   on 

the machine   in stage  . In a specific stage, when        
for all   and  , the machines have the same speed and the 

processing times of a job are identical on different 

machines and the machines are called identical. When 

    ⁄  where    is the processing time of job   and    is the 

speed of machine  , then the machines are called uniform. 

If the     are arbitrary, then the machines are called 

unrelated. Both of the uniform and unrelated cases belong 

to the non-identical parallel-machine scheduling problem.  

The present study aims to conduct a flexible flow shop 

scheduling problem in which there are some unrelated 

parallel machines in the first stage and we have only one 

machine for the other stages. Each job requires   

operations to be processed. In addition to the velocity, the 

parallel machines in the first stage have different levels of 

technology and operational cost. So, depending on the 

first stage, jobs may not require to be processed in all next 

stages. The total operational cost of   stages for all jobs is 

considered as a new objective to be minimizing. 

The outline of the paper is as follows. Section 2 is 

devoted to the survey of works related to this paper. The 

problem definition and the mathematical model are 

presented through a numerical example in section 3. The 

solution approach is described in section 4. The design of 

test problems and experiments is provided in section 5 

while the evaluation of the proposed algorithm and 

analysis of the result is done in section 5 too. Finally, a 

summary of the work and direction for future research are 

given in section 6. 

2.  Literature Review 

The flexible flow shop scheduling (FFS) problem has 

received much attention in recent years because of its 

many applications in different manufacturing industries 

(Wang et al. 2013; Hosseini 2019). This problem was 

defined as a multi-stage flow shop with multiple parallel 

machines for the first time in the 1970s (Choi and Wang 

2012). This system is usually considered as a generalized 

format of two fundamental scheduling systems: (1) the 

flow shop scheduling problem, and (2) the parallel 

machines scheduling problem (Wang 2005). The types of 

parallel machines in each stage are the most important 

criteria that determine the scheduling environment in the 

FFS problem. These criteria can affect the solution 

approaches and play a key role in defining the 

optimization constraints. In real-world cases, older 

machines are replaced with newer ones gradually because 

of high replacement costs. So, it is common that unrelated 

machines with various technology levels and different 

efficiency are used in parallel for the same production 

line. This situation is defined as unrelated parallel 

machines  (Jungwattanakit et al. 2008).  

A flexible flow shop scheduling problem with 

unrelated parallel machines was introduced by Low (Low 

2005) in which the independent setup was considered for 

the jobs. After that, Sawik addressed the same problem as 

Low with multi-capacity machines in a make-to-order 

system for long- and short-term machine assignment. He 

developed a new hierarchical approach to solve this 

problem (Sawik 2006). Jenabi et al. conducted the FFS 

problem with unrelated parallel machines to determine the 

economic lot-sizing over a finite planning horizon (Jenabi 

et al. 2007). So, they considered minimizing the sum of 

setup and inventory holding costs as a new objective 

function and developed a new mixed zero–one nonlinear 

mathematical programming for this problem. Chen and 

Chen studied the FFS problem with unrelated parallel 

machines on each stage considering a bottleneck stage on 

the line to minimize the total tardiness. They proposed 

two bottleneck-based heuristics with three machine 

selection rules to solve this problem (Chen and Chen 

2009). Seven commonly dispatching rules and a basic 

Tabu search algorithm were investigated for comparison 

purposes. Computational results show that the bottleneck-

based heuristics significantly outperform all the 

dispatching rules in solving the problem. Li et al. studied 

an FFS problem with unrelated parallel machines on each 

stage. They represented the problem as a nonlinear 

programming (NLP) optimization model and proposed a 

new heuristic method to solve it with a real-sized scale. 

They considered makespan and weighted tardiness as two 

important objectives (Li et al. 2015). Shahvari et al. 

studied the FFS problem where there are some unrelated 

parallel machines in bottleneck stages aiming to minimize 

the total weighted completion time and tardiness 

simultaneously. They extend their study by considering 

dynamic machine availability and job release times 

(Shahvari and Logendran 2017). Arroyo et al. also studied 

this problem considering release times and arbitrarily 

sized jobs. They developed a mixed-integer linear 

programming (MIP) model and proposed some heuristic 

approaches based on first-fit and best-fit earliest job-ready 

time rules (Arroyo and Leung 2017a; Arroyo and Leung 

2017b). Some new studies have considered the energy 

consumption issue in flexible flow shop scheduling. For 

example, Meng et al. studied the FFS problem with setup 

times and proposed a mixed integer model with 

minimizing total energy consumption as a new objective 

function (Meng et al. 2019). Unal et al. studied the FFS 

problem with unrelated parallel machines while a 

bottleneck process within the production system 

motivated their problem. They developed an integer 

programming (IP) model to minimize the total tardiness 

of jobs over a finite planning horizon (Ünal et al. 2019). 

