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Abstract 

The Teaching-Learning-Based Optimization (TLBO) algorithm is a new meta-heuristic algorithm which recently received more attention in 

various fields of science. The TLBO algorithm divided into two phases: Teacher phase and student phase; In the first phase a teacher tries 

to teach the student to improve the class level, then in the second phase, students increase their level by interacting among themselves. But, 

due to the lack of additional parameter to calculate the distance between the teacher and the mean of students, it is easily trapped at the 

local optimum and make it unable to reach the best global for some difficult problems. Since the Harmony Search (HS) algorithm has a 

strong exploration and it can explore all unknown places in the search space, it is an appropriate complement to improve the optimization 

process. Thus, based on these algorithms, they are merged to improve TLBO disadvantages for solving the structural problems. The 

objective function of the problems is the total weight of whole members which depends on the strength and displacement limits. Indeed, to 

avoid violating the limits, the penalty function applied in the form of stress and displacement limits. To show the superiority of the new 

hybrid algorithm to previous well-known methods, several benchmark truss structures are presented. The results of the hybrid algorithm 

indicate that the new algorithm has shown good performance. 

Keywords: Teaching-learning-based optimization; Harmony search; Size optimization; Structural optimization; Continuous variables 

1. Introduction 

During recent years, shape and size optimization of 

structures has received very interestingly and meta-

heuristic methods seem to be one of the best alternatives 

for solving this problem. Due to the high potential of the 

meta-heuristic methods to achieve the optimum design, 

many methods have been developed for structural 

optimization, such as Genetic Algorithms (GAs) models 

the process of natural evolution (Adeli and Cheng, 1994, 

Kaveh and Rahami 2016, Kaveh and Bijari, 2018) , 

Particle swarm optimization (PSO) is inspired from social 

behavior and instruction between a flock of birds 

(Kennedy and Eberhart, 1955), Harmony Search (HS) 

(Lee and Geem, 2004) is based on the behavior of 

musicians to find a better harmony, Ant Colony 

Optimization (ACO) (Dorigo, 1992) is developed for 

discrete optimization, Teaching-Learning-Based 

Optimization (TLBO)  (Rao et al., 2011) simulates class-

level learning, Charged System Search (CSS) (Kaveh and 

Talatahari, 2010) uses the governing Coulomb law from 

electrostatics and the Newtonian laws of mechanics, 

Hybrid Teaching-Learning-Based Optimization algorithm 

(HTLBO) (Talatahari and Goodarzimehr, 2019) is based  

on  the  standard TLBO and HS algorithm, Vibrating 

Particles System (VPS) (Kaveh and Ilchi, 2017) uses a 

free vibration of single degree of freedom systems with 

viscous damping, Big Bang-Big Crunch (Kaveh and 

Talatahari, 2009) uses the population averaging in a 

model of the evolution of the universe, Artificial Bee 

Colony algorithm (ABC) (Sonmez, 2011) is motivated by 

the intelligent behavior of honey bees, A Hybrid Particle 

Swarm Optimization and Genetic Algorithm (HPSOGA) 

(Omidinasab and Goodarzimehr, 2019) is based  on  the  

standard PSO and GA algorithm, and so on.    

All of these meta-heuristic methods have a high power to 

solve the optimization problems and due to this 

advantage, they have been used in various fields of 

science. The algorithms have many similarities and most 

of them are population-based methods. It means that each 

of them has a population of solutions which obtain an 

optimal design in an iteration and selection process. But 

it's not possible to use an evolutionary algorithm to solve 

all the optimization problems. For this reason, we need to 

make some changes to the algorithm so that it can be used 

for various problems. Therefore, there are two challenges 

for these methods: The first one is in difficult problems 

that due to the large search space applies additional 

computational costs; The second is due to a large number 

of design variables and large feasible space, the algorithm 

would easily trap at a local search. 

 To overcome these problems, the TLBO and HS 

algorithms are merged because both of them have great 

complementary to each other. The TLBO advantage is on 

no required controlling parameters and the HS advantage 

is its exploration ability to discover all the unknown 

places in the search space. Also, the TLBO and HS 

algorithms have some disadvantages for solving difficult 

optimization problems. The TLBO falls easily at local 

points because there is no controlling parameter to 

measure the distance between the best student as a teacher 

and the mean of class. Vice versa, the HS disadvantage is 
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on its convergence speed. Therefore, it seems to 

hybridizing these methods results in an improved 

algorithm for solving the optimization problems. 

