Hub Covering Location Problem Considering Queuing and Capacity Constraints

Mehdi Seifbarghy^{a,*}, Mojtaba Hemmati^b, Sepideh Soltan Karimi^c

^aAssociate Professor, Department of Industrial Engineering, Alzahra University, Tehran, Iran ^bM.Sc, Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran ^cM.Sc, Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran Received 21 June 2014; Revised 18 November 2016; Accepted 26 December 2016

Abstract

In this paper, a hub covering location problem is considered. Hubs, which are the most congested part of a network, are modeled as M/M/C queuing system and located in places where the entrance flows are more than a predetermined value. A fuzzy constraint is considered in order to limit the transportation time between all origin-destination pairs in the network. On modeling, a nonlinear mathematical program is presented. Then, the nonlinear constraints are converted to linear ones. Due to the computational complexity of the problem, genetic algorithm (GA), particle swarm optimization (PSO) based heuristics, and improved hybrid PSO are developed to solve the problem. Since the performance of the given heuristics is affected by the corresponding parameters of each, Taguchi method is applied in order to tune the parameters. Finally, the efficiency of the proposed heuristics is studied while designing a number of test problems with different sizes. The computational results indicated the greater efficiency of the heuristic GA compared to the other methods for solving the problem.

Keywords: Hub covering location, Queuing system, Congestion, Genetic algorithm, Hybrid particle swarm optimization algorithm.

1. Introduction

Every day, large amounts of goods are transported from different origins to a set of destinations. Most of the times, it is impossible to establish a direct link between the origins and destinations. In this situation, a group of locations are considered as hubs. Hubs are used to merge, redirect, and distribute the flow of goods to hub or spoke nodes. In a given network, some of the nodes are selected as hubs, while other nodes allocated to the hub nodes are considered as spokes. General assumptions about hub location problem are as being a direct link between each of the two hubs, the lack of link between spoke nodes, lower cost of transportation between hub nodes than spoke nodes, and the dependence of costs on distance.

The major contributions in the current research can be given as follows:

- Queuing and time constraints from origin to destination are considered simultaneously.
- The times when flows are transported from origin to hub, from hub to hub, and from hub to destination are considered as fuzzy numbers.
- Hubs are located in places where the entrance flows to be more than a known value of Γ for each hub.

• Some heuristics are developed in order to solve the hub covering problem.

2. Literature review

The basic idea for hub-spoke networks was proposed by Goldman (1969). The first mathematical formulation for hub location problem was given by O'kelly (1987). The first computational results for the single allocation hub covering problem was presented by Kara and Tansel (2003). They proved that these types of problems were Nphard. Marianov and serra (2003) modeled the hub location problem considering M/D/C queuing system. A formula was derived for the probability of a number of customers being in the system in order to be used in a capacity constraint. A new modeling of single and multi-allocation for hub covering problem was given by Wagner (2004). Ernst and Krishnamoorthy (2005) proposed the uncapacitated single and multiple allocation hub covering problem. Rodriguez et al. (2007) presented a model for hub location problem in cargo transportation networks with limited capacity hubs. They modeled each hub as an M/M/1 queuing system. Calik et al. (2009) studied the single allocation hub covering problem with incomplete

^{*}Corresponding author Email address: m.seifbarghy@qiau.ac.ir

communications in hubs. Han (2010) developed an integer programming (IP) formulation for the problem and developed some valid inequalities which provided a tight lower bound for the problem. Gelare and Nickle (2011) proposed a 4-index formulation for the uncapacitated multiple allocation hub location problem tailored for urban transport and liner shipping network design. Mohamadi et al. (2011) considered a hub-and-spoke network problem with crowdedness or congestion in the system. A hub cannot serve all trucks simultaneously, and it has some restrictions like capacity and service time. They modeled it as M/M/c queuing systems. Alumur et al. (2012) introduced multi-modal hub location and hub network design problem and studied the hub location problem from a network design perspective. Alumur et al. (2012) addressed several aspects concerning hub location problems under uncertainty. They considered two sources of uncertainties: the set-up costs for the hubs and the demands to be transported between the nodes.

To the best of our knowledge, a few papers have studied the pHCP and pHMP with uncertainty in flows, costs, and transportation time. Sim et al. (2009) introduced a stochastic pHCP (SpHCP) utilizing a chance-constraint method to model the minimum delivery service requirement by taking the variability in transportation times into account. Yang et al. (2013a) presented a new risk aversion pHCP with fuzzy travel times by adopting value-atrisk(VaR) criterion in the formulation of objective function. In order to solve and validate the model, they first turned the original VaRpHCP into its equivalent parametric mixed-integer programming problem, and then developed a hybrid algorithm by incorporating genetic algorithm and local search (GALS) to solve the parametric mixed-integer programming problem. Yang et al. (2013b) proposed a new pHCP with normal fuzzy travel time, in which the main goal is to maximize the credibility of fuzzy travel times, such that not exceeding a predetermined acceptable time point along all paths on a network. Due to complexity of the proposed model, they applied an approximation approach (AA) to discretize fuzzy travel times and reformulate the original problem as a mixed-integer programming problem subject to logical constraints. Next, they made use of the structural characteristics to develop a parametric decomposition method to divide the approximate pHCP into two mixedinteger programming subproblems. Finally, the authors developed an improved hybrid particle swarm optimization (PSO) algorithm by combining PSO with genetic operators and local search (LS) to update and improve particles for the subproblems. In another work, Yang et al. (2014) reduced the uncertainty embedded in the secondary possibility distribution of a type-2 fuzzy variable by fuzzy integral and applied the proposed reduction method to pHCP. They also developed a robust optimization method to take uncertainty in travel times into account by employing parametric possibility distributions.

