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Abstract  

Computer-aided process planning (CAPP) is an essential component in linking computer-aided design (CAD) and computer-aided 

manufacturing (CAM). Operation sequencing in CAPP is an essential activity. Each sequence of production operations which is produced 

in a process plan cannot be the best possible sequence every time in a changing production environment. As the complexity of the product 

increases, the number  of feasible sequences increase exponentially, consequently the best sequence is to be chosen. This paper aims at  

presenting the application of a newly developed meta-heuristic called the hybrid teaching–learning-based optimization (HTLBO) as a 

global search technique for the quick identification of the optimal sequence of operations with consideration of various feasibility 

constraints. To do so, three case studies have been conducted to evaluate the performance of the proposed algorithm and a comparison 

between the proposed algorithm and the previous searches from the literature has been made. The results show that HTLBO performs well 

in operation sequencing problem. 
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1. Introduction 

Computer aided process planning (CAPP) is applying 

computer in creation and development of technical plans 

needed to produce a part. This application is important in 

terms of linking of CAD and CAM. In general, CAPP has 

two approaches: variant and generative. The first approach 

uses a standard plan or similar part plan to prepare a 

process plan (PP). The PP is stored for the main 

components in the computer and used in the design of 

next components. The original part is a combination of all 

the shapes that may be present in the desired parts. This 

approach uses part classification techniques which are 

similar to group technology, to determine the shape of the 

parts and matches them with the corresponding shapes in 

the original part. In the second approach, a PP is 

generated based on the analysis of the information in the 

manufacturing databases and decision rules. The PP 

involes two main tasks: 1) selecting the appropriate 

operations for machining based on the form–feature 

geometry and its technological requirements,  2) operation 

sequencing (OS) that determines the order in which a set 

of selected operations are performed, taking into account 

the precedence constraints created by both parts and 

operations (Weil et al., 1982). Selection of the optimal 

operations sequence is an essential activity in CAPP.  

Although, there is a lot of research on CAPP systems in 

the literature, one of the few issues that has been 

addressed is to determine the optimal sequence.  

 

 

A variety of  classical optimization techniques such as 

branch and bound method (Koulmas, 1993), linear 

programming (Lin and Wang, 1993) and dynamic 

programming (Halevi and Weill, 1988) have been studid. 

Since the OS problem includes various precedence 

constraints, formulating and solving it based on classical 

techniques alone is dificult. Recently, most studies 

considered meta- heuristics for solving OS problems. 

Turkay and Huseyin (1999), Bhaskara Reddy et al. (1999)  

and Li et al. (2005) used  genetic algorithm to generate the 

optimal OS. Li et al. (2004) proposed a tabu search 

approach for optimization of PPs. Guo et al. (2006) 

considered  particle swarm optimization (PSO) for OS 

problem. Krishna et al. (2006) studied  ant colony 

optimization (ACO).  Salehi and Tavakkoli-moghaddam 

(2009) proposed a genetic algorithm to OS problem which 

optimizes  selection of the machine, cutting tools and tool 

access directions.  Nallakumarasamy et al. (2011) used 

simulated annealing technique (SAT) to generate the 

feasible OS based on the precedence cost matrix and 

reward/penalty matrix. Hu et al. (2017) developed a novel 

modified ACO algorithm. They proposed the 

mathematical model that considered total weighted 

production cost or weighted resource transformation time. 

Dou et al. (2018) proposed a novel discrete particle swarm 

optimization (DPSO) to solve the OS problem in CAPP. 
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2. Process Planning Problem  

CAPP in this paper consists of the following steps : 1) a 

part drawing , which consins details of geometric 

specifications and technological information such as 

tolerance and surface finish requirements. By interpreting 

the part drawing, one can identify  the machining 

operations, machine tools, cutting tools and cutting 

parameters required to produce the part. 2) an operation 

precedence graph (OPG). 3) either a relative precedence 

cost matrix (PCM) or a reward/penalty matrix (RPM) 4) 

Operation sequencing , which is  the sequence of 

operations represented as a Hamiltonian path that visits all 

of the operatins once and only once with the lest cost. 

(Nallakumarasamy et al. ,2011). steps 2 - 4 are discussed 

in detail in the subsequent sections. 