Recently, several modified TLBO and HS algorithms 

have been presented; some of them are as: HS and PSO 

(HPSO) (Li et al., 2007), HS, PSO, and ACO (HPSACO) 

(Kaveh and Talatahari, 2009), Hybrid HS (HHS) (Cheng 

et al., 2016), Modified Teaching–Learning Based 

Optimization (TLBO) (Camp and Farshchin, 2014), 

Improved Teaching–Learning-Based Optimization 

(ITLBO) (Chen et al. 2015), Diversified Particle Swarm 

Optimization (DPSO) (Behnamian 2019), A Hybrid Grey 

based Two Steps Clustering and Firefly Algorithm (Faezy 

razi, Shadloo, 2017), A Multi-Objective Particle Swarm 

Optimization (MOPSO) (Fattahi, Samouei, 2016), time 

domain responses and Teaching-Learning-Based 

Optimization (TLBO) algorithm (Fallahian et al , 2018). 

However, developing a new method which improves the 

results or optimization process can be useful. In this 

paper, several truss structures with continuous design 

variables are tested using the hybrid TLBO and HS and 

the results are compared to standard TLBO and HS 

algorithm and some other meta-heuristic algorithms. 
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Fig. 1. The TLBO flow chart 
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2. Heuristic Teaching-learning-based Optimization 

and Harmony search for Truss Structures 

2.1. Review of teaching-learning-based optimization 

algorithm 

The TLBO algorithm is inspired by a classroom, which 

makes it able to provide a model for truss structures 

optimization. The TLBO algorithm at first proposed by 

Rao et al. (2011). In this method, a classroom consists of 

one teacher and some students, actually, one of the 

students who are better than other ones are chosen as the 

teacher. Then, the teacher increases the knowledge of the 

class-level by teaching the students. The number of 

students represents a population that is considered as 

design variables in various sciences.  Figure 1 shows the 

optimization process.   

 2.1.1. Teacher phase 

In this phase, at first the best student of the class is chosen 

as the teacher that tries to increase the average knowledge 

of the class-level. This phase can be formulated as: 

( * ( ))k k teacher

new old FX X r X T M j    (1) 

1

1

( )

( )
1

KN

k
K

N

k
K

X j

F
M j

F








  
(2) 

Where the ( )kX j  denotes the jth design variable, FT  

used as the teaching factor, r is a random number within 

the range of [0,1], M(j) denotes the mean of class. Fk is 

the penalized fitness function. 
2.1.2. Learner Phase 

In the learner phase, each learner increases their 

knowledge with the interaction between students and this 

procedure will be lead to an increase in overall knowledge 

of the class. The learner phase explained as below: 

Randomly select p and q students from the class such a 

way that p and q are unequal, and we have:  

If p qX X   

( ( ) ( ))p p p q

new old oldX X r X j X j    (3) 

Otherwise  

( ( ) ( ))p p q p

new old oldX X r X j X j    (4) 

 

where r is random number within the range [0,1]. XP(j) 

denotes the jth design for the pth design vector. 

2.2. Review of Harmony Search Algorithm 

 

The HS algorithm is one of the easiest meta-heuristic 

methods that applied in the optimization problems, and it 

is inspired by the process of harmony such as during jazz 

improvisation. In other words, there is a similarity 

between finding an optimal solution to the optimization 

problem and the process of Jazz improvisation. This 

algorithm has lower mathematical requirements than other 

meta-heuristic methods. In the following, we intend to 

briefly explain the steps of the HS algorithm, which 

consist of step1 through 4. Figure 2 shows the 

optimization procedure of the HS algorithm. 

Step 1: initialization: In the first step, the HS algorithm 

has several parameters that inquired to be adjusted to 

solve the optimization problem. Harmony Memory (HM), 

Harmony Memory Size (HMS), Harmony Memory 

Consideration Rate (HMCR), and Pitch Adjusting Rate 

(PAR). In this section, we must generate a population and 

store it in the HM. 

1

.

.

HMS

HMS mg

X

HM

X


 
 
 
 
 
  

 
(5) 

 

Step 2: Initialize a new harmony from the HM: The 

HMCR is within [0,1] and used for considering the HM 

and choosing a new vector from the previous value. And 

(1-HMCR) sets the rate of randomly choosing one value 

from a possible range of values. 

 1 2, ,........., . .

. . (1 )

HMS

i i iK

i

select from X X X w p HMCR
X

select from the possible range w p HMCR


 



 (6) 

                                                  

 Step 3: Updating the harmony memory : If a new 

harmony vector is better than the worst harmony in the 

HM, judged in terms of the objective function value, the 

new harmony is included in the HM and the existing 

worst harmony is excluded from the HM. 

 

Step 4: Terminating criterion controlling: Repeat Steps 2 

and 3 until the terminating criterion is satisfied. 

 

 

 

 

Initialize the harmony memory(HM) with random vectors as many as the value 
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of HMS; initialize other parameters; Evaluate HM 
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Fig. 2. The HS flow chart 
 

3. Hybrid TLBO and HS Algorithm 

After recognizing the best student in the class, TLBO 

algorithm tries to teach the rest of the class by using their 

knowledge to improve the level of the whole class. Then 

in the next stage, the students also try to improve their 

level by sharing information. In each iteration, the teacher 

will update their position based on its distance to the 

calculated mean of the class. An individual student also 

updates its position based on its distance to a randomly 

selected student from the class. 