Mohammadi et al. (2013) developed a stochastic biobjective multi-mode transportation model for hub covering problem. They considered the transportation time between each pair of nodes as an uncertain parameter that is also influenced by a risk factor in the network. Similar to Contreras et al. (2011), Adibi and Razmi (2015) developed a 2-stage stochastic programming for formulating stochastic uncapacitated multiple-allocation HLP. They considered three cases, wherein (1) flow is stochastic, (2) cost is stochastic, and (3) both flow and cost, are stochastic. Unlike Contreras et al. (2011), the authors concluded that considering uncertainty into formulation could result in different solutions.

The paper is structured as follows. Section2 presents a nonlinear mathematical model and its linearization. Section 3 describes the proposed solution algorithms. Section 4 presents computational results. Section 5 concludes the paper and presents further research directions.

3. Parameters and Variables

The parameters and decision variables of the model are as follows:

i,j,k,m= Index of nodes $i,j,k,m=\{1,\ldots,n\}$

(1 if traffic from node i to node j goes through

 $X_{ikmj} =$ hubs located at nodes k and m;

0 otherwise,

 $X_{ik} = \begin{cases} 1 & \text{if node i is allocated to hub at node k;} \\ 0 & \text{otherwise,} \end{cases}$

 C_{ikmj} : The transportation cost of each unit flow from node *i* to node *j* going through hubs located at nodes *k* and *m*.

 f_k : The fixed cost of locating a hub at node k

 r_k : The maximum cost between hub k and nodes allocated to hub k

 $\theta_{q,k}$: Desired upper bound for the probability of an extra queue length at a hub k

 b_k : Upper bound of queue length at hub k

T: Maximum authorized transportation time between any origin/destination pair

 t_{ik} : Transportation time between nodes *i* and *j*

 a_{ij} : The average flow which is required to be transported from node *i* to*j*

 Γ_k : Minimum required demand for locating a hub at k

 μ_k : Service rate of hub located in node k

4. Problem Formulation

In the problem under study, there is a set of n nodes in a given network. A number of the nodes should be selected as hubs, while the rest of the nodes, called spokes, are allocated to the hub nodes. There are some constraints for locating hub nodes, such as cost, entrance flow, time and

capacity. The model is of single allocation type which means each node can only be allocated to an individual hub. The proposed model in this research, which is based on Mohamadi et al. (2011), can be stated as follows:

$$Min\sum_{i=1}^{n}\sum_{k=1}^{n}\sum_{m=1}^{n}\sum_{j=1}^{n}c_{ikmj}x_{ikmj} + \sum_{k=1}^{n}f_{k}x_{kk}$$
(1)

S.T:

k

$$\sum_{i=1}^{n} \sum_{m=1}^{n} x_{ikmj} = 1 \qquad \forall i, j$$
⁽²⁾

$$x_{ikmj} \le x_{jm} \ \forall i, j, k, m \tag{3}$$

$$x_{ikmi} \le x_{ik} \ \forall i, j, k, m \tag{4}$$

$$x_{ik} \le x_{kk} \quad \forall i, j, k, m \tag{5}$$

$$c_{ik} x_{ik} \le r_k \quad \forall i, k \tag{6}$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_{ik} + \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ji} x_{ik} - \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_{ik} x_{jk} \ge \Gamma_k x_{kk} \ \forall k$$
⁽⁷⁾

P{length of queue at node $k > b_k$ } $\leq \theta_{q,k} \forall k$

$$x_{ikmj}\left(\tilde{t}_{ik}+\tilde{t}_{km}+\tilde{t}_{mj}\right) \leq \tilde{T} \qquad \qquad \forall i,j,k,m$$
⁽⁹⁾

$$\sum_{k=1}^{n} x_{ik} = 1 \qquad \forall i \qquad (10)$$

$$x_{ikmj} \in \{0,1\} \qquad \forall i, j, k, m \qquad (11)$$

$$x_{ik} \in \{0,1\} \qquad \forall i, k \qquad (12)$$

In the aforementioned single allocation model, the objective function in (1) minimizes the sum of transportation and fixed costs of locating the hubs. Constraint (2) ensures that all the flows between *i* and *j* are routed through a pair of hubs in *m* and *k* (perhaps a pair of *k* and *k*). Constraints (3) and (4) guarantee routing the flows between *i* and *j* through hubs *k* and *m*, involving allocating *i* and *j* to hubs *k* and *m*, respectively. Constraint (5) states that a node can be allocated only to a hub node. Constraint (6) declares that node *i* can only be allocated to hub *k* if the flow cost

between *i* and *k* be less than r_k . Constraint (7) ensures forming a hub when the entrance flow to be more than the value of Γ_k . Constraint (8) forces the probability of more than b_k demand waiting at a queue to be less than or equal to $\theta_{q,k}$. Constraint (9) states that the travel time between all the origin-destination pairs in the network be less than \tilde{T} . Constraint (10) ensures that each node is assigned to exactly one hub. Constraints (11) and (12) give the status of the decision variables. As Mohamadi (2011) let *Ps* be the

(8)

steady-state probability of s customers being in the system

$$\sum_{s=b_k+1+c}^{\infty} p_s \le \theta_{q,k} \quad or \quad 1-\sum_{s=0}^{b_k+c} p_s \le \theta_{q,k} \quad (13)$$

An expression for the probabilities Ps is needed; this expression can be derived assuming an arrival rate of λ and a service rate of μ . Then, the service and arrival rates for any state can be given by Eqs. (14) and (15):

$$\lambda_n = \lambda \tag{14}$$

with *c* servers; Constraint(8) can be stated as (13):

$$\mu_{\mathbf{n}} = \begin{cases} n\mu & n \le c \\ c\mu & n > c \end{cases}$$
(15)

 p_{0} , as the probability of no demand in the system can be given by Eq.(16):

$$p_0 = \left[\sum_{n=0}^{c-1} \frac{1}{n!} (\frac{\lambda}{\mu})^n + \frac{1}{c!} \left(\frac{\lambda}{\mu}\right)^c (\frac{c\mu}{c\mu - \lambda})\right]^{-1} (16)$$