2.1. Operation precedence graph  

Considering manufacturing constraints to identify the 

feasible sequences , an OPG is obtained based on the 

precedence relationship among the machining operations. 

each directed edge between any two operations in OPG is 

labeled depending on the type of constraints between them 

(such as location constraint, non-destructive constraints, 

datum-holding or geometric tolerance constraint and 

accessibility constraint). an edge with no direction 

between any two operations shows that either operation 

can precede another operation. 

2.2. Precedence cost matrix generation 

A PCM is produced for any two operations  based on the 

relative costs associated with the number of tasks that 

must be performed in each feature category, such as 

changing the machining parameter, changing the tool and 

changing the setting and also  the type  of constraints 

which one operation has with others. Numerical values are 

allocated on the basis of complexity to different costs. 

2.3. Reward/penalty matrix  

The RPM for each set-up is automatically prepared based 

on a reward (negative penalty) / penalty generator 

according to the selected rules that are defined in the 

system. The authorized rules in the preparation of RPM 

are as follows: if precedence of operations such as k and l 

complies with the rules of the sequence, it will be 

rewarded according to the degree of satisfaction of the 

rules. Otherwise, a positive penalty will be given. 

2.4. Operation sequencing 

OS determines the order in which a set of selected 

operations is performed, taking into account the 

precedence constraints created by both parts and 

operations.  

An OS problem in CAPP is a combination of varient 

choices (choice in the operatins or machine selection) and 

constraints. For this reason, PP is  a combinatorial 

problem (Korde et.al, 1992). 

3. Mathematical Model  

Considered graph G(V ,A) and arc cost     for each arc 

       , a Hamiltonian path is a path that visits all the 

vertexes once only once. Matemathical model to find 

shortest Hamiltonian path from node b  to node e  is the 

following (Castro de Andrade, 2016): 

 

Notations: 

   Number of operations 

            Operation indices (              

        Equals 1, if the       belong to the path 

; and 0, otherwise 

             Cost of  arc       

          representing the sequence the node    is being 

visited. 

According to the above-mentioned notations, the 

proposed problem is formulated as follows: 

       ∑∑            

 

   

 

   

  (1) 

∑     ∑    
 
    {

          
         
             

  
                 (2) 

∑              
                 (3) 

                              

   
(4) 

                         (5) 

              (6) 

This model finds a minimum-cost path between node b 

and node e by objective function (1). Constraints (2) 

guarantee that one arc is entering and leaving each node 

(        Constraints (3) ensure that the outgoing degree 

of each node is at most one. Constraints (4) avoid subtours 

(subtour elimination constraints). Constraints (5) and (6) 

define the type of decision variable. 

In this paper, nodes b and e are determined according to 

operation precedence graph and PCM (or RPM), and 

parameter     is determined according to  PCM (or RPM). 

This problem is solved with Lingo 8.0 and results are 
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shown in Tables 6-9, in which the results of proposed 

algorithm for the same problems are presented as well. 

Because Hamiltonian path is NP-hard (Keshavarz-

Kohjerdi and  Bagheri, 2017; Hosseini, 2018), a meta-
heuristics, namely teaching–learning-based optimization 

(TLBO), is proposed to find the minimum-cost path. 
 

4. TLBO Algorithm 

TLBO,  proposed by Roa et al. (2011) is based on 

learning a group of learners of a teacher in a class and this 

group is considered as the population. The teacher  is the 

best learner in each population. The learning process 

includes the teacher stage, that the learners learn from the 

teacher, and the learner stage, that the learners increase 

their knowledge through interaction with each other, as 

follows: 

4.1. Teacher phase 

In this stage, the learners’ level of knowledge in iteration t  

       is transferred by using     (i.e., difference between 

the teacher (    ) and mean result of learners (   ). 

Updated learner (    
   ) is considered by: 

 

    
             (7) 

Where                     
(8) 

where    is the teaching factor and its value can be either 

1 or 2 and      is a random number in the range [0, 1]. The 

detailed implementation for our discrete problem is given 

below. 

4.1.1. Selecting the teacher 

In each iteration, the teacher is considered as the best 

learner. In this paper, teacher is the learner that has lowest 

objective function.  