 Eq. (1) shows that the teacher only improves the class 

level by using the mean of the students and the distance 

between the teacher and the mean of the class is not 

considered in the teacher phase. This makes the TLBO 

algorithm trapping at local points. In the next stage 

(learner phase), the optimization procedure may continue 

with a local point. But, the vector of learners is used as a 

vector of harmony entrance and then due to the strong 

exploration of the HS algorithm the optimization process 

will continue until the global optimum earned. So, we 

used HS-based mechanism to solve this problem. The new 

hybrid algorithm is presented as follows: 

Step 1: As conventional TLBO algorithm, initialize a 

population of students; these students are like harmony in 

the HS algorithm. 

Step 2: Calculate the mean of the population using the 

Eq. (2), because our perception of the class progress is 

under the improvement of the mean of the class level. 

 Step 3: Consider individual student fitness in order to 

choose the best one as the teacher. The teacher phase will 

be applying using the Eq. (1). 

Step 4: Apply learner phase using Eq. (3 and 4). 

Step 5: Generate a new student as: 

,
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. .

. .(1 )
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X
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(7) 

where Xi,j is the jth variable of student i, the HMCR is 

varying within [0,1] which sets a rate of choosing a value 

from the historic values stored in the 
k

iX , (1-HMCR) sets 

the rate of choosing one value from the possible list of 

values. The pitch adjusting process is performed only 

after a value is chosen from 
k

iX  . the value (1-PAR) sets 

the rate of doing nothing, A PAR (pitch adjusting rate) of 

with probably HMCR ==> select a new value for a variable from HM 

                               ==> w.p. (1-PAR) do nothing 
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0.5 indicates that the algorithm will choose a neighboring 

value with 50%×HMCR probability (Kaveh and 
Talatahari 2009). The scheme of the hybrid algorithm is 

shown in the figure 3. 
 

Initialize the population of students  

 

 

 

 

Teacher phase: Update the teacher position using 

Eq.1 

 

 

 

 

 

 

 

 

 

Fig. 3. the Hybrid TLBO and HS flow chart 

 

4. Design of Truss Structure 

One of the most common methods to optimizing truss 

structures is to minimize the cross-sectional area of 

elements which lead to an accepted construction cost. In 

the optimization of truss structures, some limitation such 

as strength for each member and displacement for each 

connection should be checked. As a result, the truss 

optimization procedure is as follow:  
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 (8) 

Where W is the weight of truss; e  is the unit weight; el  

is the length of each member; Ae  is the cross-sectional 

area of element e. This minimum design also has to 

satisfy the constraints on each member stress σe and 

deflection c  at each connection c. To control these 

constraints, a penalty method can be used as: 
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The final penalty function 
k  for a truss structure is as: 

 
 

(1 )k k k 

       (15) 

where Ɛ is a positive penalty coefficient. The value of penalized weight can be defined as: 

 
 

.k k kF w  
(16) 

 

5. Numerical Examples 

The truss structures with continuous variables are 

optimized using the presented method; containing: 25-bar 

spatial truss with 8 design variables; 72-bar spatial truss 

with 16 design variables; 200-bar planar truss with 29 

design variables; 26-Story, 942-bar spatial truss with 59 

design variables. In all examples, the results of hybrid 

TLBO and HS are compared to other heuristic-based 

methods. 

 

 

5.1. Twenty-five bar spatial truss 

The geometry of a 25-bar spatial truss is shown in Figure 

4. the structure is subjected to load cases as presented in 

Table 1. The limits of stress for each member of the 

structure is listed in Table 2. All notes in X, Y, and Z 

directions are subjected to the allowable displacements 

±0.35in. There are 8 groups of design variables with the 

minimum cross-section area of 0.01 in2 and a maximum 

one of 3.4 in2. Elements information is presented in Table 

3. The unit weight is 0.1lb/in3 and the modulus of 

elasticity is 107 psi. 
 

                                            Table 1  

                                             Multiple loading for the 25-bar truss 

case node Px (kips) Py (kips) Pz (kips) 

1 

1 1.0 10.0 -5.0 

2 0.0 10.0 -5.0 

3 0.5 0.0 0.0 

6 0.5 0.0 0.0 

2 
1 0.0 20.0 -5.0 

2 0.0 -20.0 -5.0 

Note: 1 in2 = 6.452 cm2 ; 1lb = 4.45 N 
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          Table 2  

          The 25-bar truss allowable stress 

Elements group members Compression(ksi) Tension(ksi) 

1 1  35.092 35 

2 2,3,4,5 11.59 35 

3 6,7,8,9 17.305 35 

4 10,11 35.092 35 

5 12,13 35.092 35 

6 14,15,16,17 6.759 35 

7 18,19,20,21 6.959 35 

8 22,23,24,25 11.082 35 
 

          Table 3  

          Elements information  

Group of elements 

1 2 3 4 5 6 7 8 

1(1,2) 

