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Abstract 
 
The aim of a multi-mode resource-constrained project scheduling problem (MRCPSP) is to assign resource(s) with the restricted capacity 
to an execution mode of activities by considering relationship constraints to achieve pre-determined objective(s). These goals vary with 
managers or decision makers of any organization who should determine suitable objective(s) considering organization strategies. Also, we 
introduce the preemptive extension of the problem which allows for activity splitting. In this paper, the preemptive multi-mode resource-
constrained project scheduling problem (P-MMRCPSP) with Minimum makespan and the maximization of net present value (NPV) has 
been considered. Since the considered model is NP-Hard, the performance of our proposed model is evaluated by comparison with two 
well-known algorithms: non-dominated sorting genetic algorithm (NSGA II) and multi-objective imperialist competitive algorithm 
(MOICA). These metaheuristics have been compared on the basis of a computational experiment performed on a set of instances obtained 
from standard test problems constructed by the ProGen project generator, where, additionally, cash flows were generated randomly with 
the uniform distribution. Since the effectiveness of most meta-heuristic algorithms significantly depends on choosing the proper 
parameters. A Taguchi experimental design method (DOE) was applied to set and estimate the proper values of GAs parameters for 
improving their performances. The computational results show that the proposed MOICA outperforms the NSGA-II. 
Keywords: Multi-objective project scheduling, Resource constraint, Preemptive, Net present value, Meta-heuristic algorithm. 

1. Introduction 

  Project scheduling is an important task of project 
management. In recent decades, resource-constrained 
project scheduling has become a standard problem in 
literature review. The standard resource-constraint project 
scheduling problem (RCPSP) assumes that an activity can 
only be executed in a single way, which is determined by 
a fixed duration and fixed resource requirements. The 
RCPSP along with some of its extensions has been widely 
studied in the literature. The multi-mode RCPSP 
(MMRCPSP) is a generalized version of the RCPSP, in 
which each activity can be performed in one of a set of 
modes with a specific activity duration and resource 
requirements. 
The assumptions for the multi-mode RCPSP can be 
summarized as follows. We consider two additional 
activities ݆ = 0 and ݆ = ݊ + 1, representing the start and 
the completion of the project, respectively. Both are 
“dummy” activities with durations of 0 and no resource 
requests. Activity j must be performed in one of its modes 
which are labeled 1…ܯ with ܯ being the number of 
modes. Once started in one of its modes, an activity must 

be completed in that mode; mode changes and preemption 
are not permitted. The duration of activity j being 
executed in mode m is given by ݀. The request of 
activity j being executed in mode m for resource k is ݎ . 
In addition to renewable resources, also non-renewable 
resources are often considered in multi-mode models. A 
schedule for multi-mode RSPSP assigns a start time ܵ  
and a mode ݉  to each activity j. 
The first method to solve the multi-mode problems was 
presented by Slowinski (1980), proposing one-stage and 
two-stage linear programming. Speranza and Vercellis 
(1993) presented branch and bound (B&B) algorithm; 
however, Hartmann and Sprecher (1996) revealed that 
this algorithm is not able to solve the problem with one 
and two renewable constraints. After a while, Sprecher et 
al (1997), Hartmann and Drexl (1998), and Sprecher and 
Drexl (1998) proposed a branch and bound algorithm. 
However, several algorithms capable of solving the 
MMRCPSP have been proposed in recent years by the 
following researchers: knots et al (2000), Nonobe et al 
(2001), Alcaraz et al (2003), Heilmann (2003), Zhu et al 
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(2006), Ranjbar et al (2008), Ranjbar (2011), Afshar-
Nadjafi et al (2013). 
Preemptive multi-mode resource-constrained project 
scheduling problem (P-MMRCPSP) is referred to a 
generalization of multi-mode resource-constrained project 
scheduling problem which allows activities to be 
preempted at any time instance and restarted later on at no 
additional cost. For the single-mode case, Kaplan (1988) 
and Demeulemeester and Herroelen (1996) presented an 
exact algorithm; Ballestin et al. (2008) and Vanhoucke 
and Debels (2008) used heuristic algorithms. However, 
Damay et al. (2007) proposed a linear programming 
method. Then, in multi-mode models, Buddhakulsomsiri 
and Kim (2006) proved that preemption is very effective 
to improve the optimal project makespan. 
Although some studies concerning preemption have been 
conducted on the P-RCPSP and P-MMRCPSP, none of 
them could have been used to solve large-scale problems 
and provide the optimal solution within a reasonable 
period of time. Therefore, a number of heuristic and meta-
heuristic algorithms have been introduced to solve such 
problems. Boctor (1996) tested the heuristic programming 
and proposed five instances with the highest probability 
of achieving the best solution. Drexl and Grünewald 
(1993) emphasized random sampling, and then Boctor 
(1996) proposed a computational heuristic algorithm 
based on critical method. Kolisch and Drexl (1997) 
studied a local search method. Lova et al. (2006) 
presented multi-stage heuristic algorithm based on 
priority for solving MMRCPSP. 
To solve the MMRCPSP, the following methods were 
used: Mori and Tseng (1997), Hartmann (2001), Alcaraz 
et al. (2003), and Lova et al. (2009) used genetic 
algorithm; Bouleimen and Lecocq (2003) used the 
simulated algorithm; Nonobe and Ibaraki (2001) used 
tabu search algorithm; Zhang et al. (2006) used particle 
swarm optimization algorithm, and Ranjbar et al. (2008) 
used scatter search. However, several algorithms by 
heuristic and meta-heuristic algorithms have been 
proposed in recent years: Debels et al. (2006), Van 
peteghem and Vanoucke (2010), Coelho and Vanhoucke 
(2011), Afshar-Nadjafi et al. (2013), and Zahra sadat 
Hosseini et al. (2014). 
Ballestin and Blanco (2011) claimed that a few research 
studies have investigated the multi-objective resourced-
constrained project scheduling problem. They tackled 
such a shortcoming and applied Non-dominated storing 
genetic algorithm (NSGAII), Strength pareto 
evolutionary algorithm (SPEAII), and Pareto simulated 
annealing (PSA). Deblaere et al. (2010) presented multi-
mode resource-constrained problem with the objective of 
minimizing project makespan. Many of the recent 
research studies in project scheduling focus on 
maximizing the NPV of the project using the sum of 
positive and negative discounted cash flows throughout 
the life cycle of the project. The concept of maximizing 
cash flow net present value in project scheduling with 
constrained resource was firstly introduced by Russell 