A re-entrant hybrid flow shop scheduling problem 

(RHFSP) has been introduced by Geng et al. in a new 

study (Geng et al. 2020). They developed a new improved 

https://www.sciencedirect.com/topics/mathematics/mathematical-programming
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multi-objective ant lion optimization (IMOALO) 

algorithm to tackle this problem with the aim of 

minimizing total completion time (makespan) and total 

cost of energy consumption under Time-of-Use electricity 

tariffs. Schulz et al. discussed the FFS problem 

considering different processing speeds for parallel 

machines aiming to minimize total tardiness and energy 

costs simultaneously. They presented two new 

formulations for this problem and applied them to solve 

some numerical examples (Schulz et al. 2020). Recently, 

Hasani and Hosseini studied the flexible flow shop 

scheduling problem with unrelated parallel machines by 

considering the production cost and energy consumption 

as two objective functions and a machine-dependent 

processing stage. they solved the MIP model using the 

                method on a small-size scale and NSGA 

II and SPEA 2 on a large-size scale (Hasani and Hosseini 

2020). 

The setup time that is usually required when a machine 

switches to a new kind of job, plays an important role in 

the optimization process. Considering sequence-

dependent setup times in flexible flow shop, make it even 

more difficult NP-hard problem as stated by Pinedo and 

Lee et al. ( Pinedo 2008; Lee and Loong 2019). Under 

such a condition, the decision made for the processing 

flow influences the processing time of the jobs (Ahonen 

and de Alvarenga 2017). Kianfar et al. studied a 

sequence-dependent setup time of the FFS system by 

considering the non-deterministic and dynamic arrival of 

jobs (Kianfar et al. 2012). In the paper of Ebrahimi et al., 

a stochastic model has been proposed to solve the FFS 

problem with uncertain due dates and sequence-dependent 

family setup times. The due dates are assumed to be 

uncertain and followed a normal distribution in their study 

(Ebrahimi et al. 2014). The sequence and machine-

dependent setup times in flexible flow shop scheduling 

problem with unrelated parallel machines were addressed 

by Edwin et al. aiming to minimize makespan. They 

emphasized on complexity of the problem and proposed a 

solution approach based on the imperialist competitive 

algorithm (ICA) and the genetic algorithm (GA) to solve 

this problem (Garavito-Hernández et al. 2019).  

The objective function is another important issue in all of 

the scheduling problems. In shop floor planning, the 

objective functions can be addressed as time-related, job-

related, and multi-objective functions. Time-related 

objective functions usually aim to minimize the total 

completion time (makespan), the completion time of each 

job, cycle time, and flow time. Job-related objectives are 

known as job tardiness and earliness (Lee and Loong 

2019). Although single objective models cannot truly 

represent the exact situation facing real-world situations, 

the last studies show that there are not many papers that 

deal with multiple objectives (Lee and Loong 2019; Ruiz 

and Vázquez-Rodríguez 2010).  

Figure (1) represents a distribution of past related studies 

considering different kinds of objective functions. Also, 

different kinds of parallel machines that have been 

investigated in flexible flow shop scheduling problems 

have been shown in figure (2) (Lee and Loong 2019). 

As the best knowledge of the authors, no study conducted 

the FFS problem considering minimizing operational 

costs as the objective function. Due to the use of unrelated 

machines in some stages with different efficiency, the 

operational cost of each job will be different based on the 

processing path. Therefore, this study aims to minimize 

the operational costs in an unrelated flexible flow shop 

production system considering makespan as a constraint. 

3. Problem Definition 

As is evident in the existing literature, many studies have 

investigated the flexible flow shop scheduling problem in 

recent years, most of which seek to reduce production 

time and none of them have focused on reducing 

operational cost directly. In this section, we seek to 

provide a model to reduce operational costs in FFS 

considering a specified value for makespan as a constrain. 

Figure (3) presents a schematic view of the considered 

problem in this study. Suppose that there are   jobs that 

should be processed in a flexible flow shop system with 

some unrelated parallel machines in stage 1 and each 

other stages consist of a single machine. Setup times are 

assumed as sequence-dependent and are required when a 

Fig.  1. Objective function classification in FFS. 