2:(1,4) 6:(2,4) 10(6.3) 12:(3,4) 14:(3,10) 18:(4,7) 22:(6,10) 

3:(2.3) 7:(2,5) 11:(5,4) 13:(6,5) 15:(6,7) 19:(3,8) 23:(3,7) 

4:(1,5) 8:(1,3)   16:(4,9) 20:(5,10) 24:(4,8) 

5:(2,6) 9:(1,6)   17:(5,8) 21:(6,9) 25:(5,9) 

 

 

Fig. 4. Topology of the 25-bar spatial truss 

The results of the new algorithm and some other selected 

meta-heuristic ones are listed in Table 4. The best weight 

of 25-bar truss is obtained by the hybrid algorithm that is 

equal to 545.15 lb. The new method needs 11,750 

searches to find the best result. Although, the design 

obtained by HS (Lee and Geem, 2004) algorithm is 

544.38 lb. and is a little lighter than the new hybrid 

method but it achieved the best weight after 15000 

analyses which 21% more than the present method. The 

HBB-BC (Kaveh and Talatahari, 2009) algorithm 

achieved the best solution of 545.16 lb. after 12500 search 

which is more than the result of the new algorithm. Not 

only the hybrid method shows an improvement in the best 

solution, but it has the best 

performance and accuracy than other meta-heuristic 

algorithms when the standard division and mean results of 

different runs are compared. The best weight of the 

standard TLBO (Camp and Farshchin, 2014) is 545.175 
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lb. which obtained after 12,199 analyses, the best weight 

of the ABC algorithm (Sonmez, 2011) is 545.19 lb. which 

requires 500,000 searches. the best weight of the HPSO 

(Li et al., 2007) is 545.19 lb. requires 125,000 searches, 

the best weight of the GAs (Cao, 1996) is 545.80 lb., the 

best weight of the CMLPSA (Lamberti, 2008) is 545.86 

lb., and the best weight of the ACO (Camp and Bichon, 

2004) is 545.530 lb. which obtained after 16,500 analyses. 

Figure 5 shown the convergence history of the Hybrid 

TLBO and HS algorithm for the 25-bar spatial truss.  

       

     Table 4  

     Performance comparison for 25-bar spatial truss with continuous variables 

variables Cross-sectional area(in
2
) 

Element 

group members 
Cao 

1996 

Camp and 

Bichon 

2004 

Li et al. 

2007 

Lamberti 

2008 

Kaveh 

Talatahari 

2009 

Sonmez 

2011 

Camp and 

Farshchin     

2014 

This 

work 

1 1 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 

2 2,3,4,5 2.0119 2.0000 1.9700 1.9870 1.9930 1.9790 1.9878 1.9826 

3 6,7,8,9 2.9493 2.9660 3.0160 2.9935 3.056 3.0030 2.9914 3.0005 

4 10,11 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0102 0.0100 

5 12,13 0.0295 0.0120 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 

6 
14,15,16,

17 
0.6838 0.6890 0.6940 0.6840 0.6650 0.6900 0.6828 0.6520 

7 
18,19,20,

21 
1.6798 1.6790 1.6810 1.6769 1.6420 1.6790 1.6775 1.6730 

8 
22,23,24,

25 
2.6798 2.6680 2.6430 2.6621 2.6790 2.6520 2.6640 2.6614 

Weight(lb) 545.80 545.530 545.19 545.86 545.16 545.19 545.175 545.15 

Wavg(lb) - 546.34 - - 545.66 - 545.483 545.48 

Wstdv(lb) - 0.94 - - 0.367 - 0.306 0.314 

Nanalysis - 16500 125,000 400 12,500 5e5 12,199 11750 

Note: 1 in2 = 6.452 cm2 ; 1lb = 4.45 N 

 

Fig. 5. The convergence history of 25-bar spatial truss 

 

 



Journal of Optimization in Industrial Engineering Vol.13, Issue 1, Winter & Spring 2020, 169-186 

 

185 
 

5.2. Seventy-two bar spatial truss 

In the second example, the 72-bar spatial truss is 

considered as shown in Figure 6. The structure is 

subjected to multiple loading conditions listed in Table 5. 

The modulus of elasticity is 1e7 psi. the unit weight of the 

material is 0.1 lb/in3. The members are subjected to the 

allowable stress limits of ±25ksi, and the maximum 

displacement of each node is ±0.25 in through X, Y, and 

Z direction. There are 16 group of design variables with a 

minimum 0.1in2 and maximum 3.0 in2 : (A1) 1-4, (A2) 5-

12, (A3) 13-16, (A4) 17-18, (A5) 19-22, (A6) 23-30, (A7) 

31-34, (A8) 35-36, (A9) 37-40, (A10) 41-48, (A11) 49-

52, (A12) 53-54, (A13) 55-58, (A14) 59-66, (A15) 67-70, 

(A16) 71-72. 