(1970). Doersch and Patterson (1997) added binary 
programming into RCPSP problem maximizing net 
present value. Goto et al. (2001) proposed a meta-
heuristic algorithm containing two-step taboo search to 
maximize net present value. Ulusoy et al (2001) 
introduced four payment methods in project scheduling 
problems, and then considered resource-constrained 
balance time-resource scheduling problem in AOA 
networks with the objective of maximizing net present 
value with respect to payment methods using genetic 
algorithm. Using payment methods proposed by Ulusoy 
et al (2001), Mika et al. (2005) presented simulated 
annealing and taboo search algorithms in activity-on-the-
node networks with the objective of maximizing net 
present value. The preemptive multi-mode RCPSP is 
categorized in NP-hard problems. However, For the 
purpose of solving such a hard problem in a reasonable 
time and finding a good quality solution, it is necessary to 
choose a powerful multi-objective meta-heuristic 
algorithm. Nowadays, evolutionary algorithms are used 
in many fields.  
In the literature, little attention has been paid to problems 
where preemption is allowed. In this paper, we 
investigate a new bi-objective preemptive multi-mode 
resource-constrained project scheduling problem based 
on minimizing makespan and maximizing net present 
value. The study has been labeled as new one due to 
bringing in simultaneously the factors of preemption, 
completing the activity within their earliest and latest 
finishing periods, NPV maximization and minimizing 
makespan into the multi-objective multi-mode project 
scheduling problem. The aim of this paper is to 
investigate the performance of the proposed MOICA 
algorithm to solve a bi-objective preemptive multi-mode 
resource-constrained project scheduling problem. 
The reminder of this paper is organized as follows. In 
section 2, a multi-objective formulation for PMMRCPSP 
is presented. In section 3, a solution methodology for 
applied algorithm is presented. In section 4, the structure 
of the proposed algorithm is explained. The experimental 
results of comparison between the proposed MOICA 
algorithm and NSGA-II are shown in section 5. Finally, 
conclusions are drawn in section 6. 

2. Mathematical Formulation 

2.1. Constraints 

Due to limited resource and precedence relations, there 
are two types of constraints. Therefore, at a time, an 
activity can start when all precedence and renewable and 
nonrenewable resource constraints are satisfied.  

2.2. Assumptions 

In this paper, a multi-objective project scheduling 
problem with multi-mode and pre-emptible activities 
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under resource-constrained condition and the following 
assumptions is considered.  
 An activity can start when all precedence as well as this 
activity do not need set-up time. 
 The project is represented as an activity-on-the-oriented 
node network with the set of activities and the set of pairs 
of activities: between relationship of start to finish 
precedence. 
  The project contains the dummy activity 1 and dummy 
activity N. 
 Each activity is performed in one mode. 
 Activities are performed within their earliest start time 
and latest finish time. 
 Resource capacity is pre-specified and limited. 
 Each activity will use a given resource unit of the total 
available resources. 
 Each activity will use one or some resources. 
 Resources used in project are renewable. 
 The duration of each activity is pre-specified and 
constant throughout the project horizon. 
 Cost payment time is determined in the beginning of the 
project. 
 There is no due date for project. 
 Financial payment time is determined at the end of each 
activity. 
 There is no limited budget. 

2.3. Variables and parameters 

Index 
N : Number of activities (i, j = 1, 2,…, N) 
T : Number of periods (t = 1, 2,…, T) 
K : Renewable resource (k = 1, 2,…, K) 
Parameters 
 : Number of modes of activity jܯ
݀ : Duration of activity j executed in mode m 
ܽ௧  : Total available units of renewable resources k at 
time t 
ݎ  : Number of renewable resources k used by activity j 
done in mode m 
Rρ: Set of renewable resources 
T :  Maximum project horizon time 
   Big positive number :ܯ
ܴ : Set of non-renewable resource 
 Maximum project horizon : ܪܶ
  : Decrease rate per unit timeߙ
ିܨܥ  : Negative cash flow assigned to mode m of activity 
j 
 ା :  Positive cash flow assigned to activity jܨܥ