Fig.  2. Machines constraint distribution in FFS. 
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machine starts to  process a new job. Some parallel 

machines in stage 1 are high-tech and so, the jobs that  

 

 

 

assign to these machines do not need to be processed in 

some next stages. To better understand the problem at 

hand, a proper formulation is provided as bellows. 

 

3.1.  Notations 

Indices of the considered problem are as follows:  

Indices for jobs                 

Indices for parallel machines in 

stage                

Index for stages           

 

Parameters of the considered problem are as follows: 
Processing time of job   on machine   in stage      

( )
 

Setup time for switching job   to job   on machine   in stage 

      
( )

 

Cost per hour working machine   on job   in stage  . (in 

processing mode or setup operation).     
( )

 

Binary parameter taking value 1 if job   enter the stage   after 

processing by machine   in the first stage and 0 otherwise.      

A large number.   

An employer limit value for the makespan.   

 

Also, the decision variables of the proposed model are 

as follows: 
Binary variable taking value 1 if job   is assigned to 

machine   in the first stage and 0 otherwise.     {
 
 

 

Binary variable taking value 1 if job   is processed 

directly after job   on machine   in stage   and 0 

otherwise. 
      {

 
 

 

Completion time of job   in stage  .   
( )

 

Operational cost of job   in stage  .    
( )

 

 

3.2. Assumptions 

The main assumptions of the considered problem are as 

follows. Many of these items are known as general 

assumptions in FFSP and the last two have been added to 

this paper. 

 All jobs and machines are available at time zero. 

 There are some unrelated parallel machines in stage 1 

and one machine in each other stages. 

 Each machine can process only one job at the same 

time, and each job can be processed only by one 

machine at the same time. 

 Each job can only be processed while its required 

machine is available during its processing time. 

 The setup times are assumed as sequence-dependent. 

 To consider the initial setup times, we assume that job 

0 is a dummy job with zero release date and processing 

time which should be placed in position one on all 

machines. 

 Transportation times of the jobs between machines are 

neglected 

 The priority of processing the jobs after the first stage 

is FIFO. 

 Production cost per hour for machines is the same both 

in processing mode and setup operation. 

 The jobs assigned to the high-tech machines in the first 

stage will skip some next stages. 

3.3. Mathematical formulation 

In this section, a new mixed-integer linear programming 

(MIP) model is developed for the problem at hand. This 

model is developed based on the study of Afzali Rad et al. 

(Afzalirad and Rezaeian 2016) and Handbook on 

Scheduling (Blazewicz et al. 2019). 

Fig.  3. A schematic view of the considered 
problem 
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In the mathematical model, minimizing the total 

operational cost aspect of the problem is expressed by 

equation (1). Constraints (2), (3), (4), and (5) ensure that 

each job is processed precisely once at each stage. 

Constraints (6) take care of the completion time of job   in 

stage  .  Constraints (7) indicate that the completion times 

  
( )
 and   

( )
 of jobs    and    scheduled consecutively on 

the same machine respect this order. On the other hand, 

Inequalities (8) imply that jobs go through the stages in 

the right order, i.e., from stage 1 to stage  . Constraints 

(9) use the FIFO sequencing rule to extend sequences 

between stages. More specifically, this set ensures that job 

  is sequenced before job   at stage   if the completion 

time of   is greater or equal than the completion time of   
at stage     . Constraints (10) Show the machine 

selected in stage one. Constraints (11), (12) and (13) take 

care of the Operational cost of job   in stage  . Constraints 

(14) are used to compute the makespan. Due to the 

constraint (15), all of the jobs should be completed until a 

given time. Finally, the last two constraints specify the 

domains of the decision variables. 

3.4. A numerical example 

In order to clarify the considered problem and the 

proposed mathematical model, a simple numerical 

example is investigated in this section. Assume that, there 

are three parallel machines in stage 1 with three different 

technology levels. The first stage is followed by four 

other stages in a flow format that each stage consists of a 

single machine. Four jobs are needed to be produced in 

this system. The data for jobs, their processing times, 

setup times, and operational costs are given in table (1). 

Due to the difference in technology levels of the parallel 

machines, some stages may be deleted as the table (2). 
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Table 1 

Parameters for the jobs in the numerical example. 