The probability of being n demands in the system with c servers can be stated by Eq. (17) as Gross and Harris (1974).

$$p_{n} = \begin{cases} \frac{\lambda^{n}}{n ! \mu^{n}} p_{0} & n \leq c \\ \frac{\lambda^{n}}{c^{n-c} c ! \mu^{n}} p_{0} & n \succ c \end{cases}$$

$$(17)$$

And, the sum of p_s is given as in Eq. (18):

$$\sum_{s=0}^{c+b_k} p_s = \sum_{n=0}^{c} \frac{\lambda^n}{n!\mu^n} p_0 + \sum_{n=c+1}^{c+b_k} \frac{\lambda^n}{c^{n-c}c!\mu^n} p_0 \ge 1 - \theta_{q,k}$$
(18)

Eq.(13) can be rewritten as Eq. (19):

$$\sum_{n=0}^{c} \frac{\lambda^{n}}{n!\mu^{n}} \left[\sum_{n=0}^{c-1} \frac{1}{n!} \left(\frac{\lambda}{\mu} \right)^{n} + \frac{1}{c!} \left(\frac{\lambda}{\mu} \right)^{c} \left(\frac{c\mu}{c\mu - \lambda} \right) \right]^{-1} + \sum_{n=c+1}^{c+b_{k}} \frac{\lambda^{n}}{c^{n-c}c!\mu^{n}} \left[\sum_{n=0}^{c-1} \frac{1}{n!} \left(\frac{\lambda}{\mu} \right)^{n} + \frac{1}{c!} \left(\frac{\lambda}{\mu} \right)^{c} \left(\frac{c\mu}{c\mu - \lambda} \right) \right]^{-1} \ge 1 - \theta_{q,k}$$

$$(19)$$

Neither the locations of hubs nor the arrival rates to hubs are known before solving the problem. The locations of the hubs are given by the values of the variables X_{kk} . The arrival

rate to a hub located at node k according to Mohamadi et al. (2011) can be obtained from (20)

$$\lambda_{k} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_{ik} + \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_{ik} - \sum_{i=1}^{n} \sum_{\substack{j=1\\i \neq j}}^{n} a_{ij} x_{ik} x_{jk} \quad \forall k$$
(20)

According to Marianov and Serra (2003), Eq. (20) can be solved for variable λ and for finding the maximum value, λ_{max} . Once this value is found, any smaller value of λ will

satisfy Eq. (18). This means that Eq. (18) is equivalent to $\lambda \leq \lambda_{max}$. It can be rewritten as:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_{ik} + \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_{ik} - \sum_{i=1}^{n} \sum_{\substack{j=1\\i\neq j}}^{n} a_{ij} x_{ik} x_{jk} \le \lambda_{max}$$
(21)

In the proposed model, constraint (9) is a fuzzy statement whose right-hand side (\tilde{T}) and the coefficient of variables($\tilde{t}_{ik}, \tilde{t}_{km}, \tilde{t}_{mj}$) are triangular fuzzy numbers. Each triangular

fuzzy number, like A, can be presented by three real numbers (s,l,r) as in Fig.1(Zadeh, 1965).

Fig. 1. Peresentation of a triangular fuzzy number

Consider two triangular fuzzy numbers as $\tilde{A} = (s_1, l_1, r_1)$ and $\tilde{B} = (s_2, l_2, r_2)$, then the constraint of $\tilde{A}X \leq \tilde{B}$ can be written as (22)-(24) using the given values of the fuzzy numbers.

$$s_1 + r_1 \le s_2 + r_2 \tag{22}$$

$$s_1 - l_1 \le s_2 - l_2 \tag{23}$$

$$s_1 \le s_2 \tag{24}$$

Considering (22)-(24) and defining the triangular fuzzy numbers of Constraint (9) as $t_{ik} = (t_{1_{ik}}, t_{2_{ik}}, t_{3_{ik}})$ $\tilde{t}_{km} = (t_{km}, t_{2_{km}}, t_{3_{km}})$, $\tilde{t}_{mj} = (t_{1_{mj}}, t_{2_{mj}}, t_{3_{mj}})$, $\tilde{T} = (T_1, T_2, T_3)$, Constraint(9) can be rewritten as in (25)-(26):

$$[(t1_{ik}, t2_{ik}, t3_{ik}) + (t1_{km}, t2_{km}, t3_{km}) + (t1_{mj}, t2_{mj}, t3_{mj})]x_{ikmj} \le (T_1, T_2, T_3)$$
⁽²⁵⁾

$$(t1_{ik} + t1_{km} + t1_{mj}, t2_{ik} + t2_{km} + t2_{mj}, t3_{ik} + t3_{km} + t3_{mj})x_{ikmj} \le (T_1, T_2, T_3)$$

$$(26)$$

Considering (22) - (24), Constraint (30) can be stated as in (27) - (29):

$$(t1_{ik} + t1_{km} + t1_{mj})x_{ikmj} \le T_1$$
(27)

$$[(t1_{ik} + t1_{km} + t1_{mj}) - (t2_{ik} + t2_{km} + t2_{mj})]x_{ikmj} \le (T_1 - T_2)$$
(28)

$$[(t_{1ik} + t_{1km} + t_{1mj}) + (t_{3ik} + t_{3km} + t_{3mj})]x_{ikmj} \le (T_1 + T_3)$$
⁽²⁹⁾