  
Variables 
ܧ ܵ

	 : Earliest start time of activity j 
  : Earliest finish time of activity j	ܨܧ

  : Latest finish time of activity j	ܨܮ
ܮ ܵ

	  : Latest start time of activity j 

ܺ௧
	 = ൝

1										If	activity	݆	executed	in	mode	݉	
ݐ	݁݉݅ݐ	ݐܽ	݀݁݉ݎ݂ݎ݁	ݏ݅

0																			Otherwise																																
 

 
	ݕ = ቄ1										If	activity	݆	executed	in	mode	݉	

0																			Otherwise																																  
 
The MINLP formulation for the PMMRCPSP problem is 
given as follows: 

ଵܼݔܽ݉ =	
ାܨܥ

(1 + (ߙ
ிிೕ

	

ାଵ

ୀଵ

−  
ିܨܥ

(1 + )௧ߙ

ிೕ
	

௧ୀாௌೕ
	

ெೕ

ୀଵ

ାଵ

ୀଵ
ܺ௧
	  

(1) 

݉݅݊ ܼଶ ௧ݔܽ݉	= 	ቐ .ݐ ܺ௧
	

ெೕ

ୀଵ

ାଵ

ୀଵ

ቑ																		 
 

S.t:  

ܧ ଵܵ
	 = 0 (2) 

	ܨܧ = ܧ ܵ
	 +  ݀

ெೕ

ୀଵ

	ݕ 												,			∀݆ 
(3) 

ܧ ܵ
	 = ,				݆∀			,																							{	ܨܧ}ݔܽ݉ ݅ ≠ ݆		 (4) 

ܮ ܵ
	 = 	ܨܮ −  ݀

ெೕ

ୀଵ

	ݕ 									,			∀݆		 
(5) 

	ܨܮ = ݉݅݊൛ܮ ܵ
	ൟ						,			∀݆				, ݅ ≠ ݆			,					݆ ≠ 1, ݊ (6) 

	ܵܮ = ܶ (7) 

ܧ ܵ
	ݕ		 < .ݐ ܺ௧

	 + ൫1 − ܺ௧
	 ൯ܯ							∀݆, ݆

≠ 1, ݊		, ∀݉	,  ݐ
(8) 

.ݐ ܺ௧
	 ≤   (9)	ܨܮ

 ܺ௧
	

ிೕ
	

௧ୀாௌೕ
	

= ݀ݕ	 		, ∀	݆,݉ 
(10) 

 	ݕ
ெೕ
	

ୀଵ

= 1		,					∀	݆ 
(11) 
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 ݎ ܺ௧
	 ≤ ܽ௧

ெೕ
	

ୀଵ



ୀଵ

								,			∀	݇ ∈ ܴఘ 	, ݐ

= 1,2, . . , ܶ		 

(12) 

	ܨܨ = ௧ݔܽ݉ 	ቐݐ.  ܺ௧
	

ெೕ

ୀଵ

ቑ		,					∀	݆ 
(13) 

ܵ ܵ
	 = ݉݅݊௧ 	൛ݐ. ܺ௧

	 + ൫1 − ܺ௧
	 ൯ܯൟ		, ∀	݆, ݉ (14) 

ܵ ܵ
	 > 		ܨܨ ܽ	 						,				∀	݆					&			݅ ≠ ݆ (15) 

 
The first objective function (1) computes the maximizing 
project net present value and the second objective 
function computes the minimizing project makespan. 
Constraint (2) ensures that the earliest start time of muddy 
activity 1 is equal to 0. Constraints (3) and (4) represent 
the earliest start and finish time of each activity with 
respect to preemptive and precedence relations, 
respectively. Constraints (5) and (6) express the latest 
start and the latest finish time of each activity with respect 
to preemptive and precedence relations. Constraint (7) 
demonstrates that the latest start time of muddy activity N 
is equal to project horizon. Constraints (8) and (9) ensure 
that each activity is executed within its earliest start time 
and latest finish time. Constraint set (10) ensures that if 
mode m is selected for activity j, the total processing time 
must equal the corresponding duration. Constraint set (11) 
ensures exactly one mode is selected for each activity. 
Constraint (12) specifies resource availability for 
renewable resources. Constraints (13), (14), and (15) 
represent the start and finish times of each activity with 
respect to preemption. 

3. Solution Methodology 

3.1. Chromosome Evaluation 

One of the most significant ways to reach a suitable 
algorithm is to design the appropriate chromosomes. 
Then, extraction of problem solution from this 
chromosome is highly important. In this study, to show 
the problem answers, two one-row chromosomes are 
presented that could be encrypted and decrypted easily. 
Each chromosome is a random vector. Chromosomes 
represent activities and priorities whose priorities are 
identified in using resources. Each answer in the 
considered algorithm is illustrated by two arrays. The first 
part consists of a linear array with the dimension of 1× 
(the number of activity), in which each element (gene) is 
the representative of respective activity, and the value of 
the element (gene) shows the mode which is used for the 
related activity. The second part of coding shows the 
sequence of doing the parts of each activity that includes a 
linear array with the following dimensions. 

1 × (Total duration of activities based on the first part 
modes) 

In presenting the second part of coding, the gene is 
assigned to each activity based on the time for performing 
that activity in the specified mode in the first part. In this 
case, Pଵm୧భ is the first gene (the time for performing the 
first activity in a mode iଵ) related to the first activity, 
Pଶm୧మis the second gene related to the second activity, and 
P୬m୧is the last gene related to the nth activity. The 
values in these genes determine the sequence of 
performing the related part of activity. For instance, for a 
project with 2 activities, an illustration of chromosomes is 
presented in figure 1. 
 