 Process times  Operational costs 

Jobs 1 2 3 4 
 

1 2 3 4 

   
( )

 8 10 6 10     
( )

 30 30 30 
3

0 

   
( )

 6 8 4 8     
( )

 12 12 12 
1

2 

   
( )

 4 5 3 5     
( )

 10 10 10 
1

0 

   
( )

 4 5 5 6     
( )

 8 8 8 8 

   
( )

 10 14 12 15     
( )

 6 6 6 6 

   
( )

 4 6 4 8     
( )

 3 3 3 3 

   
( )

 5 5 4 5     
( )

 2 2 2 2 

          

Setup times 

     
( )

      
( )

 (     ) 

    1 2 3 4     1 2 3 4 

0 4 6 4 5 0 2 3 2 2 

1 0 6 4 5 1 0 3 2 2 

2 4 0 4 5 2 2 0 2 2 

3 4 6 0 2 3 2 3 0 2 

4 4 6 2 0 4 2 3 2 0 

The setup times in stages 2-4 are assumed as a part of process time 

This example has been investigated in three modes. At 

first, we generated a random schedule for jobs, and the 

result is shown in table (3) and its Gant chart is 

represented as figure (4) with value Z=1260. Then we 

solved this problem with the proposed mathematical 

model. The result is shown in table (4) and figure (5) with 

value Z = 812. That is obvious from the result that we 

have more than 35% improvement in the operational costs 

as the objective function. The result of the optimal 

solution emphasizes that the high-tech machines with 

more operational costs (in this example machine 1) will 

not be assigned to process any jobs when the operational 

costs are the only objective. We also optimized the 

operational costs with restriction makespan on the 

obtained value (Cmax=53) to more test the proposed 

model. As the result shows, the model could reduce the 

operational costs from 1260 to 1102 (more than 12.5% 

improvement) with the same makespan. This result is 

shown in table (5) and its Gant chart is represented in 

figure (6). 

 
Table 2 

Required to process according to the machine assigned in the 
first stage (    ). 

Assignment in the First stage 
stages 

2 3 4 5 

     1 0 1 1 

     0 1 1 1 

     1 1 1 1 

     1 0 1 1 

     0 1 1 1 

     1 1 1 1 

     1 0 1 1 

     0 1 1 1 

     1 1 1 1 

     1 0 1 1 

     0 1 1 1 

     1 1 1 1 

 

 

 

Table 3 
Machine assignment in a random schedule. 

jobs 

stage 1 

stage 2 stage 3 stage 4 stage 5 Operational cost 
Machine 1 Machine 2 Machine 3 

1 
  




  414 

2 
 


 

   244 

3 
  




  360 

4 
  

     242 

        
1260 
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Table 4 

Machine assignment in the optimal schedule 

jobs 

stage 1 

stage 2 stage 3 stage 4 stage 5 Operational cost 
Machine 1 Machine 2 Machine 3 

1        174 

2        232 

3  

 

   164 

4 

 
     242 

        
812 

 

 
 

Table 5 

Machine assignment in improved the random schedule. 

jobs 

stage 1 

stage 2 stage 3 stage 4 stage 5 Operational cost 
Machine 1 Machine 2 Machine 3 

1        174 

2        232 

3 


      164 

4    


  532 

     
  

 

1102 
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4
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Fig.  4. The Gantt chart of the random schedule. 

Fig.  5. The Gantt chart of the optimal schedule 
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4. The proposed solution algorithm 

The genetic algorithm (GA) is a population-based meta-

heuristic approach introduced by Holland (1975) based on 

the evolution process. This algorithm starts with an initial 

population as primary feasible solution. After that, two 

operators including crossover and mutation are applying 

to create some offsprings as a new solution. A crossover 

operator is done to mix the good features of parents in 

order to generate more fitting offspring. The mutation 

operator helps the algorithm to maintain diversity within 

the population and escape from probably local optimum. 

Among total old and new solutions, a population with a 

definite size is selected as the new generation. This 

process is repeated until a specific stopping criterion is 

met (Hosseini 2017). Due to the complexity of the 

considered problem in this study, this algorithm is used to 

solve it in a real-size scale. In this section, a solving 

algorithm is proposed for the real-size scale of the 

considered problem based on GA. How to implement the 

proposed GA is described in the following. 

4.1. Solution representation 

Implementation of a meta-heuristic needs to decide how 

to represent solutions in an efficient way to the searching 

space (Fattahi et al. 2012). Representation should be easy 

to decode and calculated to reduce the run time of the 

algorithm. In the considered problem, several jobs need to 

be scheduled in a flexible flow shop in which that there 

are some unrelated machines in the first stage and there is 

only one machine in each of the remaining stages. By 

regarding these aspects, the appropriate schematic 

structure of the problem solution contains     strings in 

which that a permutation of the   jobs is considered 

above the first string. In the first string, assigning the 

parallel machines to process the jobs is determined. In the 

second string, the priority of jobs is identified to be 

processed on an assigned machine. The third string to 

    is completed for job sequencing on stage 2 to  . 