4.1.2. Mean Result of Learners,    

To obtain the mean result of learners, the mean of the 

population is calculated column-wise. 

4.1.3.     

The difference between the teacher and the mean result at 

iteration t, is computed using Eq. 8.  

4.1.4. Update the learners 

Each learner in population is updated by using Eq.7. If the 

updated number is negative convert it to a positive and if 

the obtained number is greater than 1, subtract it from 1 

and put it instead.  

4.1.5. Acceptance Updated Learner 

If        
     <        , then replyce      by     

    else 

replyce       by 2-OPT (    
   ). 

4.2. Learner Stage 

the following steps in iteration t are carried out: 

Step 1. For learner     , randomly select another learner 

          . 

Step 2.Update learner      by using Eq.9 or Eq.10.  

If                  

(9) 
    

                                     

  If                  

(10) 
    

                                     

Step 3. If updated number is is negative convert it to a 

positive and if the obtained number is greater than 1, 

subtract it from 1 and put it instead.  

Step 4. If        
     <        , then replace      by     

    

else replace       by 2-OPT (    
   ). 

4.3. 2-OPT 

the speed and performance of the proposed algorithm is 

improved,  if  TLBO is integrated with a local search such 

as 2-OPT (Chen et al., 2017). So, we'll have hybrid 
TLBO (HTLBO). 

4.4. Solution representation 

Our representation is an array consisting of N real values 

between (0, 1). An example with eight Operations is 

presented in Fig. 1.  

 
1. Producing 8 random real   numbers  in (0,1): 

1 2 3 4 5 6 7 8 
0.9

05 

0.127 0.913 0.964 0.097 0.278 0.546 0.957 

        
2. Sorting real numbers in descending order: 

4 8 3 1 7 6 2 5 
0.9

64 

0.957 0.913 0.905 0.546 0.278 0.127 0.097 

 

3. Operation sequencing:  4,8,3,1,7,6,2,5 

Fig. 1. Solution representation, encoding and decoding 

procedures 
  

 

 

In following,  to evaluate the proposed algorithm  several 

case studies like Case study 1, Case study 2and Case 

study 3are considered from the literature. 

https://www.sciencedirect.com/science/article/pii/S0304397517304759#!
https://www.sciencedirect.com/science/article/pii/S0304397517304759#!
https://www.sciencedirect.com/science/article/pii/S0304397517304759#!
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Table 1 

PCM for CS1      

  1 2 3 4 5 6 7 8 

(A1) 1 - 100 100 1 100 100 100 100 

(B1) 2 11 - 0 100 1 100 100 100 

(B2) 3 11 100 - 100 1 100 1 1 

(C1) 4 100 100 100 - 100 100 100 100 

(D1) 5 11 1 100 100 - 0 100 100 

(D2) 6 11 1 100 100 100 - 100 100 

(D3) 7 11 100 100 100 100 100 - 100 

(E1) 8 11 1 100 100 100 100 1 - 

5. Case Study 1 

Case study 1 is a product that  is taken from Bhaskara 

Reddy et  al. (1999) according to Fig.2. The operations 

are labeled 

 

A1, B1, C1, D1, D2, D3 and E1. Fig.3 shows the 

operations precedence graph (OPG) and Table 1 indicates 

PCM. The symbol “-” states that there is no task

                                          

Fig. 2. Part drawing for CS1                                                                 Fig. 3. OPG for CS1   