 

  
 

 ݕݐ݅ݒ݅ݐܿܣ ଵܣ ଶܣ

ܯ 1 2 1 2 3  

-  1 1 1 1 ଵܴ  

1  1 1 1 2 ܴଶ 

-  -  1  -  -  ܴଷ 

7 4  2  5 3 ܲ    

4 2 
 :1	ݐݎܽܲ

  

0.74 0.8 0.22 0.41 0.52 0.34 0.97 0.46  
 :2	ݐݎܽܲ

Fig. 1. Illustration of chromosome 

 
As you can see in the above figure, the first part is 
composed of an array (1×2) in which the value of each 

gene provides the considered number of modes. In this 
array, the first gene is related to the first activity that is 
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performed by 2nd mode, and the second gene is related to 
the second activity that is performed by 2nd mode.       
In the second part, since the time for performing the first 
activity with mode 2 is equal to 5 time units, the first 5 
genes are assigned to the first activity, and duration for 
performing the second activity with mode 2 is equal to 4 
time units. Therefore, 4 second genes are assigned to the 
second activity. The numbers of each gene show the 
priority of each section of activity. Activity scheduling is 
carried out based on these priorities, prerequisite, and 
resource capacity.  

3.2. Crossover operator 

Intersection operator functions over two parent 
chromosomes that are the output of selection operator and 
functions with the possibility of Pୡ and creates a new child 
by combining two parents. Currently, intersection 
operators are employed extensively for project scheduling 
problems in genetic algorithms.       
In this study, the random intersection operator is used, 
and it functions in such a way that for the first part of 
chromosome, a random vector [0,1] is created with the 
dimensions of the first part of a chromosome. If the 
number of random vector is larger than 0.5, the location 

of two chromosomes is changed. Otherwise, the location 
of two chromosome genes remains constant. Then, 
according to this random vector, the first part of child 
array is created as illustrated in the table below. Table 1 is 
created based on the zero and one random numbers, and it 
presents how intersection action is performed.  
 
Table1 
Crossover operator 
Parent 1 1 4 6 8 
     
Parent 2 2 3 5 9 
     
Random number 0.64 0.27 0.41 0.79 
 > < < > 
Offspring 1 2 4 6 9 
     
Offspring 2 1 3 5 8 

 
In addition, for the second part, we do the same processes 
with regard to the first part’s results. In this regard, due to 
the fact that the employed mode for performing each 
activity is from every parent, we directly transfer the 
related genes from the second part to the child. For 
example, for a project with 2 activities, an illustration of 
chromosomes is presented in Table 2. 
 

 
 

Table2 
Illustration of mutation 
 Part 1 Part 2 

Parent 1 2 4 0.46 0.11 0.97 0.34 0.52 0.41 0.24 0.8 0.74 
            

Parent 2 1 3 0.19 0.71 0.56 0.83 0.29     
            
Offspring 1 2 3 0.46 0.11 0.97 0.34 0.52 0.83 0.29   

            
Offspring 2 1 4 0.19 0.71 0.56 0.41 0.24 0.8 0.74 0.41  

 
3.3. Mutation operator 

The number of chromosomes to which mutation operator 
is applied could be obtained based on the following 
equation: 
The number of mutation application = [(mutation rate) × 
(Total population)] 
To apply mutation randomly, two of the second-part 
chromosome genes are selected and their values are 
exchanged. In other words, the priority of performing two 
activities that are selected randomly is exchanged. Table 3 
illustrates how mutation operator works.  

Table3 
Illustration of mutation 

0.5 0.2 0.6 0.9 0.8 

     

0.5 0.8 0.6 0.9 0.2 

4. The Proposed Algorithms 

4.1. Non-dominated sorting genetic algorithm II (NSGA-
II) 

Non-dominated sorting genetic algorithm II (NSGA-II) is 
one of the most well-known and efficient multi-objective 
evolutionary algorithms introduced by Deb et al 
(2000,2002). Ranking and selecting the population fronts 
are performed by non-dominance technique and a 
crowding distance. Also, the algorithm to generate new 
solutions, as for generated offspring, uses crossover 
operator and mutation operator. Then, the current 
population and generated offspring are combined 
together. Finally, the best solutions in terms of non-
dominance and crowding distance are selected from 
combined population as the new population. The non-
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dominated technique, the calculation of crowding 
distance, and crowding selection operator are explained 
below. 
 
4.1.1. Non-dominated technique 

Suppose that there are r objective functions. When the 
following conditions are satisfied, the solution ݔଵ 
dominates another solution ݔଶ. If ݔଵ and ݔଶ do not 
dominate each other, they are placed in the same front. 
(1) For all the objective functions, solution ݔଵ is not 
worse than another solution ݔଶ. 
(2) For at least one of r objective functions, ݔଵ is exactly 
better than ݔଶ. 
Front number 1 is made by all solutions that are not 
dominated by any other solutions. 
Also, front number 2 is made by all solutions that are only 
dominated by solutions in front number 1. 
 