Figure (7) shows an example of this structure with 

    ,     , and    . 

 

 

  Jobs 

  1 2 3 4 5 6 7 8 9 10 

Stage 1 

Machine assigning: 2 1 1 3 2 2 3 3 3 1 

Job sequencing: 3 2 3 4 1 2 2 3 1 1 

Jobs sequence on stage 2: 8 2 3 4 5 1 7 10 9 6 

Jobs sequence on stage 3: 3 2 10 4 5 6 7 8 9 1 

Jobs sequence on stage 4: 1 9 3 4 2 6 7 8 10 5 

Jobs sequence on stage 5: 1 8 6 3 10 9 4 5 7 2 

 
Fig.  7. The schematic structure of the problem solution for GA 

Fig.  6. The Gantt chart of improved the random schedule. 
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4.2. Create initial population 

The GA is a population-based meta-heuristic, so it needs 

an initial population of individuals to start. This 

population can either be produced randomly or based on 

some other algorithms. In this study, each chromosome of 

the initial population is generated randomly. 

4.3. Calculation the fitness value of the solutions 

After generating the initial population, the value of 

operational costs is calculated for each solution and is 

considered as the fitness value of each solution (  ( )). 
Then solutions (chromosomes) are ranked based on their 

fitness. 

4.4. Parent selection method 

The parent selection method determines how to choose 

the chromosomes from the current population for the 

crossing procedure. In this study, the parents are selected 

based on the roulette-wheel rule. After calculation, the 

fitness value (  ( )) for each solution, the operation of the 

roulette-wheel is done to select the parents. 

4.5. Recombination and mutation 

In general, the crossover operator is done to generate a 

new chromosome (offspring) with more fitness. After 

that, the mutation operator is implemented to maintain the 

diversity of the population in the successive generations 

and to more exploit the solution space. Some different 

methods were tested for crossover and finally, two-point 

crossover (2PX) was recognized well than the others. The 

results also emphasized that the crossover operation on 

the jobs sequencing for each parallel machine does not 

any significant improvement on objective functions. So, 

in order to increase the efficiency of the proposed 

algorithm; the crossover is done only on the machine 

assignment in the first stage and jobs sequencing in stages 

2-3. The mutation operator is used either for the machine 

assignment in the first stage, jobs sequencing for each 

parallel machine in the first stage, and on jobs sequencing 

after crossover. Here, replacement mutation is used with 

random selection. Figure (8) presented a sample of the 

two-point crossover (2PX) used for the considered 

algorithm. 

 

 

 

 
P1 2 2 1 3 3 2 1 3 1 1 

 2 1 2 3 1 3 3 2 1 4 

 6 2 3 4 8 1 7 10 9 5 

 3 6 10 8 5 2 7 1 9 4 

 1 9 3 4 2 6 7 8 10 5 

 4 8 6 9 10 3 1 5 7 2 

 
P2 1 2 3 3 2 1 3 1 1 3 

 3 1 2 1 2 4 3 2 1 4 

 2 9 3 4 8 6 7 10 1 5 

 6 1 10 7 4 2 3 8 9 5 

 4 10 7 5 2 8 6 9 10 3 

 2 1 4 6 5 10 9 3 7 8 

 

 

 
Two-point crossover operator  

Crossover points 
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C1 2 2 1 3 2 1 3 1 1 1 

 2 1 2 2 3 3 1 5 1 4 

 6 2 3 4 8 7 10 1 9 5 

 3 6 10 8 1 7 2 5 9 4 

 1 9 3 4 7 2 8 6 10 5 

 4 8 6 9 1 5 10 3 7 2 

 
C2 1 2 3 3 3 2 1 3 1 3 

 3 1 2 1 3 2 2 5 1 4 

 2 9 3 4 6 8 7 10 1 5 

 6 1 10 7 3 8 2 4 9 5 

 4 10 7 5 9 2 6 8 10 3 

 2 1 4 6 9 10 3 5 7 8 

 
Fig.  8. The proposed crossover 

 

A sample of the mutation operator used in this study has 

been presented via figure (9). The mutation is done with a 

couple of replacement of the randomly selected genes on 

the jobs sequencing and machine assignment. It is 

obvious that we need to correct jobs sequencing on the 

parallel machines after changing in machine assignment 

in the first stage. This is done by a correction sub-

algorithm after complete the mutations. 

