
Journal of Optimization in Industrial Engineering Vol.12, Issue 1, Winter and Spring 2019, 63- 78
DOI: 10.22094/joie.2018.760.1484

63

Modeling and Solving the Job Shop Scheduling Problem Followed
by an Assembly Stage Considering Maintenance Operations and

Access Restrictions to Machines

Seyed Mohamad Hassan Hosseini

Department of Industrial Engineering and Management, Shahrood University of Technology, Shahrood, Iran

Received 26 April 2017; Revised 11 November 2017; Accepted 25 April 2018

Abstract

This paper considers job shop scheduling problem followed by an assembly stage and Lot Streaming (LS). It is supposed here that a

number of products have been ordered to be produced. Each product is assembled with a set of several parts. The production system

includes two stages. The first stage is a job shop to produce parts. Each machine can process only one part at the same time. The second

stage is an assembly shop that contains several parallel machines. Maintenance operations and access restrictions to machines in the first

stage are also considered. The objective function is to minimize the completion time of all products (makespan). At first, this problem is

described and modelled as a mixed integer linear programming, and GAMS software is applied to solve small-sized problems. Since this

problem has been proved to be strongly NP-hard, two new algorithms based on GA and SA are developed to solve the medium- and large-

sized problems. In order to verify the effectiveness of the proposed algorithms, a statistical analysis is used along with Relative Percentage

Deviation (RPD) factor and well-known criterion. IMP. Various problems are solved by the proposed algorithms. Computational results

reveal that both of the two proposed algorithms have good performance. However, the method based on the genetic algorithm performs

better than the other proposed algorithm with respect to the objective function.

Keywords: Job shop; Assembly; Maintenance operations; Access restrictions to machines.

1. Introduction

Scheduling is one of the most important activities in the

production planning and control systems (Cummings and

Egbelu, 1998). This is because of strong competition and

limitation of resources in our environment (Maleki-

Darounkolaei et al., 2012). The job shop scheduling

problem (JSP) has been considered as a notoriously

stubborn combinatorial optimization problem since the

1950s (Zhang and Cheng, 2011). In the job shop

scheduling problem, a finite set of jobs is processed on a

finite set of machines. Each job is characterized by a fixed

order of operations, each of which is to be processed on a

specific machine for a specified duration. Each machine

can only process one job at the same time, and a job only

initiates processing on a given machine. The aim of JSP is

to find a schedule that optimizes a specified objective

function such as makespan.

Usually, scheduling for the parts machining and planning

for the assembly operations have been independently

considered (Yokoyama and Santos, 2005); however, this

may not lead to the best results for the total production

system. Hence, the two-stage assembly scheduling

problem that has many applications in industries and has

received increasing attention of researchers lately. Lee et

al. (1993) described an application in a fire engine

assembly plant while Potts et al. (1995) described another

application in personal computer manufacturing. In

particular, manufacturing of almost all items may be

modelled as a two-stage assembly scheduling (Allahverdi

A, Al-Anzi F. S., 2009). Hence, after Lee et al. published

their paper about 3-machine assembly-type flow shop

scheduling problem in 1993, the assembly scheduling

problems have received considerable attention from

researchers during the last two decades.

 In these production systems, usually, there is a machining

stage and an assembly stage. Machining stage that can be

a single machine, parallel machines, flow shop, hybrid

flow shop or job shop processes and fabricates the parts

(components) independently. Assembly stage performs

assembly (joining) operations into product. The main

criterion for this problem is the minimization of the

maximum job completion time (makespan) (Koulamas

Ch., Kyparisis G.J., 2001).

In this paper, a two-stage assembly scheduling problem is

studied in which that the first stage is a job shop. In the

classic format of job shop scheduling systems, a lot is

usually invisible and the entire lot must be completed

before being transferred to its successor machine (chen

and steiner, 1997). Lot streaming (LS) technique was

firstly introduced by Reiter (1966) as a methodology of

splitting a job into a number of smaller sub-jobs, such that

its successive operations can be overlapped in different

stages. This increases the material flow between machines

and, so, reduces the makespan. It is clear that, under a

condition when more than one of each product is needed,

determining the batch sizes must be considered.

According to the studies around this problem, most of
*Corresponding author Email address: sh.hosseini@shahroodut.ac.ir

Seyed Mohamad Hasan Hosseini / Modelling And Solving…

64

researchers have presented an iterative procedure to solve

this problem. This procedure first computes the sub-lot

sizes and, then, determines the sequence of sub-lots on the

machines. Dauzere-Peres and Lasserre (1993) presented a

model and an iterative procedure in a general job shop

environment with lot steaming in order to improve the

makespan. In their suggested procedure, at first, the

optimal sub-lot sizes were computed, and then, a better

sequence was computed by solving a standard job shop

scheduling problem with fixed sub-lot sizes. Wagner and

Ragatz (1994) studied the job shop scheduling problem

with lot splitting to minimize the number of tardy jobs.

They also considered the impact of setup times and the

size of the transfer batches on lot splitting performance.

Jeong et al. (1999) presented an iterative approach that

minimizes the makespan of job shop scheduling problem

with lot streaming. Their formulated problem reflected the

real manufacturing environment by considering setup

times and due dates. They proposed a modified shifting

bottleneck procedure to solve the problem. Buscher and

Shen (2009) focused on solving the lot streaming in a job

shop environment. This research is one of the pioneer

studies that tried to solve this kind of problems with meta-

heuristic algorithms. They presented a three-phase

algorithm which consists of the predetermination of sub-

lot sizes, determination of schedules, and the variation of

sub-lot sizes based on tabu search. Because an iterative

procedure is a common method used in order to solve the

job shop scheduling problem with lot streaming, they used

an iterative procedure in the first phase and a hierarchical

approach in the second and third phases. Lei and Guo

(2013) considered lot-streaming problem in a job shop

with consistent sub-lots and transportation. A modified

artificial bee colony algorithm has been proposed by them

to minimize makespan. Demir and Isleyen (2014)

presented a flexible job shop scheduling problem with

overlapping in operations. They developed a new

mathematical model. In addition, a genetic algorithm with

an effective chromosome representation and new

decoding methodology was proposed by in their paper.

As mentioned, this problem has many applications in

industry and, therefore, has received increasing attention

from many researchers (Seyedi, Maleki-Daronkolaei and

Kalashi, 2012; Fattahi, Hosseini and Jolai, 2013; Al-Anzi

and Allahverdi, 2013; Navaei et al., 2014; Xiong, Xing

and Wang, 2015). Chan et al. (2008) extended the

application of lot streaming to an assembly job shop

problem for the first time. In their model, the objective

function minimizes inventory and lateness costs. In

addition, they presented an efficient algorithm based on

the genetic algorithm and simple dispatching rules. In

another paper presented by Chan et al. (2009), the

previous studies of LS to AJSP were extended by

allowing part sharing among distinct products. The

objective function of the proposed model is to minimize

the lateness costs. In addition to the use of simple

dispatching rules, they proposed an evolutionary approach

with genetic algorithm to solve the problem. Wong et al.

(2009) investigated a resource-constrained assembly job

shop-scheduling problem with a lot streaming technique.