4.1.2. Crowding distance  

The crowding distance is a measure of the density of 
solutions. The value of the crowding distance presents an 
estimate of the solutions density surrounding a particular 
solution. The crowding distance measure used in NSGA-
II is shown in equation (16). Having a lower value of the 
crowding distance, the solutions are preferred over 
solutions with a higher value of the crowding distance. 

݁ܿ݊ܽݐݏ݅ܦ	݃݊݅݀ݓݎܿ = ݂,ାଵ
 − ݂,ିଵ



݂,௧௧
,௫ − ݂,௧௧

,



ୀଵ

													(16) 

Where r is the number of objective functions,	 ݂,ାଵ
  is the 

k-th objective function of the (i+1)-th solution, and ݂,ିଵ
  

is the k-th objective function of the (i-1)-th solution after 
sorting the population according to crowding distance of 
the k-th objective function. Also, ݂,௧௧

,௫ and ݂,௧௧
,  are 

the maximum and minimum values of objective function 
k, respectively. 
 
4.1.3. Tournament selection operator 

A binary tournament selection procedure has been applied 
to select solutions for both the crossover and mutation 
operators. In the following, we describe this selection 
operator. First, select two solutions of the population size, 
and then the lowest front number is selected if the two 
populations are from different fronts. If they are from the 
same front, the solution with the highest crowding 
distance is selected. 
4.2. Multi-objective imperialist competitive algorithm 
(MOICA) 

4.2.1. Generating initial empires 

Each solution in the imperialist competitive algorithm 
(ICA) is in a form of an array. Each array consists of 
variable values to be optimized. In GA terminology, this 

array is called chromosome; however, in this paper, we 
use the term “country” for this array. In an N-dimensional 
optimization problem, a country is a 1 × ܰ array. This 
array is defined by  	ܲ = 	 ,ଵ] ,ଶ ,ଷ . . . ,   is ே] , where
the variable to be optimized. Each variable in a country 
denotes a socio-political characteristic of a country. From 
this point of view, the algorithm searches for the best 
country, that is, the country with the best combination of 
socio-political characteristics, such as cultural, linguistic, 
and economical policy (Atashpaz-Gargari and Lucas 
2007). After generating countries, a non-dominance 
technique and a crowding distance are used to rank and 
select the population fronts, and the members of the front 
one are saved in archive. Then, the best solutions in terms 
of the non-dominance and crowding distance are selected 
from population as the imperialists and the remaining 
countries are colonies. 
To calculate the cost value of each imperialist, the value 
of each objective function is obtained for each imperialist. 
Then, the cost value of each objective function is 
calculated by: 

,ܥ =
ห ݂,

 − ݂
,௦௧ห

݂,௧௧
,௫ − ݂,௧௧

, 																																																				(17) 

Where ܥ, is the normalized value of objective function i 
for imperialist n, and ݂,

  is the value of the objective 
function i for imperialist n. Also, ݂

,௦௧ , ݂,௧௧
,௫, and 

݂,௧௧
,  are the best, maximum, and minimum values of 

objective function i at each iteration, respectively. Finally, 
the normalized cost value of each imperialist (ܥ) is 
calculated by: 

ܥ =ܥ,



ୀଵ

																																																																								(18) 

Where r is the number of objective function, the power of 
each imperialist is calculated after obtaining the 
normalized cost as described below, and the colonies are 
distributed among the imperialist according to power of 
each imperialist country. 

ݎ݁ݓ = อ
ܥ

∑ ܥ
ே
ୀଵ

อ																																																									(19) 

Then, the initial number of colonies of an empire will be 
as follows: 
ܮܱܥܰ = ݎ݁ݓ}݀݊ݑݎ × ܰ}																																		(20) 
Where ܰܮܱܥ is the initial number of colonies of the n-th 
imperialist, and ܰ is the number of all colonies. We 
select ܰܮܱܥ of colonies randomly, and all of them are 
allocated to each imperialist. Imperialist with greater 
power has a bigger number of colonies, while imperialist 
with weaker power has fewer. 
 
4.2.2. Moving the colonies of an empire toward the 
imperialist (assimilating) 

After dividing colonies between imperialists, colonies 
move toward their related imperialist. This movement is 
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illustrated in Fig. 1, in which X is the distance between 
colony and imperialist. ߙ is a random variable with a 
uniform distribution between 0 and ߚ	 × 	ܺ, and ߚ is a 
number greater than 1. Direction of the movement is 
shown by ߠ, which is a uniform distribution between -γ 
and γ . 

4.2.3. Crossover between colonies 

Moreover, colonies share their information together by 
crossover to improve their fitness. The best colonies have 
more chance than others to share their information, 
because colonies are selected in this section by 
tournament selection. The population percent sharing 
information is shown by p Crossover. 
 

 
 

Fig. 2. Moving colonies toward the imperialist with a random angle ߠ 

4.2.4. Exchanging positions of the imperialist and a 
colony 

First, each imperialist with the best colony in terms of the 
crowding distance in the front one of related colonies is 
compared together. If the imperialist is not dominated by 
this colony, this comparison is continued to the last 
colony in front one. If any colony does not find in front 
one to dominate imperialist, the imperialist is added to the 
front one. Front one is sorted in terms of the crowding 
distance, and solution with a high crowding distance is 
selected as imperialist. 
 