 

C1 2 2 1 3 2 1 3 1 1 1 

 2 1 2 2 3 3 1 5 1 4 

 6 2 3 4 8 7 10 1 9 5 

 3 6 10 8 1 7 2 5 9 4 

 1 9 3 4 7 2 8 6 10 5 

 4 8 6 9 1 5 10 3 7 2 

 
C2 1 2 3 3 3 2 1 3 1 3 

 3 1 2 1 3 2 2 5 1 4 

 2 9 3 4 6 8 7 10 1 5 

 6 1 10 7 3 8 2 4 9 5 

 4 10 7 5 9 2 6 8 10 3 

 2 1 4 6 9 10 3 5 7 8 

 
 

 

 
Replacement mutation operator 

Mutation points 
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C1 2 2 1 1 2 3 3 1 1 1 

 2 1 2 3 3 2 1 5 1 4 

 6 2 3 4 8 7 10 1 9 5 

 3 4 10 8 1 7 2 5 9 6 

 1 9 2 4 7 3 8 6 10 5 

 4 8 6 9 1 5 10 3 7 2 

 
C2 1 3 3 3 3 2 1 2 1 3 

 3 5 4 1 3 2 2 1 1 2 

 2 9 3 4 6 8 7 10 1 5 

 6 1 10 9 3 8 2 4 7 5 

 4 10 7 5 9 2 6 8 10 3 

 6 1 4 2 9 10 5 3 7 8 

 

4.6. Selection the new generation      

The new generation      is selected from the parents and 

offsprings but not just based on the fitness values. Rather 

than, in each generation of the proposed GA, a new 

population is generated by replacing the second 50% of 

the current population with the first 50% of the new 

population (offsprings). Based on this procedure, there is 

no guarantee that the inserted solutions are always better 

than the worst solutions in the current population. This 

approach makes the algorithm towards searching the 

various regions and avoids form a premature convergence 

during the progress of the algorithm. 

The best value of the parameters for the proposed GA 

algorithm is obtained using Taguchi settings considering 

the plan of     in three levels. In order to determine the 

best combination of these parameters, three levels of each 

parameter were examined as the table (6).  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig.  10.  Main effects plot for S/N ratios with the Taguchi 
method. 

 

Table 6 

The test values of the parameters for the proposed GA 

Parameter Number of levels Test values 

Max-Gen 3 50, 150, 300 

N 3 20, 30, 50 

Pc 3 0.7, 0.8, 0.9 

Pm 3 0.05, 0.1, 0.15 

Finally, after doing experiments as figure (10), the best 

combination of the parameters for the proposed genetic 

algorithm determined as below: 

Max-Gen: 150,   N: 20,   Pc: 0.8,   Pm: 0.1 

5. Comparison of results 

This section presents the results of solving test problems 

using the mathematical model and GA. The mathematical 

model was run in GAMS by the CPLEX solver and the 

proposed algorithm was coded in MATLAB 7/10/0/499 

(R2010a). The experiments are executed on a Pc with a 

2.0GHz Intel Core 2 Duo processor and 4GB of RAM 

memory. The test problems were categorized into three 

classes contain small, medium, and large-sized problems. 

For the proposed algorithm, each problem has been run 

ten times and the best and or the average of results are 

evaluated.  

Characteristics of test problems are shown in table (7). 

Additional information about these problems is that all 

jobs assigned to new machines in the first stage will pass 

stage 2 

 

 

Fig.  9. The proposed mutation 



Ali Hasani and et al./ Minimizing the Operational Costs in... 

180 

 

Table 7 

 Data of the test problems data 

Problem size 
Problem 

name   
       

( )
    

( )
     

( )
 

(   ) 
   
( )

    
( )

    
( )

    
( )

 
    

( )
     

( )
 

(   ) new old new old New old new old 

Small I 4 1 2 [200 ,300] [100 , 250] [30 , 80] [25 , 75] [100 , 200] [15 , 25] [5 , 10] [50 , 75] [20 , 30] [50 , 100] [10 , 20] [15 , 50] 

 II 5 1 3 [200 ,300] [100 , 250] [30 , 80] [25 , 75] [100 , 200] [15 , 25] [5 , 10] [50 , 75] [20 , 30] [50 , 100] [10 , 20] [15 , 50] 

Mediocre III 10 2 4 [200 ,300] [100 , 250] [30 , 80] [25 , 75] [100 , 200] [15 , 25] [5 , 10] [50 , 75] [20 , 30] [50 , 100] [10 , 20] [15 , 50] 