Therefore, the final model can be stated as in (30)-(43):

$$Min\sum_{i=1}^{n}\sum_{k=1}^{n}\sum_{m=1}^{n}\sum_{j=1}^{n}c_{ikmj}x_{ikmj} + \sum_{k=1}^{n}f_{k}x_{kk}$$
(30)

$$\sum_{k=1}^{n} \sum_{m=1}^{n} x_{ikmj} = 1 \qquad \forall i, j$$
(31)

$$x_{ikmi} \le x_{im} \ \forall i, j, k, m \tag{32}$$

$$x_{ikmi} \le x_{ik} \quad \forall i, j, k, m \tag{33}$$

$$x_{ik} \leq x_{kk} \quad \forall i, j, k, m \tag{34}$$

$$c_{ik} x_{ik} \le r_k \quad \forall i, k \tag{35}$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_{ik} + \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ji} x_{ik} - \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_{ik} x_{jk} \ge \Gamma_k x_{kk} \quad \forall k$$
(36)

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_{ik} + \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_{ik} - \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_{ik} x_{jk} \le \lambda_{\max}$$
(37)

$$t \quad \mathbf{r} \quad +t\mathbf{1}, \quad \mathbf{r} \quad +t\mathbf{1} \quad \mathbf{r} \quad \leq T. \tag{39}$$

$$[([(t_{1ik}^{\lambda} - t_{2}^{\nu} + t_{1km}^{\lambda} i_{kmj} + t_{1mj}^{\lambda} i_{kmj}] \leq T_{1}$$

$$(1) + t_{1ik}^{\lambda} + t_{2ik}^{\lambda} i_{kmi} + (t_{1km}^{\lambda} - t_{2km}^{2}) x_{ikmi} + (t_{1mi}^{\lambda} - t_{2mi}^{2}) x_{ikmi} \leq (T_{1} - T_{2})$$

$$(40)$$

$$l_{ik}^{m} = {}_{ikm\,ik} x_{ikmj} + (t1_{km} + t3_{km}) x_{ikmj} + (t1_{mj} + t3_{mj}) x_{ikmj} \le (T_1 + T_3)$$
(41)

$$=1$$
 $\forall i$ (42)

$$_{iklj} \in \{0,1\} \forall i, j, k, l$$

 $x_{ik} \in \{0,1\} \forall i, j, k, l$

5. Solution Techniques and Numerical Rresults

In this section, the solution heuristics are explained consisting of a genetic algorithm(GA) based and a particle swarm optimization (PSO) based heuristics, as well as improved hybrid PSO.

5.1. Genetic algorithm

Holand (1975) proposed the idea of GA for optimizing a number of various types of problems. This algorithm has been used by many researchers interested in location problems including Topcuoglu (2005), Cunha and Silva (2007), and Mohamadi et al. (2011). Now, the steps of this heuristic, based on GA, are explained.

• **Representation of solution:** As the GA standard algorithm, the solutions are called by chromosomes. Here, the chromosome is composed of two parts: hub and assignment arrays. The length of the chromosome is equal to the number of nodes on the network. The first part (hub array) is a binary string. Value "1" indicates that the node is selected as a hub, while value "0" indicates that the node is just a spoke. The second part represents the assignment of each node to the corresponding hub as in Fig.2.

Fig.2. Representation of solution in genetic algorithm for an example with ten nodes.

- **Initial solution:** A random solution for this purpose is generated.
- **Fitness function:** The fitness function value is considered as the difference between the maximum value of the objective and the current objective functions.
- **Parents selection strategy:** The roulette wheel rule is used in this regard.
- **Crossover operator:** The single point and random key operator are used, so that each operator is selected with probability $of_{\frac{1}{2}}^{\frac{1}{2}}$. Applying each operator, the generated child may need to be modified. Regarding the first part of the chromosome, if the generated offspring does not have any hub node, or all nodes be selected as hubs, the offspring will be rejected and reproduction is done; for the second part of the chromosome, if a hub node is allocated to another hub node, a modification is done.

- **Mutation operator:** The shift and movement operators of Topcuoglu et al. (2005) are used in this regard. If the generated solutions of this operator are feasible, they are conveyed to the next generation; otherwise, the operator runs again.
- **Stop criterion:** If no improvement occurs within a specific number of successive generations, the algorithm stops.

5.2. Particle Swarm optimization

This algorithm was initially introduced by Kenedy and Eberhart (1995) and was used by Yapicioglu et al. (2007) and Yang et al. (2013) for location problems. Now, the steps of this corresponding heuristic are explained.

- **Representation of the solution:** Representation of solution is just similar to that of GA's.
- **Initial solution:** The heuristic stars with a randomly generated initial solution.
- **Fitness function:** the fitness function is considered equal to the objective function, which means that the particle with less objective function value is of higher priority.

The rest of the conditions are based on the regular PSO. If no improvement happens after a predetermined number of iteration, the algorithm stops.

5.3. Improved Hybrid PSO

This heuristic is a combination of GA and PSO. The initial idea was given by Yang et al. (2013). The major characteristics of this heuristic are given below:

- **Representation of solution:** Representation of the solution is as the given GA-based heuristic.
- **Initial population:** Initially, a random solution is generated. If the solution is infeasible, then a new solution is generated; this procedure continues until the first feasible solution is achieved, then the first feasible solution is added to the initial solution. To complete the population, each new feasible solution is compared to the available solution; if it is not generated before, the solution is add it to the population. This continues by completion of the number of the population.
- Fitness function: The fitness function is considered equal to the value of the objective function.
- Update process: To update the position of a particle, the genetic operators are used. New position is indicated by x_i^{k+1} , and the formula of updating is as in Eq. (44).

$$X_{i}^{k+1} = (X_{(pbest,i)}^{k} \otimes X_{i}^{k}) \vee (X_{G}best^{k} \otimes X_{i}^{k}) \vee$$
(44)

- where X_{Pbest,i}^k represents the best position of the *i*th particle, X_{Gbest}^k represents the best position among the swarm, and X_i^k represents the position of the *i*th individual solution at the *k*th iteration. Since X_i^k , X_{Pbest}^k , and X_{Gbest}^k are location-allocation arrays, the symbol" (S" represents the crossover operation of two individuals solutions. The symbol "V" indicates that the optimal solution is selected X_i^k of X_{Pbest}^k, from the offsprings \otimes $X_i^k \bigotimes X_{Gbest}^k, \overline{X}_i^k$, where \overline{X}_i^k represents the mutation operation of Xik. If the generated offspring is infeasible, the operators again are used to reach a feasible solution.
- Stop condition: If no improvement in a number of successive iterations is obtained, then the algorithm stops.