4.2.5. Total power of an empire 

The total power of an empire is mainly affected by the 
power of the imperialist country; but, the power of the 
colonies of an empire has an indigent effect on the total 
power of that empire. Therefore, the equation of the total 
cost is shown below. (Karimi et al. 2010, Shokrollahpour 
et al. 2011). 
ܥܶ = 
(ݐݏ݈݅ܽ݅ݎ݁݉݅)	ݐݏܥ) +
 (21)                  			({(݁ݎ݅݉݁	݂	ݏ݈݁݅݊ܿ)ݐݏܥ}	݊ܽ݁݉	ߦ

Where ܶܥ  is the total cost of the nth empire, and (ߦ) is a 
positive number considered to be less than 1. Also, the 
costs of imperialists and colonies are calculated by Eqs.17 
and 18. The total power of the empire is determined by 
just the imperialist when the value of (ߦ) is small, and 
increasing it will increase the role of the colonies in 
determining the total power of an empire. 

4.2.6. Imperialistic competition 

The power of a weaker emprise will reduce, and the 
power of more powerful ones will increase in the 
imperialistic competition. All empires compete with each 
other to take the possession of the weakest colony of the 
weakest empire. In other words, first, some (usually one) 
of the weakest colonies of the weakest empire are chosen, 
and then the possession of these colonies (or this colony) 
is given to the winner imperialist among all empires in the 
imperialistic competition. In this competition, the most 
powerful empires will not definitely possess these 
colonies; but, these empires will be more likely to possess 
them. This competition is modeled by just selecting one 
of the weakest colonies of the weakest empires, and then 
for calculating the probability of possession of each 
empire, first, the normalized total cost is obtained as 
follows: 
ܥܶܰ = ݔܽ݉


{ܥܶ} −  (22)																																													ܥܶ

Where ܰܶܥ is the normalized total cost of nth empire, 
and ܶܥ is the total cost of nth empire. Having the 
normalized total cost, the probability of possession of 
each empire is calculated by: 

ܲ = อ
ܥܶܰ

∑ ܥܶܰ
ே
ୀଵ

อ																																																									(23) 

Then, the roulette wheel method is used for assigning the 
mentioned colony to one of empires. 

4.2.7. Revolution 

In each decade, revolutions are performed in some of the 
colonies and all of the imperialists. The revolution rate in 
this paper is shown by PRevolution. 

4.2.8. Archive adaption 

Ranking and sorting is done by the non-dominated and 
crowding distance for each empire. Then, the members of 
front one of each empire are selected in order to be added 
to the archive. Finally, the members of front one are kept, 
and others are deleted after ranking and sorting solutions 
in the archive. 

4.2.9. Eliminating the powerless empires 

Powerless empires will collapse and their colonies will be 
distributed among other empires in the imperialistic 

݀	
	ߠ

	ݔ

New 
position of 

imperialist 

Colony 

culture 

language 
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competition. In this paper, when an empire loses all of its 
colonies, we consider that it collapses. 

4.2.10. Stopping criteria 

In this paper, the stopping criteria or end of imperialistic 
competition is considered when there is only one empire 
between all of countries. 

5. Experimental Results 

The performance of the proposed MOICA is compared 
with the well-known multi-objective evolutionary 

algorithm, namely NSGA-II. Two algorithms studied in 
this paper are coded using MATLAB 7.13 and run on a 
personal computer with a 2.26 GHz CPU and 3 GB main 
memory. 
As already mentioned, the test problems were comprised 
of small- and large-sized problems as in Table 4. In this 
paper, the Taguchi method is applied to both scales for 
parameter tuning. Parameter tuning by the Taguchi 
method is explained in detail by representing the step-by-
step results for the large-sized problems, while the 
obtained results from small-sized problems are also 
reported. In each size, five test problems are chosen 
randomly.   

Table 4  
 Description of the test problem 
 
Problem  
number 

Project file  
name at 

(PSPLIB) 

Number of 
activities 

Size of 
problem 

Number of 
resources 

Number 
of modes 

1 j1227-8.mm 12 Small 3 2 
2 j1227-9.mm 12 Small 3 2 
3 j1227-10.mm 12 Small 3 2 
4 j1228-1.mm 12 Small 3 2 
5 j1228-2.mm 12 Small 3 2 
6 j189-1.mm 18 Large 3 2 
7 j189_2.mm 18 Large 3 2 
8 j189_3.mm 18 Large 3 2 
9 j189_4.mm 18 Large 3 2 
10 j189_5.mm 18 Large 3 2 

5.1. Experimental design 

5.1.1. Taguchi parameter design 

To tune the algorithm parameters, there exist some 
statistical approaches for designing examination. Taguchi 
improved a group of slight factorial experiments matrices 
in such a way that after several trials, the number of 
experiments for a given problem can be reduced. Among 
several experimental design techniques, the Taguchi 
method has been successfully applied for a systematic 
approach for optimization. The Taguchi method uses an 
orthogonal array to organize the experimental results. In 
this method, orthogonal arrays are used to study several 
variables using a few experiments. Taguchi classified 
factors into two main classes: controllable factors and 
noise factors, which cannot be controlled directly. When 
eliminating noise factors is not possible, Taguchi method 
minimizes noise effects and optimizes the level of 
substantial controllable factors. Taguchi converts iterative 
data to values considered as a criterion for changes in 
results. This conversion is the ratio of S/N. S represents 
desirable values, N represents undesirable values, and the 
goal is to maximize this ratio. In other words, Taguchi 
analyzes changes using the desirable ratio of S/N. The 
desirable ratio of S/N in this paper is as follows: 