The objective of their presented model is to minimize the

total lateness cost of all final products. They also used

common part ratio and workload index to enhance the

model’s usefulness. Since the complexity of AJSSP is

NP-hard, an innovative approach with genetic algorithm

was suggested in order to solve the problem. Wong and

Ngan (2013) studied the assembly job shop scheduling

with the lot steaming. In this study, their objective

function is to minimize the makespan time. They

considered part sharing ratio (PSR) and system congestion

index (SCI) to differentiate product-specific components

from general components and creating different starting

conditions of the shop floor. In order to solve the problem,

they proposed a hybrid genetic algorithm (HGA) and a

hybrid particle swarm optimization (HPSO). Daneshamoz

et al. (2013) proposed a mixed integer linear

programming model for job shop scheduling with a

parallel assembly stage in order to minimize makespan. In

addition, they suggested a particle swarm optimization

algorithm to solve the problem. Their results showed that

suggested algorithm could reach near-optimal solutions in

various dimensions of problem. Yao and Sarin (2014)

addressed a lot steaming problem for a two-stage

assembly system involving multiple lots with the

objective of minimizing the makespan. They proposed a

branch-and-bound-based methodology for this problem

that relies on effective lower bounds and dominance

properties. Mohammadi (2016) addressed a multi-

objective job shop scheduling problem by considering an

assembly stage and lot streaming. The objective function

is to minimize the makespan and total weighted earliness

and tardiness penalties. A mixed integer linear

programming model was presented in this research. In

addition, a meta-heuristic algorithm based on a Harmony

Search was proposed to solve the problem. Nejati et al.

(2016) considered a two-stage assembly hybrid flow shop

scheduling problem with a work shift constraint and lot

streaming to minimize the sum of weighted completion

times of products in each shift. A mixed integer non-linear

programming model was introduced to describe the

problem. In addition, they used a genetic algorithm and

simulated annealing to determine the best sequence and

scheduling for the problem.

Another important fact is that, in most real-life industries,

it is possible for machines to be unavailable due to

unforeseen breakdowns or due to their need for scheduled

PM activities, where the corresponding unavailability

periods are known in advance (deterministic

unavailability). Generally, PMs are planned for time

intervals of the planning horizon to restore the reliability

of a machine before it breaks down in order to maintain

the equipment as well as the shop and provide better

overall availability (Khoukhi et al., 2017). It should be

noted that, in some systems, maintenance can only be

done if all the production lines stop. In other management

policies, maintenance and production are planned jointly.

However, it is important to integrate production decisions

into developing optimal PM policies (Mollahassani-pour,

Abdollahi, & Rashidinejad, 2014; Xiao, Song, Chen, &

Coit, 2016).

Journal of Optimization in Industrial Engineering Vol.12, Issue 1, Winter and Spring 2019, 63- 78

65

The aggregated problem of production scheduling and

maintenance planning leads to higher efficiency because

these two activities interrelate and both of them occupy

the machine’s capacity. In this respect, production

depletes the machine’s reliability and maintenance

restores its reliability. Production scheduling and PM

planning should be considered along with the integrated

optimization model to balance the utilization and

availability of the resource. Therefore, deterministic

scheduling problems with maintenance and non-

availability intervals have received considerable attention

since the beginning of the 1990s (Wang & Liu, 2014, and

Cui et al., 2018).To the best of our knowledge, according

to the literature review, no one has considered a job shop

scheduling problem with the lot streaming technique

followed by an assembly stage considering the

maintenance operations and access restriction to

machines. Since the JSSP is known to be a NP-hard

optimization problem (Garey, Johnson and sethi, 1976),

this problem is more complex by adding a parallel

assembly stage and the lot streaming technique to the

classical job shop scheduling. Therefore, it is necessary to

solve the medium- and large-sized instances with

effective meta-heuristics to find the optimal or near-

optimal solutions in a reasonable amount of time.

In order to structure a relevant literature review of the

considered problem and to show the main contributions of

this study, we have classified most previous papers

according to three characteristics: definition of the

problem, modeling and solution methods, and objectives

(see Table 1). The characteristics of our paper are

presented in the last row of Table 1.

The paper is organized as follows. In section 2, the

problem is described in detail and the assumptions and

mathematical model are presented. Section 3 describes the

solution approach and proposed algorithms.

Computational results are reported in section 4. Finally,

conclusions and recommendations for future research are

described in Section 5.

2. Problem Description

The considered problem in this study is a job shop

scheduling problem with the lot streaming and a parallel

assembly stage. This system can be defined as a problem

consisting of assignment, sequencing, and determining lot

sizes of jobs in a 2-stage production system. At the first

stage, a set of J jobs (𝐽1, 𝐽2, … , 𝐽𝑛𝑝) of P products (𝑃1, 𝑃2, … , 𝑃𝑝) is processed on a set of M machines (𝑀1, 𝑀2, … , 𝑀𝑚); then, they are stored in the inventory

station until all lots from the BOM of the same product

are completed and at least one unit of the final product

can be produced. Each job of each product has ℎ𝑗,𝑝

operations and 𝑠𝑗,𝑝 sub-lots must be processed with

processing time 𝑝𝑠𝑗,𝑝,ℎ. Then, the assembly operations

starts at a parallel assembly stage for the final product

assembly if at least one machine is unemployed at the

second stage. Otherwise, they will be sent to the inventory

station. Each sub-lot of each product must be assembled

with assembly time 𝐴𝑝on a machine from a set of 𝑀′machines (𝑀′1, 𝑀′2, … , 𝑀′𝑚). Figure 1 shows the

layout of the considered production system.

Basic assumptions of this problem are provided as below:

 There is no machine breakdown.

 No preemption of operations (sub-lots) is

allowed.

 Each machine can process only one job (sub-lot)

at the same time.

 Each job can be processed by only one machine

at the same time.

 Each job has a fixed processing route which

traverses all the machines in a predetermined order.

 Demand for the final products is specified and all

jobs are available at time zero.

 A typical BOM of a product defines the

assembly relationship between the root components (jobs

or lots) in the system.

 Time processing of jobs and assembly of

products is deterministic.

 When all lots from the BOM of the same product

are completed in the work station, the assembly

operations can start that product.

Fig. 1. The layout of the considered problem

Row material or Parts

M M M…

M

Work Inventory

M1′

M2′

Mm′
′

Assembly

Seyed Mohamad Hasan Hosseini / Modelling And Solving…

66

2.1. Mathematical model

To better understand the considered problem, its

mathematical model is developed in this section. For this

model, the following notations and decision variables are

used to formulate the problem:

Parameters 𝑃 Total number of products 𝑝 Products index (𝑝 = 1, 2, . . . , 𝑃) 𝑛 Total number of parts 𝑗 Part index (𝑗 = 1, 2, . . . , 𝐽) 𝑛𝑝 Number of sub-jobs of product 𝑝 𝑚 Total number of machines at stage 1 𝑖 Machine index at stage 1 (𝑖 = 1, 2, . . . , 𝑚) 𝑚′ Total number of machines at stage 2 𝑖′ Machine index at stage 2 (𝑖′ = 1, 2, . . . , 𝑚′) 𝑂𝐻𝑉𝑡𝑙𝑖 The 𝑙th
 over hall time duration on machine 𝑖 𝑠 Sub-lots index (𝑗 = 1, 2, . . . , 𝑆𝑗,𝑝) 𝑂𝑠,𝑗,𝑝,ℎ Operation ℎ of sub-lot 𝑠 of product 𝑝’s job 𝑗 𝑃𝑡𝑠,𝑗,𝑝,ℎ Time of operation ℎ of sub-lot 𝑠 of product 𝑝’s job 𝑗 𝑘𝑖 Number of operations dedicated to machine 𝑖 𝑝𝑠j,p,h Processing time of operation ℎ of job 𝑗 of product 𝑝 𝐴𝑝 Assembly time of product 𝑝 𝑆𝑗,𝑝 Number of sub-lots of job 𝑗 of product 𝑝 𝑆𝑝′ Number of sub-lots of product 𝑝 𝑄𝑗,𝑝 Lot size of job 𝑗 of product 𝑝 𝐷𝑀𝑝 Demand for product 𝑝 𝑅𝑗,𝑝 Ratio of job 𝑗 to product 𝑝 𝐿 A large number 𝑎𝑖,𝑗,𝑝,ℎ 1 if 𝑂𝑠,𝑗,𝑝,ℎcan be performed on machine i; 0 otherwise