5.4. Numerical examples

In this section, the performance of the given heuristics is evaluated. Table 1 gives the values of parameters and the probability distributions functions considered when randomly generating the numerical examples. 60 ($5 \times 2 \times 2 \times 3$) examples based on the values of n, c, B, and θ have been designed.

5.5. Tuning parameters

In order to tune the parameters of the heuristics, Taguchi method (1986) is applied, and problems with 10,15, and 20 nodes for small sizes, problems with 40 nodes for medium sizes, and problems with70 nodes for large sizes are designed. Furthermore, S/N ratio is considered as in Eq (45).

$$S/N ratio = -10 \log_{10} (RPD)^2$$
(45)

In order to compute the S/N ratio, relative percentage deviation(RPD) criterion is used. The RPD values represent the difference between the best solution and the average one as in Eq. (46):

$$\operatorname{RPD} = \frac{A \log_{sol-Min_{sol}}}{Min_{sol}} \times 100$$
(46)

 Alg_{sol} represents the fitness function value in each run for each problem, while Min_{sol} represents the best fitness function value for each problem. The given orthogonal arrays of Taguchi method are given for different levels in order to do the experiments. In this research, three-level experiments have been recognized as the most appropriate designs; according to Taguchi standard orthogonal arrays, L9 orthogonal is selected as the appropriate experiment design in order to tune the parameters for all heuristics. The results are represented in Tables 2-4.

Parameters and values															
n	c	В	θ	μ	F	а	c	r	Г	t_1	t ₂	t ₃	T1	T ₂	T ₃
10				Рс											
15	3	10	0.2	oisson	U~	U	U	U	Ç	U	ç	ç	Ų	Ç	ç
20	4		0.4	with r	(200,	I~(1,2	~(1,2	l~(1,2	-(80,1	~(1,1	-(0.1,	-(0.1,	~(15,	-(0.3,	-(0.3,
40		20	0.6	nean	600)	0)	(0)	(0)	20)	0)	0.5)	0.3)	25)	1.2)	0.7)
70				300											

Table 1 Random data of the last problems

Table 2

Levels of tuned parameters for the GA-based heuristic

Parameters	Size of Problem	Tuned value
	Small	100
Size of Population	Medium	250
	Large	400
Number of Constian	Small	150
Number of Generation	Medium	250
	Large	350
Der	Small	0.15
Pm	Medium	0.3
	Large	0.35
	Small	0.9
PC	Medium	0.95
	Large	0.9

Table 3

Levels of tuned parameters for the PSO-based heuristic

Parameters	Size of Problem	Tuned value
	Small	100
Size of Population	Medium	250
	Large	400
Number of Iterations	Small	150
Number of iterations	Medium	250
	Size of ProblemSmallMediumLargeSmallMediumLargeSmallMediumLargeSmallMediumLargeSmallMediumLargeSmallMediumLargeSmallMediumLargeSmallMediumLarge	350
Cl	Small	2
CI	Medium	2
	Large	2
	Small	1.5
C2	Medium	1.5
	Large	1.5

Table 4

Levels of tuned parameters for the improved hybrid

Parameters	Size of Problem	Tuned value
	Small	100
Size of Population	Medium	250
	Large	400
	Small	150
Number of Iterations	Medium	250
	Large	350