ܵ/்ܰ = ݈݃	10 ቆ
തଶݕ

ଶݏ
ቇ																																																						(24) 

The goal of this study is to determine the appropriate 
parameters of MOICA and NSGA-II as inner variables for 
obtaining optimal solution. Taguchi technique is used to 
tune the population size, cross over rate, mutation rate, 
and number of generation in NSGA-II and to tune the 
number of countries, the number of imperialists,  
revolution rate, and assimilation rate in MOICA. This 
method is used for four factors and three levels, such that 
factors are algorithms’ parameters. Tables [5],[6] show 
the value of factors in each level for MOICA and NSGA-
II in which numbers 1, 2, and 3 are the levels of each 
factor. All values shown in Table [5],[6] have been 
determined by some research proposals and some 
experiments. On the other hand, to select the appropriate 
orthogonal array, it is necessary to calculate the total 
degree of freedom for the total mean and two degrees of 
freedom for each factor with three levels (2 × 4 = 8). 
Thus, the sum of the required degrees of freedom is 
1 + 2 × 4 = 9. Therefore, the appropriate array must 
have at least 9 rows. Table 7 shows orthogonal array with 
four factors and three levels. So, this array is L9. 
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Table 5 
parameters and their levels for  MOICA  Problems 

Factor Symbol Level 1 Level 2 Level 3 

.࢛ࡺ   A 100  150  200 ࢛ࢉ

.࢛ࡺ   B 10  15  20 

  C 0.25  0.3  0.35 

  D 0.25  0.3  0.35 ࢋ࢚ࢇ࢘	࢚ࢇ࢙࢙ࢇ

 
Table 6 
parameters and their levels for NSGA-II Problems 

Factor Symbol Level 1 Level 2 Level 3 
  A 100  150  200 

  B 50  75  100 ࢋࢍ	࢞ࢇࡹ

  C 0.95  0.85  0.8 ࢉ

  D 0.1  0.2  0.3 

  
Table 7 
The orthogonal array L9 
Experiment number ܦ ܥ ܤ ܣ 

1 1 1 1 1 
2 1 2 2 2 
3 1 3 3 3 
4 2 1 2 3 
5 2 2 3 1 
6 2 3 1 2 
7 3 1 3 2 
8 3 2 1 3 
9 3 3 2 1 

   

As it is mentioned before, problems considered in this 
study are classified into large and small groups in which 
five problems are selected randomly. To obtain more 
reasonable results, each problem is examined for four 
times. So, we can obtain 20 results for each Taguchi 
examination. It should be noted that MID approach is 
used to determine the most suitable examination in tuning 
the parameters of MOICA and NSGA-II. The results 
obtained from Taguchi are converted to S/N ratio. The 
optimal level of each factor in NSGA-II is illustrated in 
figure 3. Clearly, the most suitable levels of this factor are 
A(1), B(2), C(3), and D(3), respectively. 
From figure 3 and the value of delta in table 8, we can 
conclude that ݊ has the greatest effect on NSGA-II; 
  , are other impressive factors and ,݊݁݃	ݔܽܯ , 
respectively. The optimum level of factors above is 
mentioned in table 10.  
To tune the parameters of MOICA, the Taguchi results 
are also converted into S/N ratio. Figure 4 shows the 
optimal level of each factor for this algorithm. From these 
graphs, it can be concluded that the most suitable levels of 
this factor are A(2), B(3), C(1), and D(2), respectively. 
From figure 4 and the value of delta in table 9, we can 
conclude that  has the greatest effect on MOICA; nimp 
،npop, and as	rate are other impressive factors, 
respectively. Optimum level of factors above is 
mentioned in table 10.  

 

 
Fig. 3. Mean S/N ratio for level of each factor NSGA-II 

Table 8 
 S/N NSGAII 

Response table for signal to noise ratios (nominal is better) 
Level ܦ ܥ ܤ ܣ 

1 18.62 17.90 17.86 17.70 
2 16.53 17.96 17.55 17.85 
3 18.25 17.53 17.99 17.85 
Delta 2.09 0.43 0.44 0.16 
Rank 1 3 2 4 
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Table 9 
S/N  MOICA 

Response table for signal to noise ratios (nominal is better) 
Level ܦ ܥ ܤ ܣ 

1 17.15 16.73 18.21 16.88 
2 17.36 16.28 16.60 17.47 
3 16.51 18.01 16.21 16.66 
Delta 0.85 1.73 2.00 0.81 
Rank 3 2 1 4 

  

 
Fig. 4. mean S/N ratio for level of each factor MOICA 

Table 10 
Parameter setting values 

Factor 
Symbol Optimal level for each 

problem Factor Symbol Optimal level for 
each problem 

NSGA-II MOICA 
.࢛ࡺ A 100   A 150 ࢛ࢉ

.࢛ࡺ B 75 ࢋࢍ	࢞ࢇࡹ  B 20 
 C 0.25  C 0.8 ࢉ
ࢋ࢚ࢇ࢘	࢚ࢇ࢙࢙ࢇ D 0.3  D 0.3 

 
5.2. Comparison metrics 

To validate the reliability of the proposed MOICA, three 
comparison metrics are taken into account. 
 Mean ideal distance (MID): The closeness between 
Pareto solutions and ideal point ( ଵ݂