 IV 15 3 5 [200 ,300] [100 , 250] [30 , 80] [25 , 75] [100 , 200] [15 , 25] [5 , 10] [50 , 75] [20 , 30] [50 , 100] [10 , 20] [15 , 50] 

 V 20 4 6 [200 ,300] [100 , 250] [30 , 80] [25 , 75] [100 , 200] [15 , 25] [5 , 10] [50 , 75] [20 , 30] [50 , 100] [10 , 20] [15 , 50] 

 VI 25 4 7 [200 ,300] [100 , 250] [30 , 80] [25 , 75] [100 , 200] [15 , 25] [5 , 10] [50 , 75] [20 , 30] [50 , 100] [10 , 20] [15 , 50] 

Large VII 50 5 7 [200 ,300] [100 , 250] [30 , 80] [25 , 75] [100 , 200] [15 , 25] [5 , 10] [50 , 75] [20 , 30] [50 , 100] [10 , 20] [15 , 50] 

 VIII 75 5 8 [200 ,300] [100 , 250] [30 , 80] [25 , 75] [100 , 200] [15 , 25] [5 , 10] [50 , 75] [20 , 30] [50 , 100] [10 , 20] [15 , 50] 

 IX 100 6 10 [200 ,300] [100 , 250] [30 , 80] [25 , 75] [100 , 200] [15 , 25] [5 , 10] [50 , 75] [20 , 30] [50 , 100] [10 , 20] [15 , 50] 

 X 150 7 10 [200 ,300] [100 , 250] [30 , 80] [25 , 75] [100 , 200] [15 , 25] [5 , 10] [50 , 75] [20 , 30] [50 , 100] [10 , 20] [15 , 50] 

 
Table 8 

Machine assignment to process jobs considering restriction on total completion times 

Problem   New 1 New 2 New 3 New 4 New 5 New 6 New 7 Old 1 Old 2 Old 3 Old 4 Old 5 Old 6 Old 7 Old 8 Old 9 Old 10 

I 4 1 - - - - - - 1 2 - - - - - - - - 

II 5 2 - - - - - - 1 1 1 - - - - - - - 

III 10 2 2 - - - - - 2 2 1 1 - - - - - - 

IV 15 2 1 2 - - - - 2 2 2 2 2 - - - - - 

V 20 2 2 2 2 - - - 2 2 2 2 2 2 - - - - 

VI 25 3 3 3 2 - - - 2 2 2 2 2 2 2 - - - 

VII 50 3 4 4 4 3 - - 4 4 5 5 5 5 4 - - - 

VIII 75 5 5 5 4 5 - - 7 6 6 7 7 6 6 6 - - 

IX 100 6 5 6 5 5 5 - 7 7 7 6 7 7 6 7 7 7 

X 150 6 7 6 6 6 6 7 10 10 11 11 11 10 11 10 11 11 
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Table (9) shows the result of solving the test problems 

using the proposed genetic algorithm. This result has been 

obtained without any restriction on the total completion 

time of the jobs. For the small-sized problems, this 

algorithm could achieve the optimal solution with 

    . For these solutions, no restriction was applied to 

the total completion times, and this function just has been 

calculated as an output. Due to this result, both of 

mathematical model and GA presented the same value for 

makespan in small-sized problems. 

The other result that is presented in table (10) is about 

solving the same ten problems considering a restriction on 

the total completion times for each problem. These 

restrictions have been considered as a desirable level for 

the total completion time of the jobs in a way that the 

problems be feasible with a challenging amount of the 

operational costs. This result emphasizes the conflict 
between these two important objectives. Reducing the 

makespan of the problem, force the algorithm to assign 

more jobs to newer machines in the first stage and so, 

inevitably the total operational costs will increase. 

Table (8) addresses machine assignments in the first 

stage based on new and old machines separately. It is 

obvious that more new machines will assign by reduction 

of the total completion time until all jobs should be 

processed by new and more expensive machines. In 

addition, fewer jobs will need to be processed with new 

machines by allowing to rise the total completion time. 