 
                                Table 2  

                                 PCM for CS2      

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

A1 1 - 1 999 999 999 999 999 999 999 999 999 999 999 999 999 999 

A2 2 999 - 10 999 999 999 999 999 999 999 999 999 999 999 999 999 

B1 3 999 999 - 2 999 999 999 2 999 999 999 999 999 999 999 2 

B2 4 999 999 999 - 2 999 999 2 999 999 999 999 999 999 999 2 

B3 5 999 999 999 999 - 2 999 999 999 999 999 999 999 999 999 999 

B4 6 999 999 999 999 999 - 1 999 999 999 999 999 999 999 999 999 

B5 7 999 999 999 999 999 999 - 2 999 2 1 2 999 999 999 2 

C1 8 999 999 2 2 999 999 999 - 2 2 999 999 999 999 999 2 

C2 9 999 999 999 999 999 999 999 999 - 2 999 999 999 999 999 2 

D1 10 999 999 999 999 999 999 999 2 999 - 2 2 999 999 999 2 

D2 11 999 999 999 999 999 999 999 999 999 999 - 2 2 2 999 999 

E1 12 999 999 999 999 999 999 999 999 999 2 999 - 2 2 999 999 

E2 13 999 999 999 999 999 999 999 999 999 999 2 999 - 2 2 2 

F1 14 999 999 999 999 999 999 999 999 999 999 2 2 2 - 2 2 

F2 15 999 999 999 999 999 999 999 999 999 999 999 2 2 999 - 2 

G 16 999 999 2 2 999 999 999 2 2 2 999 999 999 2 2 - 
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Fig. 4. Part drawing for CS2 

 

                                         Fig. 5. OPG for Case study 2                                              Fig. 6. Part drawing for Case study 3 

  

                                      Table 3 

                                  RPM of  a highly difficult part for Case study 3 

  1 2 3 4 5 6 7 8 9 10 

F1 1   -30 -20 -10 -10 -10 -10 -10 -10 -10 

F2 2 50   -10 -5 -5 -5 -5 -5 -10 -20 

F3 3 40 10   -30 -50 -10 5 10 15 20 

F4 4 45 -45 -5   4 40 -25 60 -30 -10 

F5 5 100 40 60 55   5 20 -10 -20 5 

F6 6 100 70 -50 -15 40  40 20 -5 10 

F7 7 60 5 30 -25 5 5   -15 30 20 

F8 8 90 30 -5 10 -5 -35 80   15 -25 

F9 9 -75 10 -5 5 -40 40 20 -90   -5 

F10 10 80 30 -20 45 75 25 -30 30 35   
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Table 4 

RPM  of the sample part for Case study 3 

 
  1 2 3 4 5 6 7 8 9 10 

F1 1   5 35 25 25 5 5 35 45 5 

F2 2 5   5 5 5 5 5 5 -45 5 

F3 3 -25 5   85 5 5 5 5 5 5 

F4 4 -15 5 -75   5 5 5 5 5 5 

F5 5 -15 5 5 5   5 5 -75 5 5 

F6 6 5 5 5 5 5   105 5 5 5 

F7 7 5 5 5 5 5 -95   5 5 5 

F8 8 -25 5 5 5 85 5 5   5 5 

F9 9 -20 55 5 5 5 5 5 5   -15 

F10 10 5 5 5 5 5 5 5 5 25   

 

6. Case Study 2 

Case study 2 is taken from Bhaskara Reddy et al. (1999), 

as shown in Fig. 4. The operations are labeled as A1, A2, 

B1, B2, B3, B4, B5, C1, C2, D1, D2, E1, E2, F1, F2, and 

G. Fig.5 shows OPG and Table 2 indicates PCM.  

7. Case Study 3 

Case study 3 is taken from Türkay and Hüseyin (1999), as 

shown in Fig. 6. and includs two examples, one highly 

difficult part with RPM in Table.3 and the other, a sample 

part with RPM in Table.4.  

Table 5  

Different value for the parameters 

8. Computational Results 

The quality of the solutions obtained from the proposed 

algorithm is affected by the values of their parameters. To 

set the value for the two key parameters, i.e., the 

population size      and the teacher learning factor   , 

three types of case   studies with different values are 

implented as shown in Table 5.   

propsed HTLBO algorithm in this work has been used on 

Case study 1, Case study 2 and Case study 3. The results 

are compared with the previous works and the efficiency 

of HTLBO is shown in the following tables. The proposed 

HTLBO are coded in MATLAB R2016a software. 

Optimal solution for Case study 1 are shown in Table 6. 