                                            
                            Table 5  

                                                Multiple loading for the 72-bar truss 

case node Px (kips) Py (kips) Pz (kips) 

1 

17 0.0 0.0 -5.0 

18 0.0 0.0 -5.0 

19 0.0 0.0 -5.0 

20 0.0 0.0 -5.0 

2 17 5.0 5.0 -5.0 

Note: 1 in2 = 6.452 cm2 ; 1lb = 4.45 N 

 

 

 

Fig. 6 Topology and elements definition of 72-bar truss; 

(a) dimension and node numbering; (b) the pattern of element numbering. 
 

Th
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e results of the meta-heuristic algorithms are listed in 

Table 6. The best weight of the hybrid method is 

379.6158 lb. Although the result of HS (Lee and Geem, 

2004) algorithm is slightly small than that obtained by the 

new algorithm, it needs 20,000 analyses (37% more than 

it for the new method). The best weight for other meta-

heuristic algorithms are 379.632 lb., 379.66 lb., 380.32 

lb., 380.24 lb., 379.85 lb. and 381.91 lb. for TLBO (Camp 

and Farshchin, 2014), HBB-BC (Kaveh and Talatahari, 

2009), GA (Cao, 1996), ACO (Camp and Bichon, 2004), 

BB-BC (Camp, 2007) and PSO (Perez and Behdinan, 

2007), respectively. The standard deviation for the hybrid 

method is 0.033 lb. while it is 0.149 lb. for the standard 

TLBO (Camp and Farshchin, 2014). Also, the required 

search for reaching the best weight is 12,600 for the new 

method which lower than the required ones for the 

standard TLBO and HBB-BC algorithms. The average 

weight of the hybrid method is 379.6187 lb. which is the 

lightest one. Figure 7 shows the convergence history of 

the new algorithm for the 72-bar spatial truss.
 

         Table 6  

         Performance comparison for 72-bar spatial truss with continuous variables 

Variables Cross-sectional area(in2) 

Element 

group 

members 
Cao 

1996 

Camp 

and 

Bichon 

2004 

Lee and 

Geem 

2004 

Camp 

2007 

Perez 

and 

Behdinan 

2007 

Kave

h 

Talat

ahari 

2009 

Camp 

and 

Farshchi

n     2014 

This 

work 

1 1-4 1.8562 1.9480 1.7900 
1.857

7 
1.7427 

1.904

2 
1.8807 1.8904 

2 5-12 0.4933 1.5080 0.5210 
0.505

9 
0.5185 

0.516

2 
0.5142 0.5115 

3 13-16 0.1000 0.1010 0.1000 
0.100

0 
0.1000 

0.100

0 
0.1000 0.1000 

4 17-18 0.1000 0.1020 0.1000 
0.100

0 
0.1000 

0.100

0 
0.1000 0.1000 

5 19-22 1.2830 1.3030 1.2290 
1.247

6 
1.3079 

1.258

2 
1.2711 1.2631 

6 23-30 0.5028 0.5110 0.5220 
0.526

9 
0.5193 

0.503

5 
0.5151 0.5134 

7 31-34 0.1000 0.1010 0.1000 
0.100

0 
0.1000 

0.100

0 
0.1000 0.1000 

8 35-36 0.1000 0.1000 0.1000 
0.101

2 
0.1000 

0.100

0 
0.1000 0.1000 

9 37-40 0.5177 0.5610 0.5170 
0.520

9 
0.5142 

0.517

8 
0.5317 0.5215 

10 41-48 0.5227 0.4920 0.5040 
0.517

2 
0.5464 

0.521

4 
0.5134 0.5154 

11 49-52 0.1000 0.1000 0.1000 
0.100

4 
0.1000 

0.100

0 
0.1000 0.1000 

12 53-54 0.1049 0.1070 0.1010 
0.100

5 
0.1095 

0.100

7 
0.1000 0.1000 

13 55-58 0.1557 0.1560 0.1560 
0.156

5 
0.1615 

0.156

6 
0.1565 0.1564 

14 59-66 0.5501 0.5500 0.5470 
0.550

7 
0.5092 

0.542

1 
0.5429 0.5466 

15 67-70 0.3981 0.3900 0.4420 
0.392

2 
0.4967 

0.413

2 
0.4081 0.4105 

16 71-72 0.6749 0.5920 0.5900 
0.592

2 
0.5619 

0.575

6 
0.5733 0.5703 

Weight(lb) 380.32 380.24 379.27 
379.8

5 
381.91 

379.6

6 
379.632 379.6158 

Wavg(lb) - 383.16 - 
382.0

8 
- 

381.8

2 
379.7596 379.6187 

Wstdv(lb) - 3.66 - 1.912 - 1.202 .149 0.033 

Nanalysis 15,000 18,500 20,000 
19,67

9 
8,000 

13,20

0 
15,000 12,600 

Note: 1 in2 = 6.452 cm2 ; 1lb = 4.45 N 
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 Fig. 7. The convergence history of 72-bar spatial truss 