௦௧ , ଶ݂
௦௧) is 

determined by using MID. The equation of MID is 
defined by: 

ܦܫܯ

=

∑ ඨቆ ଵ݂ − ଵ݂
௦௧

ଵ݂,௧௧
௫ − ଵ݂,௧௧

 ቇ
ଶ

+ ቆ ଶ݂ − ଶ݂
௦௧

ଶ݂,௧௧
௫ − ଶ݂,௧௧

 ቇ
ଶ


ୀଵ

݊ 						(25) 

Where  ݊  is the number of non-dominated solution, and 
݂ ,௧௧
௫  and ݂,௧௧

  are the maximum and minimum values 
of each fitness functions among all the non-dominated 
solutions obtained by the algorithms, respectively. 
Regarding this definition, the algorithm with a lower 
value of MID has a better performance. 

 The rate of achievement of two objectives 
simultaneously (RAS): at first, the ideal point is 
calculated, and then RAS is obtained by: 

ܵܣܴ

=
∑ ቆ

ห ଵ݂ − ଵ݂
௦௧ ห

ଵ݂,௧௧
௫ − ଵ݂,௧௧

 +
ห ଶ݂ − ଶ݂

௦௧ห
ଶ݂,௧௧
௫ − ଶ݂,௧௧

 ቇ
ୀଵ

݊ 														(26) 

Regarding this definition, the algorithm with a lower 
value of RAS has a better performance. 
 Spacing metric (SM): This metric measures the 
uniformity of the spread of the non-dominated solution, 
and then SM is obtained by:  

ܯܵ =
∑ ห݀̅ − ݀ห
ୀଵ

(݊ − 1)݀̅
																																																										(27) 

Where ݀ is the Euclidean distance between consecutive 
solutions in the obtained non-dominated set of solutions, 
and ݀̅ is the average of these distances. Regarding this 
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definition, the algorithm with a lower value of SM has a 
better performance. 

5.3. Comparative results 

The proposed MOICA is applied to solve the test 
problems and its performance is compared with the 
NSGA-II.  
Table 11 lists the values of the above-mentioned 
comparison metrics, and shows that the proposed MOICA 
is superior to NSGA-II in each test problem.  
As shown in Table 11, the results of two algorithms are 
very close. However, the MOICA optimal solutions are 
better in terms of three metrics in comparison with the 

other algorithm. For example, the obtained result for the 
10th problem shows that the MOICA outperforms NSGA-
II according to mean ideal distance (MID) metric with a 
value of 0.4890, while MID is equal to 0.4941 for the 
NSGA-II (the lower the MID, the better). MOICA also 
excels based on the rate of achievement of simultaneous 
objectives’ (RAS) metric with a corresponding value of 
0.4880 (the lower is better). Finally, it is superior, 
according to the spacing metric, SM=0.4508 (the lower, 
the better). Similarly, the outcomes of MOICA in the 
other test problems show that the metrics for the 
algorithm are more favorable compared to the NSGA-II. 

Table 11 
Computational results  of metrics for the algorithms 

Problem/metric MID metric RAS metric Spacing metric 
NSGA-II MOICA NSGA-II M0ICA NSGA-II MOICA 

Problem 1 0.4555 0.5097 0.4555 0.5098 0.2683 0.6010 

Problem 2 0.4948 0.4948 0.4948 0.4948 0.0322 0.0322 
Problem 3 0.4628 0.4170 0.4629 0.4170 0.2052 0.3336  
Problem 4 0.5673 0.5673  0.5074 0.5674  0.4000 0.4000  
Problem 5 0.6066 0.6066  0.6067 0.6067  0.7404 0.7404 
Problem 6 0.5410 0.5382 0.5410 0.5282 0.4446 0.5422 
Problem 7 0.4773 0.4875 0.4773 0.4875 0.4332 0.5633 
Problem 8 0.4997 0.5365 0.4997 0.5365 0.6338 0.6550 
Problem 9 0.3092 0.3144  0.3092 0.3144  0.9418 0.7897 

Problem 10 0.5270 0.4186  0.5270 0.4186  0.4085 0.4085 

 

 
Fig. 5. Non-dominated solution for each algorithm 

 

6. Conclusion 

This paper presented a new multi-objective imperialist 
algorithm (MOICA) for solving a bi-objective preemptive 
multi-mode resource-constrained project scheduling 
problem based on minimizing makespan and maximizing 
net present value. To validate the proposed MOICA, a 
number of test problems were designed to evaluate the 
performance and reliability of the proposed algorithm in 

comparison with one well-known multi-objective 
evolutionary algorithm, called NSGA-II. In addition, 
some useful comparison metrics (i.e., spacing, MID, and 
RAS metrics) were applied. The results of this study 
indicate that the proposed MOICA outperforms NSGA-II 
and is able to improve the quality of the obtained 
solutions. 
For future research, at least three issues are worth 
investigating. Firstly, it would be interesting to generalize 
the present model to include nonrenewable resources as 
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well as multiple execution modes for each activity. 
Secondly, it appears that the number of efficient solutions 
increases with the number of activities. Finally, it is 
recommended that the problem be solved using other 
heuristic and meta-heuristic algorithms. The results can be 
compared with the ones of this study. 
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