HTLBO produces optimal solution 5-6-2-3-8-7-1-4 with 

optimal cost (OC) 15  similar to MIP.  The optimal cost is 

the same as the one reported by Weill et al. (1982) , 

Bhaskara Reddy et al. (1999),  Li et al. (2004) and 

Nallakumarasamy et al. (2011); however, the 

computational time (CT) is reduced. The various outputs 

for Case study 2 are shown in Table 7. HTLBO produces 

optimal solutions 1-2-3-16-4-5-6-7-8-9-10-11-12-13-14-

15, 1-2-3-4-5-6-7-8-9-10-12-14-11-13-16-15 and 1-2-3-4-

5-6-7-8-9-10-12-13-11-14-16-15 with optimal cost 36  

similar to MIP.  From Table 7, it is observed that HTLBO 

gives a lesser computational time and the same optimal 

cost compared to Bhaskara Reddy et al. (1999), Li et al. 

(2004) and Nallakumarasamy et al. (2011). Results for 

CS3 in sample part, optimal solutions 5-8-1-2-9-10-7-6-4-

3, 4-3-1-2-9-10-5-8-7-6 and 4-3-5-8-1-2-9-10-7-6 with 

optimal cost -315, shows same results compared to MIP 

and Turkey and Huseyin (1999) in Table 8. Optimal 

solution for Case study 3 in highly difficult part are 

shown in Table 9. HTLBO produces optimal solution 1-2-

10-7-4-9-8-6-3-5 with optimal cost -360 similar to MIP.  

The optimal cost is the  same as the one reported by 

Nallakumarasamy et al. (2011); however, Turkey and 

Huseyin (1999) obtained optimal cost -345.  The results 

showed that proposed HTLBO produces optimal 

sequences with a lesser computational time.  Furthermore, 

it is effective in solving the NP-hard problems such as OS 

problems.  
    

  

     Table 6 

     Results for Case study 1 

MIP 

Node b  Node e OS OC 

5 4 5-6-2-3-8-7-1-4 15 

 2 4 2-3-5-6-8-7-1-4 114 

  
Proposed HTLBO 

OS OC CT 

5-6-2-3-8-7-1-4 15 <0.2 

 
Other researches 

 OC CT 

Weill et al. (1982) 15 - 

Bhaskara Reddy et al. (1999) 15 30 s 

Li et al. (2004) 15 11 s 

Nallakumarasamy  et al. (2011) 15 1 s 
    

 

     

 

 

 

 

 Parameters 

        

Case study 1 100 1 

Case study 2 600 2 

Case study 3 ( Sample part) 200 2 

Case study 3 (Highly difficult part) 400 1 
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     Table 7          

     Results for Case study 2 

MIP 

Node b  Node e OS OC 

1 11 
1-2-3-4-5-6-7-8-9-10-12-13-11-

14-16-15 

36 

 

 
Proposed HTLBO  

OS OC CT 

1-2-3-16-4-5-6-7-8-9-10-

11-12-13-14-15 

36 

 

2-3s 

 

1-2-3-4-5-6-7-8-9-10-12-

14-11-13-16-15 

1-2-3-4-5-6-7-8-9-10-12-

13-11-14-16-15 

 
Other researches 

 OC CT 

Bhaskara Reddy et al. (1999) 36 20–40 s 

Li et al. (2004) 36 18 s 

Nallakumarasamy  et al. (2011) 36 7 s 

 

     

     Table 8      

     Results for Case study 3 (Sample part) sample part 

MIP 

Node b  Node e OS OC 

4 6 4-3-5-8-1-2-9-10-7-6 
-315 

 
 

Proposed HTLBO 

OS OC CT 

5-8-1-2-9-10-7-6-4-3 
-315 

 
0.4-0.5 s  4-3-1-2-9-10-5-8-7-6 

4-3-5-8-1-2-9-10-7-6 
 

Other researches 

 OC CT 

Turkey and Huseyin (1999) −315 - 

 

      

    Table 9 

     Results for Case study 3 (Highly difficult part) 

MIP 

Node b  Node e OS OC 

1 1 1-2-10-7-4-9-8-6-3-5 
-360 

 
 

Proposed HTLBO 

OS OC CT 

1-2-10-7-4-9-8-6-3-5 -360 0.7-0.8 s  

 
Other researches 

 OC CT 

Turkey and Huseyin (1999) −345 4 min 

Nallakumarasamy et al. (2011) −360 13 s 
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