Table 5	
Results of metahuristic algorithms' solu	tions

			0	LINGO GA		A	hybrid	Pso				
Node	b	С	θ	CPU(S)	Obj	CPU(S)	Obj	CPU(S)	Obj	CPU(S)	Obj	
			0.2	3224	3348	51	3348	13.08	3348	11.41	3354	
		3	0.2	3242	3351	4	3351	16.37	3595	11.31	3353	
	10		0.6	3237	3369	4.97	3372	18.09	3485	12.09	3379	
	10		0.2	3341	3190	4.68	3190	20.09	3199	12.71	3332	
		4	0.4	3376	3180	7.19	3182	19.8	3185	12.39	3225	
10			0.6	3370	3194	4.27	3207	13.26	3210	11.79	3282	
		3	0.2	3392	3355	4.51	3360	12.36	3355	11.63	3366	
		5	0.4	3420	3370	4.8/	3372	15.91	3303	11.57	3380	
	20		0.0	3654	3192	4 32	3202	19.03	3192	12.33	3219	
		4	0.2	3688	3197	5.01	3198	19.05	3197	12.06	3267	
			0.6	3671	3202	8.24	3202	15.83	3202	11.67	3302	
			0.2	-	-	15.19	5845	26.23	6306	12.82	6382	
		3	0.4	-	-	15.83	5821	25.12	5952	12.84	5964	
	10		0.6	-	-	12.13	6389	33.38	6351	18.32	6488	
	10	4	0.2	-	-	15.49	5721	24.65	5967	14.86	6205	
		4	0.4	-	-	15.38	5644	38.75	6037	16.05	6560	
15			0.6	-	-	1/.33	5505	34.59	5702	18.5	6537	
		3	0.2	-	-	13.23	5715	28.93	5950	19.07	6324	
	20	5	0.4	-	-	13.65	5823	29.61	5812	22.12	6206	
	20		0.0	-	-	13.03	5373	27.21	5760	22.12	6499	
		4	0.4	-	-	13.33	5547	26.32	5811	23.01	6344	
			0.6	-	-	12.12	5412	35.8	5507	22.76	6420	
			0.2	-	-	27.62	8713	44.21	9767	31.2	10016	
		3	0.4	-	-	19.93	8877	45.33	9586	28.62	10102	
	10		0.6	-	-	28.07	8928	40.2	9337	30.48	10009	
		4	0.2	-	-	18.56	88//	44.45	93/5	27.94	10001	
		-	0.4	-	-	13.01	8680	37.20 13.3	9401	29.30	10033	
20	20			0.0		-	34 58	8689	87 37	9581	33 54	10055
		3	0.4	-	-	27.88	8711	47.63	9566	29.86	10070	
			0.6	-	-	21.78	8877	51.1	9234	30.5	9989	
			0.2	-	-	36.08	9088	41.79	9210	29.4	9995	
		4	0.4	-	-	28.35	8585	66.75	9426	30.58	10005	
			0.6	-	-	20.46	8676	46.6	9179	29.34	10062	
		2	0.2	-	-	275.37	30031	268.54	30124	241.22	30768	
		3	0.4	-	-	190.75	29261	303.57	30232	241.52	30/88	
	10		0.0	-	-	241.09	29049	201.54	30132	239.29	30373	
		4	0.2	-	-	173 35	28950	291.34	30133	239.43	30355	
10		·	0.4	-	-	252.19	28836	298.54	30112	238 33	30888	
40			0.2	-	-	231.21	29315	314.43	30001	244.58	31374	
		3	0.4	-	-	232.08	29140	310.23	30276	243.45	30744	
	20		0.6	-	-	257.62	29024	302.46	29999	239.58	30768	
	-0	4	0.2	-	-	243.35	29076	351.21	30069	244.22	30646	
		4	0.4	-	-	307.15	28766	377.53	30094	269.45	30744	
			0.6	-	-	232.92	29137	325.37	30012	260.29	309/4	
		3	0.2	-	-	599.21 6503.01	76890	/02.31	70999	0//.43	77234	
	10	2	0.4	-	-	599 25	76898	823.65	77153	850.06	77333	
	10		0.2	-	-	935 31	76702	995 21	76884	906.54	77189	
		4	0.4	-	-	1129.1	76623	1070.02	76602	943.54	77003	
70			0.6	-	-	707.34	76601	925.67	76998	870.56	77068	
70		-	0.2	-	-	786.9	76693	1034.44	76875	843.24	77234	
		3	0.4	-	-	526.72	76880	1045.65	77125	854.45	77496	
	20		0.6	-	-	953.12	77001	975.55	77122	967.67	77833	
		Α	0.2	-	-	705.97	76873	1136.66	76985	902.78	77676	
		4	0.4	-	-	869.21	76854	1234.28	7/133	956.32	77/65	
			0.0	-	-	105/.34	/040/	912.12	/0432	773./0	11338	

(-) means that lingo could not solve the problems in a reasonable amount of time, CPU represents the time, and obj represents the objective function value.

6. Experimental Results

In order to assess the performance of the heuristics, the quality of solutions for the small-sized problems is compared with those obtained from lingo solver. The results based on applications of the three algorithms from the view point of run time and solution are represented in Table 5. Samples of convergence diagrams of the heuristics are indicated in Fig. 3-5. In order to assess the efficiency of the heuristics, a special criterion is used. The criterion is a relative percentage ratio (RPI) which is used for the objective function values and CPU time assessment. Each heuristic is run four times per an example, and the best and worst objective functions (values) are founded; the values of this index are between 0 and 100. Smaller values of this

index represent better performance. RPI values are computed as in Eq. (47)-(48).

$$RPI_{sol} = \left| \frac{best_{sol} - Alg_{sol}}{best_{sol} - Worst_{sol}} \right|$$
(47)

$$RPI_{time} = \left| \frac{best_{time} - Alg_{time}}{best_{time} - Worst_{time}} \right|$$
(48)

The results of RPI as given by Eqs (47)-(48) are given in Table 6. As it is clear from Figs.6-11, the RPI index for both objective functions and an CPU time is of better performance for GA for all sizes.

Fig. 5.Convergence diagram of improved hybrid PSO algorithm for problems with 20 node