5.3. Two-hundred bar planar truss 

In this example, size optimizing of the 200-bar planar 

truss is considered. Figure 8 shows the topology of the 

200-bar truss. This truss structure has been optimized 

using other methods by Lamberti and Pappalettere (2003), 

Lamberti, (2008), Lee and Geem, (2004), and Farshi and 

Alinia, (2010). The modulus of elasticity is 3e7 psi. the 

material unit weight is 0.283 lb/in3. The structure is 

subjected to only stress limitation of ±10 ksi. Because of 

the symmetry of the truss, variables are linked into 29 

groups as shown in Table 7. The structure is subjected to 

three load cases as shown in Table 8. 

          

          Table 7  

          Element information 

group elements group elements 

1 1, 2, 3, 4 16 
82, 83, 85, 86, 88, 89,91, 92, 103, 

104, 106, 107,109, 110, 112, 113 

2 5, 8 , 11, 14, 17 17 115, 116, 117, 118 

3 19, 20, 21, 22, 23, 24 18 119, 122, 125, 128, 131 

4 18, 25, 56, 63, 94, 101, 132, 139, 170, 177 19 133, 134, 135, 136,137, 138 

5 26,29,32,35,38 20 140, 143, 146, 149, 152 

6 
6, 7, 9, 10, 12, 13, 15, 16, 27,28, 30, 31, 33, 

34, 36, 37 
21 

120, 121, 123, 124, 126, 127,129, 

130, 141, 142, 144, 145, 147, 148, 

150, 151 

7 39, 40, 41, 42 22 153, 154, 155, 156 

8 43, 46, 49, 52, 55 23 157, 160, 163, 166, 169 

9 57, 58, 59, 60, 61, 62 24 171, 172, 173, 174, 175, 176 

10 64, 67, 70, 73, 76 25 178, 181, 184, 187, 190 

11 
44, 45, 47, 48, 50, 51, 53, 54, 

65, 66, 68, 69, 71, 72, 74, 75 
26 

158, 159, 161, 162, 164, 165, 167, 

168, 179, 180, 182, 183, 185, 186, 

188, 189 

12 77, 78, 79, 80 27 191, 192, 193, 194 

13 81, 84, 87 90, 93 28 195, 197, 198, 200 

14 95, 96, 97, 98, 99, 100 29 196, 199 

15 102, 105, 108, 111, 114   
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                      Table 8  

                      Multiple loading for the 200-bar truss 

case Node Px (kips) Py (kips) Pz (kips) 

1 1, 6, 15, 20, 29, 34, 43, 48, 57, 62, 71 1.0 0.0 0.0 

2 

1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 

18, 19, 20, 22, 24, 26, 28, 29, 30, 31, 32, 

33, 34, 36, 38, 40, 42, 43, 44, 45, 46, 47, 

48, 50, 52, 54, 56, 57, 58, 59, 60, 61, 62, 

64, 66, 68, 70, 71, 72, 73, 74, 75 

0.0 10.0 0.0 

3 Combination of case 1 and case 2    

Note: 1 in2 = 6.452 cm2 ; 1lb = 4.45 N 

 

 

Fig. 8. Topology and element condition of 200-bar planar truss 

 

Table 9 shows the comparison of results developed by the 

hybrid algorithm with other meta-heuristic methods. The 

best weight of 200-bar planar truss designed by the new 

algorithm is 25,447.81 lb. which is less than the designs 

developed by Lamberti (2008) and Lee and Geem (2004). 

Also, Lee and Geem (2004) achieved the best weight after 

48,000 analyses while the hybrid TLBO finds it after 

30,000 analyses. The design developed by Farshi and 

Alinia (2010) is 25,456.57 lb. which is more than that 

obtained by the hybrid method. Figure 9 shows a typical 

convergence history for 200-bar planar truss design using 

the new algorithm.  
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                  Table 9  

                  Performance comparison for 200-bar planar truss with continuous variables 

variables Cross-sectional area(in
2
) 