Decision variables 𝐶𝑚𝑎𝑥 Makespan 𝐹𝑠,𝑗,𝑝 Completion time of sub-lots of job 𝑗 of product 𝑝 𝐹𝑠,𝑝′ Maximum completion time of sub-lots of product 𝑝 Cp Completion time of product 𝑝 𝑡𝑠,𝑗,𝑝,ℎ Start time of the processing of operation Os,j,p,h Sts′,p Starting assembly time of sub-lot 𝑠′ of product 𝑝 𝐹𝑠,𝑗,𝑝,ℎ Completion time of operation Os,j,p,h Tmi,k Start of working time for machine 𝑖 in priority 𝑘 Smi′,k′ Start of working time for machine 𝑖 ′ in priority 𝑘 ′ SOHli Start time of the 𝑙th
 over hall on machine 𝑖 FOHli Completion time of the 𝑙th over hall on machine 𝑖 𝑈1liOs,j,p,h 1 if the 𝑙th

 over hall on machine 𝑖 starts after starting operation Os,j,p,h ; 0, otherwise 𝑈2liOs,j,p,h 1 if the 𝑙th
 over hall on machine 𝑖 starts before finishing operation Os,j,p,h ; 0, otherwise 𝑉1liOs,j,p,h 1 if the 𝑙th
 over hall on machine 𝑖 starts before starting operation Os,j,p,h ; 0, otherwise 𝑉2liOs,j,p,h 1 if the 𝑙th
 over hall on machine 𝑖 finishes after starting operation Os,j,p,h ; 0, otherwise 𝑈liOs,j,p,h 1 if the 𝑙th
 over hall on machine 𝑖 has interference with operation Os,j,p,h ; 0, otherwise xi,s,j,p,h,k 1 if operation Os,j,p,h is preformed on machine 𝑖 in priority 𝑘 ; 0,otherwise Zi′,s′ ,p,k′ 1 if sub-lot 𝑠′ of product 𝑝 is assembled on machine i′ in priority k′ ; 0, otherwise 𝑄s,j,p,h′ Size of sub-lot 𝑠 of job 𝑗 of product 𝑝 𝑉𝑠′,𝑝 Size of sub-lot 𝑠′ of product 𝑝 δs,j,p,h 1 if 𝑄s,j,p,h′ is more than zero(positive) ; 0, otherwise γs′,p 1 if 𝑉𝑠′,𝑝 is more than zero(positive) ; 0, otherwise

Journal of Optimization in Industrial Engineering Vol.12, Issue 1, Winter and Spring 2019, 63- 78

67

Model formulation

(1) Min 𝑍 = (𝐶𝑚𝑎𝑥)
 Subject to:

(2) 𝑐𝑚𝑎𝑥 ≥ 𝐶𝑝 ∀𝑝

(3) 𝑡𝑠,𝑗,𝑝,ℎ + 𝑝𝑠𝑗,𝑝,ℎ. 𝑄𝑠,𝑗,𝑝,ℎ′ ≤ 𝑡𝑠,𝑗,𝑝,ℎ+1 ∀𝑝, 𝑗, 𝑠; ℎ = 1,2, … , 𝐻 − 1

(4) 𝑡𝑠,𝑗,𝑝,ℎ + 𝐿 × 𝑈1liOs,j,p,h ≥ SOHli ∀𝑝, 𝑗, 𝑠; ℎ = 1,2, … , 𝐻 − 1

(5) SOHli + 𝐿 × 𝑉1liOs,j,p,h ≥ 𝑡𝑠,𝑗,𝑝,ℎ ∀𝑝, 𝑗, 𝑠; ℎ = 1,2, … , 𝐻 − 1

(6) 𝑡𝑠,𝑗,𝑝,ℎ + 𝐿 × 𝑉2liOs,j,p,h ≥ FOHli ∀𝑝, 𝑗, 𝑠; ℎ = 1,2, … , 𝐻 − 1

(7) 𝑉1liOs,j,p,h + 𝑉2liOs,j,p,h ≤ 1 ∀𝑝, 𝑗, 𝑠; ℎ = 1,2, … , 𝐻 − 1

(8) SOHli + 𝐿 × 𝑈2liOs,j,p,h ≥ 𝑡𝑠,𝑗,𝑝,ℎ + 𝑝𝑠j,p,h ∀𝑝, 𝑗, 𝑠; ℎ = 1,2, … , 𝐻 − 1

(9) 𝑈liOs,j,p,h + 1 ≥ 𝑈1liOs,j,p,h + 𝑈2liOs,j,p,h ∀𝑝, 𝑗, ℎ, 𝑖, 𝑠, 𝑙
(10) 𝑈liOs,j,p,h + 1 ≥ 2 − 𝑈1liOs,j,p,h + 𝑉2liOs,j,p,h ∀𝑝, 𝑗, ℎ, 𝑖, 𝑠, 𝑙
(11) +(SOHli − FOHli)

𝐹𝑠,𝑗,𝑝,ℎ + 𝐿 × (1 − 𝑈liOs,j,p,h) ≥ 𝑡𝑠,𝑗,𝑝,ℎ + 𝑃𝑡𝑠,𝑗,𝑝,ℎ ∀𝑝, 𝑗, ℎ, 𝑖, 𝑠, 𝑙

(12) 𝑡𝑠,𝑗,𝑝,ℎ + 𝑝𝑠𝑗,𝑝,ℎ. 𝑄𝑠,𝑗,𝑝,ℎ′ ≤ 𝑡𝑠+1,𝑗,𝑝,ℎ ∀𝑝, 𝑗, ℎ; 𝑠 = 1,2, … , 𝑠𝑗,𝑝 − 1

(13) 𝑇𝑚𝑖,𝑘 + 𝑝𝑠𝑗,𝑝,ℎ. 𝑄𝑠,𝑗,𝑝,ℎ′ . 𝑥𝑖,𝑠,𝑗,𝑝,ℎ,𝑘 ≤ 𝑇𝑚𝑖,𝑘+1 ∀𝑝, 𝑗, 𝑠, ℎ, 𝑖; k = 1,2, … , 𝑘𝑖 − 1

(14) 𝑇𝑚𝑖,𝑘 ≤ 𝑡𝑠,𝑗,𝑝,ℎ + (1 − 𝑥𝑖,𝑠,𝑗,𝑝,ℎ,𝑘). 𝐿 ∀𝑝, 𝑗, 𝑠, ℎ, 𝑘, 𝑖

(15) 𝑇𝑚𝑖,𝑘 + (1 − 𝑥𝑖,𝑠,𝑗,𝑝,ℎ,𝑘). 𝐿 ≥ 𝑡𝑠,𝑗,𝑝,ℎ ∀𝑝, 𝑗, 𝑠, ℎ, 𝑘, 𝑖

(16) ∑ ∑ ∑ ∑ 𝑥𝑖,𝑠,𝑗,𝑝,ℎ,𝑘 ≤ 1ℎ𝑠𝑗𝑝 ∀𝑘, 𝑖

(17) ∑ 𝑥𝑖,𝑠,𝑗,𝑝,ℎ,𝑘 = 𝑎𝑖,𝑗,𝑝,ℎ . 𝛿𝑠,𝑗,𝑝,ℎ ∀𝑝, 𝑗, ℎ, 𝑖, 𝑠𝑘

(18) 𝑡𝑠,𝑗,𝑝,ℎ + 𝑝𝑠𝑗,𝑝,ℎ. 𝑄𝑠,𝑗,𝑝,ℎ′ ≤ 𝐹𝑠,𝑗,𝑝 ∀𝑝, 𝑗, 𝑠, ℎ

(19) 𝐹𝑠,𝑗,𝑝 ≤ 𝐹𝑠,𝑝′ ∀𝑗, 𝑝, 𝑠

(20) 𝐹𝑠,𝑝′ ≤ Sts′ ,p ∀𝑝, 𝑠, 𝑠′
(21) Sts′,p ≤ Sts′+1,p ∀𝑝, 𝑠′
(12) 𝐴𝑝. 𝑉𝑠′,𝑝 + Sts′,p ≤ 𝐶𝑝 ∀𝑝