 
Table 9 

The test problems data without any restriction on Cmax 

Problem size 
Problem 

name 

N 

Total cost 
 

Cmax 

CPU time GA GAMS D%  GA GAMS D% 

Small I 4 34750 34750 0  1747 1747 0 2.1 

 II 5 44200 44200 0  1953 1953 0 2.6 

Mediocre III 10 87500 - -  3724 - - 4.8 

 IV 15 131250 - -  5402 - - 7.2 

 V 20 175000 - -  7020 - - 11.6 

 VI 25 218750 - -  8620 - - 12.8 

Large VII 50 437500 - -  17240 - - 19.4 

 VIII 75 656250 - -  25515 - - 32.7 

 IX 100 875000 - -  33367 - - 45.7 

 X 150 1321800 - -  45176 - - 54.9 

 

Table 10 

The test problems data with restriction on Cmax 

Problem size Problem name N 
Total cost 

Restriction value on Cmax 
CPU 

time GA GAMS D% 

Small I 4 41125 41027 0.24% 1355 1.9 

 II 5 50256 50102 0.31% 1572 2.4 

Mediocre III 10 112601 - - 3054 11.2 

 IV 15 173216 - - 4325 14.5 

 V 20 198674 - - 5617 18.9 

 VI 25 262190 - - 6957 33.7 

Large VII 50 543297 - - 14252 78.9 

 VIII 75 798509 - - 20212 125.8 

 IX 100 10275431 - - 26710 212.3 

 X 150 1674393 - - 36221 345.8 

 

According to this result, the proposed algorithm has to do 

more computing to obtain the best value for the 

operational costs regarding a specified amount of 

makespan. Therefore, the computation times increase in 

these cases and we have a little deviation from the optimal 

solution according to the result of the problems’ number I 

and II. 
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Another output of solving these problems is about 

algorithm convergence in iterations. Figure (11) shows 

the algorithm convergence for problem VII as an example 

in two different conditions. When there is no restriction 

on the makespan, the proposed algorithm shows a fast 

convergence in comparison to it forced to regard a 

specified value for the Cmax. In the case of the Cmax is not 

restricted to any defined value, the algorithm could 

achieve the last solution during less than 60 iterations. 

This was anticipated because the total of the jobs is 

assigned to the old parallel machines with the least 

possible operational costs. The challenging issue 

happened when we want to reduce the operational costs 

considering a specified amount for the makespan. Under 

this condition tries to minimize the operational costs but 

the obtained solution may not be acceptable because of 

the defined constraint related to makespan. As the result 

shows, the algorithm could convergence on the final 

solution after 100 iterations. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Fig.  11. Convergence of the proposed algorithm in solving the problem VII 

6. Summary and conclusion 

A flexible flow shop production system consists of some 

unrelated parallel machines in the first stage and one 

machine in each other stages was studied in this paper. In 

this system, several jobs are ordered to be produced. All 

parallel machines can process all jobs at the first stage but 

some of these machines are high-tech and multi-

functional with different operational costs per hour in 

comparison to the others that are low-tech machines. The 

jobs that are processed by high-tech machines do not need 

to be processed in some next stages. Setup times were 

considered as sequence-dependent and the objective 

function was to minimize the total operational costs. So, 

there are two key decision variables in this problem 

include: assigning the parallel machines to process the 

jobs in the first stage, and sequencing the jobs to be 

processed in all stages. This problem was described 

through a numerical example and modeled as mixed-

integer linear programming (MIP). Since the problem has 

been proved strongly NP-hard, a method was developed 

based on GA to solve the medium- and large-sized 

problems.  

The mathematical model has applied on a numerical 

example in small size to better understanding the 

considered problem and to investigate the performance of 

the proposed model. When we don’t have any restrictions 

on makespan, the model assigns all jobs to the low-tech 

machines in the first stage to reduce the operational costs as 

the considered objective function. In case of makespan is 

restricted on a specified value, the jobs with the least 

operational costs on high-tech parallel machines are 

assigned to these machines to keep the total completion 

time. 

In addition to the numerical example, some other test 

problems in practical sizes with various parameters were 

generated and solved using the proposed genetic 

algorithm. The result emphasized the conflict between 

Cmax and operational cost in this production system again. 

Due to the achieved result, the proposed algorithm has a 

good performance in solving problems both in solution 

quality and run time. Of course, in the case of that, there 

is a restricted value on the Cmax, the algorithm faces a 

more challenging situation and so it shows that the CPU 

time index raises in solving these kinds of problems. The 

convergence trend of the proposed algorithm confirms 

that the iterations converge on the final solution very fast 

when there is no constraint on the Cmax. 

For future studies, this problem can be investigated under 

uncertainty especially for the process times. Furthermore, 

it is recommended to apply other efficient heuristic or 

meta-heuristic algorithms for solving the considered 
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problem and comparison results with the proposed 

algorithm in this paper. Considering other important 

objective functions such as energy consumption can be 

another interesting field to study. 
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