Element 

group 
members 

Lee and Geem 

2004 

Lamberti 

2008 

Farshi and 

Alinia 2010 
This work 

1 1,2,3,4 0.1253 0.1467 0.1470 0.1456 

2 5,8,11, 14,17 1.0157 0.9400 0.9450 0.9378 

3 19,20, 21,22, 23,24 0.1069 0.1000 0.1000 0.1000 

4 
18,25, 56, 

63,94,101,132,139,170,177 
0.1096 0.1000 0.1000 0.1000 

5 26,29, 32, 35,38 1.9369 1.9400 1.9451 1.9425 

6 
6,7,9, 10,12, 13,15, 16, 27,28, 

30,31, 33,34, 36,37 
0.2686 0.2962 0.2969 0.2967 

7 39,40, 41,42 0.1042 0.1000 0.1000 0.1000 

8 43,46, 49, 52,55 2.9731 3.1040 3.1062 3.1060 

9 57,58, 59, 60,61,62 0.1309 0.1000 0.1000 0.1002 

10 64,67, 70,73,76 4.1831 4.1040 4.1052 4.1625 

11 
44,45, 47, 48,50, 51,53, 54, 65,66, 

68,69, 71, 72,74,75 
0.3967 0.4034 0.4039 0.4036 

12 77,78, 79,80 0.4416 0.1922 0.1934 0.1924 

13 81,84, 87, 90,93 5.1873 5.4282 5.4289 5.0918 

14 95,96, 97, 98,99,100 0.1912 0.1000 0.1000 0.1196 

15 102,105,108,111,114 6.241 6.4282 6.4289 6.4131 

16 

82,83, 85, 86,88, 89,91, 

92,103,104, 

106,107,109,110,112,113 

0.6994 0.5738 0.5745 0.5639 

17 115,116,117,118 0.1158 0.1325 0.1339 0.1337 

18 119,122,125,128,131 7.7643 7.9726 7.9737 7.8233 

19 1, 2, 3,4 0.1000 0.1000 0.1000 0.1000 

20 5, 8,11, 14,17 8.8279 8.9726 8.9737 8.8269 

21 19,20, 21,22, 23,24 0.6986 0.7048 0.7053 0.7055 

22 
18,25, 56, 

63,94,101,132,139,170,177 
1.5563 0.4202 0.4215 0.4213 

23 26,29, 32, 35,38 10.9806 10.8666 10.8675 10.9513 

24 
6, 7, 9, 10,12, 13,15, 16, 27,28, 

30,31, 33,34, 36,37 
0.1317 0.1000 0.1000 0.1000 

25 39,40, 41,42 12.1492 11.8666 11.8674 11.9560 

26 43,46, 49, 52,55 1.6373 1.0344 1.0349 1.0346 

27 57,58, 59, 60,61,62 5.0032 6.6838 6.6849 6.5043 

28 64,67, 70,73,76 9.3545 10.8083 10.8101 10.8092 

29 
44,45, 47, 48,50, 51,53, 54, 65,66, 

68,69, 71, 72,74,75 
15.091 13.8339 13.8379 13.8344 

Weight(lb) 25,447.1 25,446.76 25,456.57 25,447.81 

Wavg(lb) - - - 25,449.27 

Note: 1 in2 = 6.452 cm2 ; 1lb = 4.45 N 
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Fig. 9. The convergence history of 200-bar planar truss 

 

5.4. Nine-hundred and Forty-two bar spatial truss 

In the last example, the 26-story space truss containing 

942 elements is considered in this section. Figure 10 

shows the topology of the 942-bar spatial truss. Because 

of the symmetry of the spatial truss is divided into 59 

groups. The material density is 0.1lb/in3 and the modulus 

of elasticity is 1e7 Psi. the allowable cross-sectional areas 

in this example are selected from 1.0 in2 to 200in2. The 

members are subjected to the stress limitation of ±25ksi 

and the displacement limitation through X, Y, and Z 

direction is ±15 in. The structure is subjected to several 

load cases as: Case (1) The vertical load at each node in 

the first section is equal to 3kips, Case (2) The vertical 

load at each node in the second section is equal to 6kips, 

Case (3) The vertical load at each node in the third section 

is equal to 9kips, Case (4) The horizontal load at each 

node on the right side in the x-direction is equal to 1kips, 

Case (5) The horizontal load at each node on the left side 

in the x-direction is equal to 1.5kips, Case (6) The 

horizontal load at each node on the front side in the y-

direction is equal to 1kips, Case (7)The horizontal load at 

each node on the backside in the y-direction is equal to 

1kips. 
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Fig. 10. Topology and elements definition of 942-bar truss; 

(a) 3D dimension; (b) the pattern of element numbering; (c) top view. 

 

The comparison results of different algorithms are listed 

in Table 10. As shown in the table, the lightest weight 

gained by the new algorithm is 140,871 lb. and it is the 

best solution between the existing results. Hasancebi 

(2008) achieved the best weight of 141,241 lb. using 

adaptive evolution strategies (ESs). The best weight of 

Adeli and Cheng (1994) is 170,000 lb. The best weight of 

Erbatur and Hasancebi (2000) is 143,436 lb. They used a 

simulated annealing (SA) method. As it is clear the best 

weight of the hybrid method is better than the other ones. 