Table 6	
Results of	RPI indexes

results of refridences				GA		Hybri	d PSO	PSO		
Node	b	c	θ	F	RPI	RPI		RPI		
				Time	ObjFun	Time	ObjFun	Time	ObjFun	
			0.2	2.999	0	58.38	0	54.07	1.063	
		3	0.4	1.536	11.18	67.607	20.186	59.094	0.31	
	10		0.6	2.276	28.251	75.829	51.868	55.947	1.046	
	10		0.2	22.58	39.321	62.766	30.123	57.32	23.706	
		4	0.4	0	22.185	53.6	41.887	46.04	7.45	
10			0.6	2.298	12.647	87.642	51.983	46.723	8.3865	
10			0.2	19.319	0	77.574	35.654	62.723	2.614	
		3	0.4	0.012	0	84.573	43	55.193	1.246	
	20		0.6	11.918	16.498	74.784	37.373	57.734	0	
	20		0.2	16.268	1.654	89.336	36	55.511	4.477	
		4	0.4	4.758	1.29	85.8621	37	48.62	12.419	
			0.6	19.454	0	65.3869	38	44.731	12.755	
			0.2	3.271	31.768	23.9308	65.59	7.677	71.166	
		3	0.4	23.299	27.895	39.097	36.052	14.995	36.799	
	10		0.6	5.539	46.574	34.515	43.804	16.892	53.79	
	10		0.2	8.333	0	14.039	18.317	7.253	36.038	
		4	0.4	18.061	9.905	55.487	40.546	19.994	68.014	
15			0.6	16.114	0	44.529	17.124	18.718	59.552	
10			0.2	22.299	22.285	48.984	33.873	32.566	72.92	
		3	0.4	16.028	4.524	42.9014	12	29.802	44.459	
	20		0.6	4.956	14.419	19.296	13.626	17.874	53.064	
	20		0.2	15.04	0	37.028	10.821	32.206	65.162	
		4	0.4	12.92	17.483	36.828	33.85	38.188	66.893	
			0.6	14.208	0	51.367	5.986	44.384	63.516	
			0.2	15.609	0	61.362	47.621	25.482	65.247	
		3	0.4	0.034	10.651	77.842	48.224	26.631	75.569	
	10		0.6	13.422	13.537	38.278	35.166	18.36	70.703	
	10		0.2	7.111	11.247	59.663	19.5	26.181	71.162	
		4	0.4	0.81	15.974	39.172	16.374	25.586	65.197	
20			0.6	0.035	0.65	43.735	12.906	22.222	67.88	
20			0.2	22.606	0	99.706	46.506	21.081	71.22	
		3	0.4	20.199	1.978	47.508	16.28	22.944	78.801	
	20		0.6	0.001	10.941	66.879	17.474	19.89	71.475	
	20		0.2	27.849	21.661	39.576	8.78	14.13	69.348	
		4	0.4	11.528	0	75.136	15.205	15.223	68.765	
			0.6	10.721	0	57.508	24.206	26.615	66.698	
			0.2	33.554	46.03	5.311	50.065	11.103	78.004	
		3	0.4	25.396	19.034	79.942	56.223	47,891	77.518	
		-	0.6	2.656	14.359	38.588	37.099	46.204	43.832	
	10		0.2	54 56	0.82	65 553	47 415	53 474	78 506	
		4	0.4	14.24	6.395	76.475	50.715	53.317	56.171	
		•	0.6	68.88	3.039	77,643	48,144	59.577	75 574	
40			0.2	0.016	10.999	24,243	34.728	11.116	82.22	
		3	0.4	0.018	18,148	65,992	59.882	10.001	77 075	
		5	0.6	41,193	5.915	61 58	42,187	31.532	70 796	
	20		0.2	43 413	0	87 291	35 363	43 767	55 911	
		4	0.4	67.128	õ	95.211	41,383	52.084	61 639	
		'	0.6	0.075	13 848	99.675	41 451	29 551	71 798	
			0.0	5 043	36 319	56 904	54 423	29 884	62 825	
		3	0.4	12 87	0 207	66 117	30 641	32 282	70 186	
		5	0.4	0.020	0.133	56 /32	34 136	62 725	58 232	
	10		0.0	45 94	0.155	75 820	28 304	31 585	75 738	
		1	0.2	1/1 0	2 106	Δ6 ΛΛ6	£0.504 A	26 935	A1 045	
70		+	0.4	0.014	2.190	53 178	41 225	47 037	48 / 9/	
			0.0	6 000	20.00	70.00	41.223	4/.03/	40.474	
		2	0.2	0.889	20.08	/9.98	37.40Z	20.077	79 245	
		5	0.4	0.011	4.206	8U 20.046	33.033	03.134	/8.245	
	20		0.6	14.202	0	38.846	12.359	27.214	84.984	
		4	0.2	0.202	31.125	/9.98	39.1	45.090	88.319	
		/	04	0.024	0	50.71	25.881	23.861	84 508	
		-	0.1	20.020	(010	22.050	0.057	21 244	01.000	

Fig. 6. RPI_{sol} index for network with 10 nodes

Fig .7. \mathbf{RPI}_{time} index for network with 10 nodes

Fig. 8. RPI_{sol} index for network with 40 nodes

Analysis of variance (ANOVA) is applied utilizing Minitab16. According to the results, in confidence level of 0.95, the mean equality hypothesis for time index is rejected

Table 7 Results of ANOVA test for time index ($\alpha = 0.05$)

Fig. 9. RPI_{time} index for network with 40 nodes

Fig. 10. \mathbf{RPI}_{sol} index for network with 70 nodes

Fig. 11. RPI_{time} index for network with 70 nodes

for all problem sizes, and the mean equality hypothesis for objective function index is rejected for medium and largesized problems. The results are given in Tables 7-8.

Results of ANO	VA test for time inc	ICA(a = 0.05)					
Size	level	Mean	Std.dev	Pooled St Dev	F	Р	
Small	GA	14.86	8.92				
	PSO	20.18	7.99	11.60	20.74	0.00	
	Hybrid PSO	32.06	16.12				
	GA	231.54	44.94				
Medium	PSO	245.01	9.71	31.32	24.25	0.00	
	Hybrid PSO	314.52	28.80				
Large	GA	1279	1656		24482.83		
	PSO	77375	283	975		0.00	
	Hybrid PSO	961	169				

Size	level	Mean	Std.dev	Pooled StDev	F	Р	
Small	GA	5927	2302		0.58		
	PSO	6575	2782	2548		0.561	
	Hybrid PSO	6227	2537				
Medium	GA	29194	350		122.05	0.00	
	PSO	30789	243	251			
	Hybrid PSO	30106	85				
Large	GA	76776	171		21.78	0.00	
	PSO	77375	283	229			
	Hybrid PSO	76948	219				

Table 8 Results of ANOVA test for objective function index($\alpha = 0.05$)

7. Conclusions and Future Researches

In this paper, a hub covering location model is proposed in which the hubs behave as M/M/c queuing systems. A nonlinear model considering constraints for entrance flow and transportation time is presented. The model was linearized. Since the problem is NP-hard, three GA, PSO, and Hybrid PSO-based heuristics were proposed to solve the problem. Then, a number of numerical examples with three different sizes of small, medium, and large was designed, and the performance of the heuristics was evaluated. The results indicated that the GA-based heuristic dominates others for all types of the problems. According to the results, in confidence level of 0.95, the mean equality hypothesis for time index is rejected for all problem sizes, and the mean equality hypothesis for objective function index is rejected for medium and large-sized problems. The proposed model can be used in establishing airports, post offices, passenger terminal, etc. Also, other queuing systems, such as G/G/1 and G/G/M, can be used to develop a more realistic model. On the other hand, the problem can be developed to a multi-period one, in which the effects of time value of money are considered. The entrance flow as fuzzy number can be a new idea in order to extend the model.