(23) 𝑆𝑚𝑖′,𝑘′ + 𝐴𝑝. Zi′,s′,p,k′ . 𝑉𝑠′,𝑝 ≤ 𝑆𝑚𝑖′,𝑘′+1 ∀𝑝, 𝑖′, 𝑠′; 𝑘′=1, 2, 3, …, 𝑘′𝑖′ − 1

(24) 𝑆𝑚𝑖′,𝑘′ ≤ Sts′,p + (1 − Zi′,s′,p,k′). 𝐿 ∀𝑝, 𝑘′, 𝑖′, 𝑠′
(25) 𝑆𝑚𝑖′,𝑘′ + (1 − Zi′,s′,p,k′). 𝐿 ≥ Sts′ ,p ∀𝑝, 𝑘′, 𝑖′, 𝑠′
(26) ∑ ∑ Zi′,s′,p,k′ = 𝛾𝑠′,𝑝𝑘′ ∀𝑝, 𝑠′𝑖′

(27) ∑ 𝑄𝑠,𝑗,𝑝,ℎ′𝑠𝑗,𝑝
𝑠=1 = 𝑄𝑗,𝑝 ∀𝑝, 𝑗

(28) 𝑄𝑠,𝑗,𝑝,ℎ′ ≤ 𝑄𝑗,𝑝. 𝛿𝑠,𝑗,𝑝,ℎ ∀𝑝, 𝑗, 𝑠, ℎ

(29) 𝛿𝑠,𝑗,𝑝,ℎ ≤ 𝑄𝑠,𝑗,𝑝,ℎ′ ∀𝑝, 𝑗, 𝑠, ℎ

(30) 𝑄𝑗,𝑝 = 𝐷𝑀𝑝 . 𝑅𝑗,𝑝 ∀𝑝, 𝑗

(31) 𝛿1,𝑗,𝑝,ℎ = 1 ∀𝑝, 𝑗, ℎ

(32) 𝛿𝑠+1,𝑗,𝑝,ℎ ≤ 𝛿𝑠,𝑗,𝑝,ℎ ∀𝑝, 𝑗, 𝑠, ℎ

(33) ∑ 𝑉𝑠′,𝑝𝑠′ = 𝐷𝑀𝑝 ∀𝑝

(34) 𝑉𝑠′,𝑝 ≤ 𝛾𝑠′,𝑝. 𝐷𝑀𝑝 ∀𝑝, 𝑠′
(35) 𝛾𝑠′,𝑝 ≤ 𝑉𝑠′,𝑝 ∀𝑝, 𝑠′
(36) 𝑄1,𝑗,𝑝,𝐻′ ≥ 𝑉1,𝑝. 𝑅𝑗,𝑝 ∀𝑝, 𝑗, 𝑠, 𝑠′
(37) ∑ 𝑄𝑠𝑠,𝑗,𝑝,𝐻′𝑠𝑠=1 − ∑ 𝑉𝑖𝑖−1,𝑝𝑖𝑖=2 . 𝑅𝑗,𝑝 ≥ 𝑉𝑠′,𝑝. 𝑅𝑗,𝑝 ∀𝑝, 𝑗, 𝑠′ = 2, … , 𝑆𝑝′ , 𝑠′ = 𝑠

(38) ∑ 𝑄𝑠𝑠−1,𝑗,𝑝,𝐻′𝑠𝑠=2 − ∑ 𝑉𝑖𝑖−1,𝑝𝑖𝑖=2 . 𝑅𝑗,𝑝 < 𝑉𝑠′ ,𝑝. 𝑅𝑗,𝑝 ∀𝑝, 𝑗, 𝑠′ = 2, … , 𝑆𝑝′ , 𝑠′ = 𝑠

(39) 𝛾1,𝑝 = 1 ∀𝑝

Seyed Mohamad Hasan Hosseini / Modelling And Solving…

68

The objective function (1) indicates minimization of

completion time for all products. Constraint (2) expresses

that the makespan is not shorter than the completion time

of any product. Constraint (3) enforces each job to follow

a predefined processing sequence.

Constraint (4) ensures that if start time of operation Os,j,p,h

is planed earlier than start time of 𝑙th
over the hall

operation, then the amount of 𝑈1liOs,j,p,h should be 1.

Similarly, Constraint (5) ensures that if start time of

operation Os,j,p,h is planned after starting of 𝑙th
 over hall

operation, then the amount of 𝑉1liOs,j,p,h should be 1.

Constraint (6) shows that if start time of operation Os,j,p,h

is planned before the end of 𝑙th over hall operation, then

the amount of 𝑉1liOs,j,p,h will be 1. Constraint (7)

determines that no operation will be done during every

over hall. Constraint (8) defines that if the 𝑙th over hall

operation starts before the end of operation Os,j,p,h, the

amount of 𝑈2liOs,j,p,h will be 1. Constraint (9) ensures that

two parameters 𝑈1liOs,j,p,h and 𝑈2liOs,j,p,hcould not be 1

simultaneously. Constraint (10) determines that if start

time of operation Os,j,p,h is planned concurrent with the 𝑙th

over hall operation, 𝑈liOs,j,p,h should be equal to 1.

Equation (11) calculates the finish time of operation Os,j,p,h in a condition that this operation interferes in the 𝑙th over hall operation. Constraint (12) ensures

precedence relationship between sub-lots. Constraint (13)

expresses that a machine, at stage one, is not able to

process an operation in priority k+1 before processing the

operation in priority k. Constraints (14) and (15) force

each operation 𝑂𝑠,𝑗,𝑝,ℎ which can start after its assigned

machine is idle and, thus, previous operation 𝑂𝑠,𝑗,𝑝,ℎ−1 is

completed. Constraints (16) and (17) define the sequence

restrictions. Constraint (18) shows the maximum

processing time of each sub-lot of each of job for each

product. Constraints (19) to (21) define the earliest start

time of assembly stage. Constraint (22) shows the

completion time of products. Constraint (23) expresses

that a machine in the assembly stage, first, assembles the

parts of product in priority 𝑘′; then, it starts assembling

the parts of product in priority 𝑘′+1. Constraints (24) and

(25) imply that assembling each sub-lot of a product in the

second stage can start when its assigned machine is idle

and previous product is completed. Constraint (26)

assigns each sub-lot of a product to a priority at the

second stage. Constraint (27) shows that the total amounts

dedicated to the sub-lots of a product’s job are equal to

those of job’s lot size. Constraint (28) ensures that while

the amount of 𝑄s,j,p,h′ is not zero, the binary variable δs,j,p,h will be equal to one. However, if 𝑄s,j,p,h′ becomes

zero, binary variable δs,j,p,h will be equal to zero

according to constraint (29). Constraint (30) defines the

amount of each product’s jobs (parts) according to the

order and the number of jobs needed in each product.

Constraints (31) and (32) define the presence of sub-lots

and their sizes at the first stage. Constraint (33) shows that

the total amounts dedicated to the sub-lots of a product are

equal to those of product’s demand. Constraints (34-40)

also define the presence of sub-lots and their sizes in the

assembly stage. Constraint (41) enforces the binary

requirements of the decision variables. Constraint (42)

implies that the completion time of products must be

positive. According to constraints (13) and (23), this

model is nonlinear. In these two constraints, a binary

variable is multiplied in a continuous variable. So, a

linearization method is used as below.

2.2.

 A numerical example

For more understanding of the problem, consider a simple

numerical example as shown in Table 2. Assume that we

need two operations in job shop and one machine in an

assembly stage. Four products of the same kind should be

produced and the number of parts is 3. The data for

processing time of machining operation, assembly and

setup time are given in Table 2. To simplify, two

operations are supposed for each job and there is no over

hall.