Figure 11 shows the convergence history for 26-story, 

942-bar spatial truss. 
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                  Table 10  

                  Performance comparison for 26-story, 942-bar truss with continuous variables 

variables Cross-sectional area(in2) 

Element group 
Adeli and Cheng 

(1994) 

Erbatur and 

Hasancebi (2000) 
Hasancebi (2008) This work 

1 N/A 1.000 1.020 1.000 

2 N/A 1.000 1.037 1.000 

3 N/A 3.000 2.943 2.754 

4 N/A 1.000 1.920 1.000 

5 N/A 1.000 1.025 1.000 

6 N/A 17.000 14.961 14.254 

7 N/A 3.000 3.074 3.120 

8 N/A 7.000 6.780 6.452 

9 N/A 20.000 18.580 18.021 

10 N/A 1.000 2.415 2.780 

11 N/A 8.000 6.584 6.007 

12 N/A 7.000 6.291 6.457 

13 N/A 19.000 15.383 14.985 

14 N/A 2.000 2.100 2.210 

15 N/A 5.000 6.021 5.652 

16 N/A 1.000 1.022 1.000 

17 N/A 22.000 23.099 22.100 

18 N/A 3.000 2.889 2.254 

19 N/A 9.000 7.960 7.560 

20 N/A 1.000 1.008 1.000 

21 N/A 34.000 28.548 27.870 

22 N/A 3.000 3.349 3.000 

23 N/A 19.000 16.144 15.289 

24 N/A 27.000 24.822 24.012 

25 N/A 42.000 38.401 37.650 

26 N/A 1.000 3.787 3.547 

27 N/A 12.000 12.320 12.000 

28 N/A 16.000 17.036 16.320 

29 N/A 19.000 14.733 14.315 

30 N/A 14.000 15.031 14.001 

31 N/A 42.000 38.597 37.750 

32 N/A 4.000 3.511 3.892 

33 N/A 4.000 2.997 2.577 

34 N/A 4.000 3.060 2.650 

35 N/A 1.000 1.086 1.000 

36 N/A 1.000 1.462 1.042 

37 N/A 62.000 59.433 59.001 

38 N/A 3.000 3.632 3.000 

39 N/A 2.000 1.887 2.000 

40 N/A 4.000 4.072 3.870 

41 N/A 1.000 1.595 1.000 

42 N/A 2.000 3.671 3.258 

43 N/A 77.000 79.511 78.840 

44 N/A 3.000 3.394 3.120 

45 N/A 2.000 1.581 2.000 

46 N/A 3.000 4.204 3.000 

47 N/A 2.000 1.329 2.000 

48 N/A 100.000 96.886 96.025 

49 N/A 4.000 2.242 2.610 

50 N/A 4.000 3.710 4.000 

51 N/A 1.000 1.055 1.000 

52 N/A 4.000 4.566 4.000 

53 N/A 6.000 9.606 7.354 

54 N/A 3.000 2.984 3.210 

55 N/A 49.000 45.917 46.323 

56 N/A 1.000 1.000 1.000 

57 N/A 62.000 62.426 62.001 

58 N/A 1.000 2.977 1.000 

59 N/A 3.000 1.000 1.601 

Weight(lb)  170,000 143,436 141,241 140,871 

Wavg(lb) - - - 141,265 

Note: 1 in2 = 6.452 cm2 ; 1lb = 4.45 N 
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Fig. 11. The convergence history of 26- story, 942-bar spatial truss 

6. Conclusion 

 

Due to the difficulty of optimization methods, most of the 

meta-heuristic algorithms are unable to easily solve these 

problems. Recently, to find a solution to this problem, 

many researchers decided to hybridize the evolutionary 

algorithms. Indeed, they try to take advantage of these 

algorithms and merge them to eliminates their 

weaknesses. Investigation shows that the new hybrid 

algorithms are more efficient than the standard 

algorithms. Another advantage of the hybrid algorithms is 

that it could solve more difficult problems. In this paper, 

the hybrid TLBO and HS algorithm is developed based on 

the standard TLBO and HS algorithms to improve the 

performance of the new algorithm by identifying the 

merits and demerits of the standard TLBO and HS. The 

TLBO algorithm consists of two phases, the teacher 

phase, and the student phase and the main disadvantage of 

TLBO algorithm is in the teacher phase when the best 

student selected as a teacher and then it tries to improve 

the average of the class-level. There is no control 

parameter for measuring the distance between the teacher 

and the average of the class. This problem makes the 

algorithm trapping at local points and then the 

optimization will be continued by the local point. 

To improve the mentioned problem, we used the HS 

algorithm which can explore all unknown places in search 

space to find the global optimum and it has the most 

complementary to the TLBO algorithm. This algorithm 

has lower mathematical requirements than other meta-

heuristic methods and by applying some changes in 

parameters and operators, it can be adapted to different 

engineering problems. Therefore, to demonstrate the 

efficiency in both performance and convergence rate 

several truss structures have been optimized and the result 

proves the ability of the new hybrid algorithm. According 

to the high potential of this new algorithm, it can be used 

to solving the difficult optimization problem in structural 

engineering. Also, by making a slight change, it can be 

used to optimize the steel frames and concrete structures. 
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