Refrences

- Adibi, A. & Razmi,J. (2015). 2-Stage stochastic programming approach for hub location problem under uncertainty: a case study of airnet work of Iran.*J.Air Transp. Manag*, 47,172–178.
- Alumur, Sibel A., Nickel,s. & Saldanha-da-Gama,F. (2012). Hub location under uncertainty. *Transportation Research*.26,529-543.
- Alumur, A.S., Kara, Y.B., Karasan, E.O.2012. Multimodal hub location and hub network design. *Omega*, 40, 927-939.
- Calik, H., Alumur, S.A., Kara, B.Y. & Karasan, O.E. (2009). A tabu search base heuristic for the hub covering problem over incomplete hub networks. *Computers & Operation Research*, 36,3088-3096.

- Contreras, I., Cordeau, J.F. & Laporte, G. (2011). Stochastic uncapacitated hub location. Eur. *J.Oper.Res*, 212, 518–528.
- Cunha, C.B. & Silva, M.R. (2007). A genetic algorithm for the problem of configuring a hub-and-spoke network for a LTL trucking company in Brazil. *European Journal of Operational Research*, 179, 747–758.
- Ernst, A.T., Jiang, H. & Krishnamoorthy, M. (2005). Reformulations and computational results for uncapacitated single and multiple allocation hub covering problems.Unpublished Report, CSIRO Mathematical and Information Sciences, Australia.
- Gelareh, S. & Nickle, S. (2011). Hub location problems in transportation networks Transportation Research Part E: Logistics and Transportation Review, 47 (6), 1092-1111.
- Goldman, A.J. 1969. Optimal location for centers in a network. Transportation Science 3, 352–360.
- Han, J. (2010). A traffic grooming problem considering hub location for synchronous optical network-wavelength division multiplexing networks, *Computers & Industrial Engineering*, 59 (1),1-8.
- Gross, D., Harris, C.M. Fundamentals of Queuing Theory, Wiley, New York, 1974.
- Kara, B.Y. & Tansel, B.C. (2003). The single-assignment hub covering problem: Models and linearizations. *Journal of the Operational Research Society* 54, 59– 64.
- Kennedy, J. & Eberhart, R. (1995). Particle swarm optimization, In Proceedings of the 1995IEEE international conference on neural network, IV, 4, 1942-1948.
- Marianov, V. & Serra, D. (2003). Loacation models for airline hubs behaving as M/D/C queues. *Computers & Operations Research*, 30,983-1003.
- Mohamadi, M., Jolai, F. & Rostami, H. (2011). An M/M/C queue model for hub covering location problem. *Mathematical and computer modeling*, 54, 2623-2638.
- Mohammadi, M., Jolai, F. & Tavakkoli-Moghaddam, R. (2013). Solving a new stochastic multi-mode p-hub covering location problem considering risk by a novel

multi- objective algorithm . *Appl. Math.Model*, 37, 10053–10073.

- O'Kelly, M.E., 1987. A quadratic integer program for the location of interacting hub facilities. *European Journal of Operational Research* 32, 393–404.
- Rodriguez, V., Alvarez, M.J., Barcos, L., 2007. Hub location under capacity constraints. *Transportation Research*. 43, 495-505.
- Sim,T.,Lowe,T. & Thomas,B.W. (2009). Thestochasticphub center problem with service-level constraints *Comput.Oper.Res.*, 36, 3166–3177.
- Taguchi,G. (1986), Introduction to quality Engineering:Designing quality in to products and processes,White plains:Asian Productivity Organization/UNIPUB,Tokyo,Japan.
- Topcuoglu, H., Corut, F., Ermis & M., Yilmaz, G. (2005). Solving the uncapacitated hub location problem using genetic algorithms. *Computers & Operations Research*, 32 (4), 967–984.

- Wagner, B. (2004b). Model formulations for hub covering problems.Working paper, Institute of Operations Research, Darmstadt University of Technology, Hochschulstrasse 1, 64289 Darmstadt, Germany.
- Yang, K., Liu, Y. (2014). Developing equilibrium optimization methods for hub location problems. Soft Comput., 1–17.
- Yang,K., Liu,Y. & Yang,G. (2013a). Solving fuzzy p-hub center problem by genetic algorithm incorporating local search. *Appl. Soft Comput.* 13,2624–2632.
- Yang,K.,Liu,Y. & Yang,G. (2013b). An improved hybrid particle swarm optimization algorithm for fuzzy p-hub center problem. *Computers & Industrial Engineering*, 64, 133-142.
- Yapicioglu, H., Smith & A.E., Dozier, G. (2007). Solving the semi-desirable facility location problem using biobjective particle swarm. *European. Journal of Operational Research*, 177, 733-749.
- Zadeh,L.A.,1965.Fuzzy sets, *information and control*, 8,338-353.

This article can be cited:. Seifbarghy, M., Hemmati, M. & Soltan Karimi, S. (2018). Hub Covering Location Problem Considering Queuing and Capacity Constraints. *Journal of Optimization in Industrial Engineering*. 11 (1), 143-156.

URL: http://www.qjie.ir/article_535414.html DOI: DOI: 10.22094/JOIE.2017.351.0