Four solutions are shown in Figures 2, 3, 4, and 5 for this

problem. As shown in Figure 2, the operations are

partitioned into four blocks and each block consists of the

machining operations, the setup operations, and the

assembly operations for one product. The completion time

of all products is 67 in this plan.

(40) 𝛾𝑠′+1,𝑝 ≤ 𝛾𝑠′,𝑝 ∀𝑝, 𝑠′
(41) 𝑥𝑖,𝑠,𝑗,𝑝,ℎ,𝑘 , Zi′,s′,p,k′ , 𝛿𝑠,𝑗,𝑝,ℎ, 𝛾𝑠′,𝑝 ∈ {0,1}

(42) 𝐶𝑝 ≥ 0 ∀𝑝

(43) 𝑇𝑚𝑖,𝑘 + 𝑉𝑖,𝑠,𝑗,𝑝,ℎ,𝑘 ≤ 𝑇𝑚𝑖,𝑘+1 ∀𝑝, 𝑗, 𝑠, ℎ, 𝑖; k = 1,2, … , 𝑘𝑖 − 1

(44) 𝑉𝑖,𝑠,𝑗,𝑝,ℎ,𝑘 ≤ 𝑝𝑠𝑗,𝑝,ℎ . 𝑄𝑠,𝑗,𝑝,ℎ′ ∀𝑝, 𝑗, 𝑠, ℎ, 𝑖, k

(45) 𝑉𝑖,𝑠,𝑗,𝑝,ℎ,𝑘 ≤ 𝐿. 𝑥𝑖,𝑠,𝑗,𝑝,ℎ,𝑘 ∀𝑝, 𝑗, 𝑠, ℎ, 𝑖, k

(46) 𝑉𝑖,𝑠,𝑗,𝑝,ℎ,𝑘 ≥ 𝑝𝑠𝑗,𝑝,ℎ . 𝑄𝑠,𝑗,𝑝,ℎ′ − 𝐿. (1 − 𝑥𝑖,𝑠,𝑗,𝑝,ℎ,𝑘) ∀𝑝, 𝑗, 𝑠, ℎ, 𝑖, k
(47) 𝑉𝑖,𝑠,𝑗,𝑝,ℎ,𝑘 ∈ {0,1} ∀𝑝, 𝑗, 𝑠, ℎ, 𝑖, k

Journal of Optimization in Industrial Engineering Vol.12, Issue 1, Winter and Spring 2019, 63- 78

69

Fig. 2. A schedule for numerical example with C max = 67

In Figure 3, the operations are partitioned into two blocks.

Each block consists of the machining operations, the setup

operations, and the assembly operations for two products.

The completion time of all products is 61 in this plan.

Fig. 3. A schedule of the numerical example with C max = 61

Figure 4 shows another schedule of this problem.

According this schedule, the operations are partitioned

again into two blocks. However, in this solution, the first

block consists of three products and the second block

consists of one product. The completion time of all

products is also 61 in this plan.

Fig .4. A schedule for numerical example with C max = 61

Figure 5 shows the best schedule in which the blocks are

the same as in figure 4; however, the scheduling of parts

in blocks is different. The completion time of all products

is 52 in this plan.

The yellow color in Table 2 and Fig. 2-5 denotes setup

operations, the gray cells denote assembly operations, and

the other colors denote process operations of the parts.

Fig. 5. The best schedule for numerical example with C max = 52

A summary of the results of the sample problem is

presented in Table 3. These results indicate that we can

improve the objective function of this problem with

changing three factors: 1. the number of blocks, 2.the size

of blocks, and 3.the sequence of parts in each block.

3. Solution Methods

As mentioned before, the considered problem has been

proved to be strongly NP-hard and it requires much time

to solve by exact algorithms. Therefore, utilization of

Seyed Mohamad Hasan Hosseini / Modelling And Solving…

70

heuristics or meta-heuristics approach would be helpful

and necessary for medium-sized and large-sized

problems. The main decision variables of this problem are

the sequence of products to be processed and assembled,

the number of lots, the size of each lot and sequence of

the parts that will be fixed in all blocks. The assignment

parts to machines are ignored because it is assumed that

the first idle machine will process the first part that

arrives. The notation 𝑁/𝑆/𝑄 of Kumar et al. (2000) is

modified for the considered problem. This notation is

used throughout this paper to indicate the decision

methodology used in each of three variables where:

 N is the method used for deciding the number of

blocks

 S is the method used for sizing each block

 Q is the method used for sequencing the parts in

each block

This notation 𝑁/𝑆/𝑄 is modified for the considered

problem as P/𝑁/𝑆/𝑄. The new parameter 𝑃 is defined as

the method for sequencing the product.

For example, 𝑅𝑎𝑛𝑑/𝐺𝐴/𝑆𝐴/NEH indicates that

sequencing of the product is done randomly, Genetic

Algorithm is applied to determine the number of blocks

for each product, SA is used to obtain the size of each

blocks, and lastly, the sequence of the parts is determined

by the NEH algorithm. Therefore, we have a four-step

solution approach to the considered problem. These four

steps are shown as the solution representation scheme in

Figure 6.

The methods that have been developed to solve the

problem in four steps based on Figure 6 are described

below.

3.1. Extension the johnson algorithm to determine

the sequence of products

Fattahi et al. (2014) introduced an extension version of

Johnson algorithm for sequencing the product in a hybrid

flow shop scheduling followed by an assembly stage. This

method is modified for the considered problem that is

similar to their study. Therefore, we assume the job shop

as the first stage (or first machine) and assembly as the

second stage (or second machine). Then, the extended

Johnson algorithm is used to determine the sequence of

products.

The process time of the first stage consists of the process

operations of parts in job shop and is calculated as (48)

for any product ℎ.

Algorithm

A:
𝑃𝑇𝑝 = ∑ ∑ 𝑝𝑠j,h,p𝑗∈𝑛𝑝ℎ∈𝑛𝑝 For p=1,2,…,P (48)

Fig. 6. An overview of the proposed solution methodology

Sequencing the products

Problem data

Obtain the best size of each

block

Sequence the parts in each

block

Determine the number of

blocks

Journal of Optimization in Industrial Engineering Vol.12, Issue 1, Winter and Spring 2019, 63- 78

71

 In addition, the assembly time of each product (𝐴𝑝) is

considered as process time in the second stage.

After computing 𝑃𝑇𝑝based on (48), the sequencing of the

products will be done using Johnson algorithm as follows:

 1.

Determine th 𝑃𝑇𝑝 according to equations (48)

and 𝐴𝑝 from the problem data for all products.

2.

Suppose 𝑈 = {𝑝 ∈ 𝑃|𝑃𝑇𝑝 < 𝐴𝑝} and 𝑉 ={𝑝 ∈ 𝑃|𝑃𝑇𝑝 ≥ 𝐴𝑝}.

3.

Sort the set of U non-decreasing in 𝑃𝑇𝑝 and set

of V non-increasing in 𝐴𝑝.

 4.

Determine the sequence of products according to

the set of U and V.

 3.2.

 NSH heuristic algorithm for determining the

number of blocks

Fattahi et al. (2013) introduced a new heuristic, named SH

heuristic algorithm, in order to determine the number of

blocks for a hybrid flow shop scheduling problem with

setup and assembly operations. This method is developed

in this paper for the job shop stage as a new SH heuristic

algorithm that is called NSH heuristic algorithm. This

algorithm scan the scope of the possible number of blocks

with search and test different possible number of blocks.

This algorithm is described systematically as below:

Step1: consider 𝐵1 = 1 (the minimum possible number

of blocks) and 𝐵2 =number of product p (the maximum

possible number of blocks for product p) are two amounts

for number of blocks and calculate the makespan

according them that is called 𝑀1and 𝑀2 respectively.

Step 2: While (round |𝐵1 − 𝐵2|) > 1, do the following.

If 𝑀2 ≥ 𝑀1

 𝐵2 = (1−∝) × 𝐵1+∝× 𝐵2

 Calculate the new amounts of 𝑀2

Else

 𝐵1 =∝× 𝐵1 + (1−∝) × 𝐵2

 Calculate the new amounts of 𝑀1

 End

Step 3: Return the best number of each block (𝑀𝑖𝑛(𝐵1, 𝐵2)).

Parameter ∝ indicates the rate of increasing or decreasing 𝐵1 and 𝐵2 during the algorithm. Based on the large-sized

parameter, algorithm does more search; however, the

small-sized parameter causes the algorithm to converge

and terminate sooner.

Once NSH algorithm is run and a new number for blocks

are found, two algorithms, based on SA and GA, are used

as illustrated in section 3.3 to determine the size of each

block. Finally, an algorithm based on NEH is used as

stated in section 3.4 to sequence the parts of all blocks.

3.3. The proposed algorithms for sizing each block

In order to determine the size of each block, two

algorithms based on SA and GA are proposed.

 The proposed algorithm based on SA

Simulated annealing (SA) is a neighborhood search

technique that has produced good results for

combinatorial problems. A standard SA procedure begins

by generating an initial solution at random. In this section,

a simulated annealing algorithm is presented to find good

solutions to the block-sizing problem. Therefore, we use a

matrix SB×J to represent the size of blocks. The rows of

this matrix show the blocks and its columns show the

number of each part 𝑗 in each block. The members of this

matrix should provide the two following conditions:

∑ Sb,j = 𝑛𝑝 𝑓𝑜𝑟 𝑗 = 1, 2, … , 𝐽B
b=1

∑ S𝑏,j ≥ 1 for 𝐽
j=1 b = 1, 2, 3, … , B

The initial block sizing is done with a random operator

that assigns a size to each block considering the two

above conditions.

The detailed procedure of this algorithm is shown as

follows.

Step 1: Initialization

Step 1.1: Obtain an initial block sizing (𝐹𝐶 and 𝐹∗).

Step 1.2: Initiate the initial temperature (𝑇0, 𝑇𝐶 = 𝑇0),

final temperature (𝑇𝑓), cooling rate (r), and iterate number

in each temperature (L).

Step 2: While not yet frozen (𝑇𝐶 ≻ 𝑇𝑓), do the following.

Step 2.1: Perform the following loop L times.

Step 2.1.1: Done neighborhood search algorithm and

select a neighbor 𝐹𝐶′
of 𝐹𝐶 .

Step 2.1.2: Compute △= 𝑅𝐹𝐶′ − 𝑅𝐹𝐶 (done the

computation of makespan)

Step 2.1.3: If △≤ 0 then 𝐹𝐶 = 𝐹𝐶′
.

Compute △𝑏= 𝑅𝐹𝐶 − 𝑅𝐹∗.

If △𝑏< 0 set 𝐹∗ = 𝐹𝐶 .

Step 2.1.4: If △> 0 select a random variable 𝑃 ∽ 𝑈(0,1).

If 𝑒−△ 𝑇⁄ > 𝑃 set 𝐹𝐶 = 𝐹𝐶′

Step 2.2: Set 𝑇𝐶 = 𝑟 × 𝑇𝐶

Step 3: Return the best solution found for F∗.

Neighborhood search algorithm

A neighborhood search is proposed in this section. This

algorithm has two steps as follows:

 Step 1: select two blocks from existing blocks B

randomly 𝛽1 , 𝛽2.

 Step 2: change the size of blocks 𝛽1 and 𝛽2 and

define the new size as follows:

1. Select 𝜓𝛼′ 1 ≤ 𝜓𝛼′ ≤ 𝜓𝛼 + 𝜓𝛽 + 𝜓𝛾 − 2

2. Select 𝜓𝛽′ 1 ≤ 𝜓𝛽′ ≤ 𝜓𝛼 + 𝜓𝛽 + 𝜓𝛾− 𝜓𝛼′ − 1

3. determine 𝜓𝛾′ 𝜓𝛾′ = 𝜓𝛼 + 𝜓𝛽 + 𝜓𝛾 − 𝜓𝛼′− 𝜓𝛽′
Now, there are three new blocks that are different from

their old version only in size.

Seyed Mohamad Hasan Hosseini / Modelling And Solving…

72

 …

 …

 …

 …

 In this neighborhood structure, all blocks have a chance

to be selected and changed. Also, all neighbors are placed

in a feasible region.

The final value of the parameters for this proposed

algorithm is obtained using Taguchi settings considering

plan of 𝐿𝑛 in three levels. In order to determine the best

combination of these parameters, three levels of each

parameter are examined; finally, the best parameter is

obtained as follows:

 The initial temperature 𝑇0 = 1000

 The final temperature 𝑇𝑓 = 10

 The cooling rate 𝑟 = 0.95

 The number of iteration in each temperature 𝐿 = 25

 The proposed GA algorithm

A GA (Holland, 1975) is a search technique that imitates

the natural selection and biological evolutionary

processes. GA has been used in a wide variety of

applications, particularly in combinatorial optimization

problems which proved to be able to provide near-optimal

solutions in a reasonable amount of time (Anandaraman

2011, Luo et al., 2011, and Chakrabortty et al., 2013).

A GA starts with a population of randomly generated

candidate solutions (called chromosomes). A chromosome

is represented by a string of numbers called genes. Each

chromosome in the population is evaluated according to

some fitness measures that reflect the objective function

value and the satisfaction of problem constraints. The

better the fitness values are, the more chances are given to

the individual to be selected as a parent. New

chromosomes are made of a reproduction operator that

usually consists of crossover and mutation procedures.

The crossover procedure produces the offspring from two

parent individuals by combining and exchanging their

elements. Certain pairs of chromosomes are selected on

the basis of their fitness. Each of these pairs combines to

produce new chromosomes, (offspring) and some of the

offspring are randomly modified. The mutation procedure

adds small random changes to a chromosome (Maniezzo

et al., 2009).

A new population is then formed by replacing some of the

original population by an identical number of offspring.

The process is repeated until a stopping criterion is met.

In this paper, details of the proposed GA with necessary

illustrations are considered as follow.

Each solution (chromosome) is represented as a vector 1 × B whose elements (genes) are item indices the size of

the b
th

 block. An initial population of chromosomes is

randomly generated. After some experiments, the best

population size is obtained as 20. The evaluation

parameter f(c) is the value of objective function. This

value is used to measure the fitness of a chromosome. For

each partial (chromosome), block sizing is constructed

and, accordingly, the makespan of jobs is calculated.

The roulette wheel and tournament selection without

replacement is used to select two chromosomes for

crossover. Marimuthu et al. (2008) illustrated this

selection method in a genetic algorithm for scheduling m-

machine flow shop with lot streaming. Accordingly, by

using the method used in this paper, at first, the

probability of choosing each chromosome p(c) is

estimated as follows:

 𝑝(𝑐) = 𝑓∗(𝑐)∑ 𝑓∗(𝑐)𝑝𝑜𝑝_𝑠𝑖𝑧𝑒𝑐=1 where 𝑓∗(𝑐) = 1 𝑓(𝑐)⁄

Then, the cumulative probability 𝑐𝑝(𝑐) for all

chromosomes is found.

c𝑝(𝑐) = ∑ 𝑝(𝑐)𝑐𝑐=1

Then, the random number ‘r’ between 0 and 1 is spun and

a chromosome ‘c’ is selected, satisfying the following

condition:

c𝑝(𝑐 − 1) ≤ 𝑟 < c𝑝(𝑐)

This selection process is repeated many times equal to

parent number needed.

The two-point crossover operator is applied to each pair

of parent chromosomes with a probability pc (probability

of crossover). From sensitivity analysis, probability of

crossover is arrived as 0.85.

According to the results of experiments, two kinds of

mutation are used in this algorithm. In type 1, the gene

being considered is removed from its position and put into

another randomly chosen position of the same

chromosome with a probability
pm 2⁄ in which pm is

mutation probability. In type 2, two genes (blocks) α , β

are chosen randomly from each chromosome with a

probability of
pm 2⁄ , and their sizes are changed as below: 1 ≤ 𝜓𝛼′ ≤ 𝜓𝛼 + 𝜓𝛽 − 1 𝜓𝛽′ = 𝜓𝛼 + 𝜓𝛽 − 𝜓𝛼′

For the considered problem, this mutation scheme works

better than other mutation methods such as swapping two

genes with another randomly. The probability mutation pm is obtained as 0.20 through trials. For each

chromosome, a random number is generated (0 < 𝑟 < 1).

If the random number is less than 0.1, the chromosome is

selected for mutation type 1; if the random number is

between 0.1 to 0.2, the chromosome is selected for

mutation type 2.

Seventy percent of chromosomes from the present

population and thirty percent of chromosomes from

children (offspring) are selected as new population and

generation. These chromosomes are selected on the basis

of their fitness (minimum evaluation makespan). Finally,

the stopping criterion is based on the number of iterations

without improvement that is considered up to 15

iterations.

𝛽′

2 𝛼′

1 𝛾′

𝐵

Journal of Optimization in Industrial Engineering Vol.12, Issue 1, Winter and Spring 2019, 63- 78

73

3.4. Algorithm NEH for sequencing the parts in each

block

Algorithm NEH is used for sequencing the parts in each

block, and it is supposed that the sequence of parts is the

same in all blocks. According to this algorithm, the parts

are sorted in the non-increasing sum of processing time

(Nawaz et al., 1983).

The summary of these heuristics and meta-heuristics is

shown in Table 4.

4. Test Problems and Computational Results

In order to test the proposed model and evaluate its

performance and effectiveness in problem solving, some

test problems have been applied in various conditions.

The mathematical model is solved by GAMS IDE

(ver.23.5) software and the proposed algorithms are coded

with MATLAB R2013a software. In order to evaluate the

performance of the proposed algorithms, 20 instances are

generated randomly. The instances are categorized into

three groups (small-, medium-, and large-sized problems)

based on the number of operations. For each instance, the

algorithms are replicated 10 times. The random sample

problems are generated from the distributions in Table 5.

In what follows, some indexes used for analysis are

shown.

For comparing the effectiveness of algorithms, Relative

Percentage Deviation (RPD) factor is used. RPD factor is

formulated as (49) and compares the performance of each

procedure to hat of other procedures for each instance:

 RPD = Algsol − MinsolMinsol ∗ 100 (49)

To evaluate the performance of the proposed algorithm

and compare its effectiveness with others, the

improvement in initial solutions is measured using a well-

known criterion. IMP factor is computed as in Equation

(50).

 𝐼𝑀𝑃 = 𝐴𝑙𝑔𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑠𝑜𝑙 − 𝐴𝑙𝑔𝑓𝑖𝑛𝑎𝑙𝑠𝑜𝑙𝐴𝑙𝑔𝑓𝑖𝑛𝑎𝑙𝑠𝑜𝑙 ∗ 100 (50)

In addition, a factor named 𝐷𝑓∗ is used to determine the

mean deviation of the best solution. This factor is

computed according to Equation (51).

 𝐷𝑓∗ = ∑ (𝑓𝑖 − 𝑓∗)𝑛𝑖=1𝑛. 𝑓∗ (51)

where parameter 𝑓∗is the best solution obtained by the

mathematical model or the algorithms. Therefore, this

analysis could only be done for the small-sized problems.

Some other analyses are done on objective function,

calculation time, etc.

4.1. Result analysis of small-sized problems

This section presents the results of solving test problems

on small scales using a mathematical model and the

proposed algorithm. In the small-sized problems,

according to the 𝐷𝑓∗ factor, the proposed algorithms

achieved almost good performance. In the comparison of

two proposed algorithms, this factor is about on average

for algorithm JS/NSH/SA/NEH and for algorithm

JS/NSH/GA/NEH.

Figure 7 shows the result of solving the small-sized

problems using the mathematical model and two

developed algorithms. Based on these results, the

algorithm developed based on GA has better performance

in solving all small-sized problems.

Fig. 7. Performance of proposed algorithm and mathematical

model in solving the small-sized problems

In addition, Figure 8 presents the mean deviation of the

best solution for two proposed algorithm. As shown in

Figure 7, the result of algorithm based on GA has less

deviation from the best solution. However, both of two

algorithms show good performance in this indicator.

0

200

400

600

800

1000

1200

S1 S2 S3 S4 S5

C
m

a
x

problem

JS/NSH/SA/NEH JS/NSH/GA/NEH mathematical model

Seyed Mohamad Hasan Hosseini / Modelling And Solving…

74

Fig. 8. Comparison of D* in two algorithms

Fig. 9. Interval plot of RPD value for small-sized problems applying algorithm JS/NSH/SA/NEH

Fig. 10. Interval plot of RPD value for small-sized problems applying algorithm JS/NSH/GA/NEH

The RPD values with 95% confidence interval for the

small-sized problems are shown in Figures 9 and 10 for

algorithms JS/NSH/SA/NEH and JS/NSH/GA/NEH,

respectively. We used the optimum solution obtained

from mathematical model as the minimum solution. These

figures show the amount of RPD for each run of solving

0

0.03

0.06

0.09

0.12

0.15

S1 S2 S3 S4 S5

D
*

problems

JS/NSH/SA/NEH JS/NSH/GA/NEH

Journal of Optimization in Industrial Engineering Vol.12, Issue 1, Winter and Spring 2019, 63- 78

75

five problems. Based on this index, the JS/NSH/GA/NEH

performs better than the other algorithm again.

These results also represent more convergence for the

algorithms JS/NSH/SA/NEH. On the other hand, although

algorithm JS/NSH/GA/NEH has better performance in

general and on average, but its different runs have more

diversity in results.

4.2. Result analysis on medium and large-sized

problems

In this section, results are presented for all kinds of

problems. Figure 11 shows that algorithm

JS/NSH/GA/NEH has better performance in all kinds of

problems. Preference for this algorithm is clearer,

especially in solving the large-sized problems.

Performance of the two proposed algorithms in improving

the initial solution is also presented in Figure 12. As this

figure shows, both of two algorithms could improve the

initial solution as appropriate. However, algorithm

JS/NSH/GA/NEH is again better in this index. By

increasing the size of the problem and the search space,

the improvement in initial of JS/NSH/GA/NEH increases.

In addition, the lack of improvements in small problems

indicated that the algorithms can meet the optimal

solution in the first iteration.

Fig. 11. Performance of proposed algorithms for all of the problems (Makespan)

Fig. 12. Performance of proposed algorithms in improvements the initial solution (IMP %)

Trend of improvement is the same for two algorithms;

however, the conditions are different for some problems.

For example, in solving problem L3, algorithm

JS/NSH/GA/NEH could improve the initial solution more

than problem L2; however, algorithm JS/NSH/SA/NEH

has improved less than problem L2 did. This condition is

in reverse with respect to problem L4. These points show

situations that one of two algorithm sticks to the local

optimum probability.

Finally, due to Figure 13, the algorithm based on SA has

presented the final solution sooner than algorithm GA.

This difference is clear especially in solving the large-

sized problems.

0

2000

4000

6000

8000

10000

12000

S
1

S
2

S
3

S
4

S
5

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
1
0

L
1

L
2

L
3

L
4

L
5

L
6

L
7

L
8

L
9

L
1
0

C
m

a
x

Problems

JS/NSH/SA/NEH JS/NSH/GA/NEH mathematical model

0

5

10

15

20

25

30

35

40

IM
P

 %

Problem

JS/NSH/SA/NEH JS/NSH/GA/NEH

Seyed Mohamad Hasan Hosseini / Modelling And Solving…

76

Fig. 13. Computational time of two algorithms CPU time (s)

5. Conclusion

A two-stage production system was studied in this paper.

In this system, a number of products of different kinds are

ordered to be produced. Each product is assembled with a

set of several parts. The first stage is a job shop to

produce parts and the second stage is an assembly shop

with several parallel machines. Maintenance operations

and access restrictions to machines were considered in the

first stage. The objective function was to minimize the

completion time of all products (makespan). This kind of

production system has many applications in industry and,

thus, has been studied by many researchers during three

last decades.

At first, this problem was described and modelled as a

mixed integer linear programming. Since this problem has

been proved to be strongly NP-hard, two new algorithms

based on heuristic, GA, and SA were developed to solve

the medium- and large-sized problems. For evaluation of

the effectiveness of the proposed algorithms, a statistical

analysis was used along with some factors such as

Relative Percentage Deviation (RPD) and well-known

criterion IMP. Various problems were designed and

solved by the proposed algorithms. Computational results

revealed that both two proposed algorithms have good

performance. However, the method based on a genetic

algorithm performs better than the other proposed

algorithm with respect to the objective function. However,

the algorithm based on SA obtained the final solution in a

shorter amount of time.

In solving the small-sized problems, both of two

algorithms presented less than 15% deviation from the

global optimum. In addition, both of the two proposed

algorithms show a good improvement in initial solution.

This improvement increases more than 30% for the large-

sized problems.

For future study, this problem can be considered under the

condition of uncertainty for the parameters. Another study

could be solving the same problem by developing the

other meta-heuristic algorithms and comparing results

with the proposed algorithms in this paper.

References

Al-Anzi, F.S. &Allahverdi, A. (2013). An artificial

immune system heuristic for two-stage multi-

machine assembly scheduling problem to minimize

total completion time. Journal of Manufacturing

Systems, 32 (4), 825– 830.

Allahverdi A, Al-Anzi F. S (2009). The two-stage

assembly scheduling problem to minimize total

completion time with setup times. Computers &

Operations Research, 36:2740-2747

Berrichi, A., Amodeo, L., Yalaoui, F., Châtelet,

E., Mezghiche, M. (2008). Bi-objective optimization

algorithms for joint production and maintenance

scheduling: application to the parallel machine

problem. Journal of Intelligent Manufacturing, 20,

389-400.

Buscher, U., & Shen, L. (2009). An integrated tabu search

algorithm for the lot streaming problem in job shops.

European Journal of Operational Research, 199 (2),

385-399.

Cui, W., Lu, Z., Li, C., & Han, X. (2018). A proactive

approach to solve integrated production scheduling

and maintenance planning problem in flow shops.

Computers & Industrial Engineering 115 (2018)

342–353.

Cummings, D.H., & Egbelu, P.J. (1998). Minimizing

production flow time in a process and assembly job

shop. International Journal of Production Research,

36(8), 2315–2332.

Chan, F.T.S., Wong, T.C., & Chan, L.Y. (2008). Lot

streaming for product assembly in job shop

environment. Robotics and Computer-Integrated

Manufacturing, 24 (3), 321–331.

Chan, F.T.S., Wong, T.C., &Chan, L.Y. (2009). An

evolutionary algorithm for assembly job shop with

part sharing. Computers & Industrial Engineering,

57 (3), 641–651.

0

500

1000

1500

2000

2500

3000
C

P
U

 t
im

e
(s

)

Problem

JS/NSH/SA/NEH JS/NSH/GA/NEH

https://link.springer.com/journal/10845
http://www.sciencedirect.com/science/journal/03772217

Journal of Optimization in Industrial Engineering Vol.12, Issue 1, Winter and Spring 2019, 63- 78

77

Chen, J., & Steiner, G. (1997). Lot streaming with

detached setups in three-machine flow shops.

European Journal of Operational Research. 96(3),

591-611.

Daneshamooz, F., Jabbari, M., &Fattahi, P. (2013). A

model for job shop scheduling with a parallel

assembly stage to minimize makespan. Journal of

Industrial Engineering Research in Production

Systems, 2(4), 39-53.

Dauzere - Peres, S., & Lasserre, J. B. (1993). An iterative

procedure for lot streaming in job-shop scheduling.

Computers & Industrial Engineering, 25 (4), 231-

234.

Demir, Y., &Isleyen, S.K. (2014). An effective genetic

algorithm for flexible job-shop scheduling with

overlapping in operations. International Journal of

Production Research, 52(13), 3905-3921.

Eschelman, L., Caruana, R., &Schaffer, D. (1989). Biases

in the crossover landscape. Proc. Third international

conference on genetic algorithms, Morgan Kaufman

Publishing, 21-29.

Fattahi, P., Hosseini, S.M.H., &Jolai, F. (2013). A

mathematical model and extension algorithm for

assembly flexible flow shop scheduling problem.

International Journal of Advanced Manufacturing

Technology, 65 (5), 787-802.

Fattahi, P., Daneshamooz, F. (2017). Hybrid algorithms

for job shop scheduling problem with lot streaming

and a parallel assembly stage. Journal of Industrial

and Systems Engineering, 10: 92-112.

Garey, M.R., Johnson, D.S., & sethi, R. (1976). The

Complexity of flow shop and job shop scheduling.

Mathematics of Operation Research, 1 (2), 117-129.

Jeong, H., Park, J., &Leachman, R.C. (1999). A batch

splitting method for a job shop scheduling problem

in an MRP environment. International Journal of

Production Research, 37 (15), 3583-3598.

Khoukhi, F.E., Boukachour, J., Hilali Alaoui, A.E.,

(2017). The “Dual-Ants Colony”: A Novel Hybrid

Approach for the Flexible Job Shop Scheduling

Problem with Preventive Maintenance. Computers &

Industrial Engineering, 106, 236-255.

Koulamas Ch, Kyparisis G. J (2001). The three-stage

assembly flow shop scheduling problem. Computers

& Operations Research 28:689-704

Krikpatrick, S., Gelatt, C.D., &Vecchi, M.P. (1983).

Optimization by Simulated Annealing. Science, 220

(4598), 671-680.

Lee, C.Y., Cheng, T.C.E., &Lin, B.M.T. (1993).

Minimizing the makespan in the 3-machine

assembly-type flow shop scheduling problem.

Management Science, 39 (5), 616-625.

Lei, D., &Guo, X. (2013). Scheduling job shop with lot

streaming and transportation through a modified

artificial bee colony. International Journal of

Production Research, 51(16), 4930-4941.

Maleki-Darounkolaei, A., Modiri, M., Tavakkoli-

Moghadam, R., &Seyyedi, I. (2012). A three-stage

assembly flow shop scheduling problem with

blocking and sequence depended setup times.

Journal of Industrial Engineering International,

8:26.

Manne, A.S. (1960). On the job shop scheduling problem.

Operational Research, 8 (2), 219-223.

Mohammadi, E. (2016). Multi objective job shop

scheduling problem with an assembly stage and lot

streaming .Master of Science Thesis, Buali-Sina

University.

Mokhtari, H., Dadgar, M. (2015). Scheduling

optimization of a stochastic flexible job-shop system

with time-varying machine failure rate. Computers &

Operations Research, 61: 31-45.

Navaei, J., Fatemi-Ghomi, S.M.T., Jolai, F., &Mozdgir,

A. (2014). Heuristics for an assembly flowshop with

non-identical assembly machines and sequence

dependent setup times to minimize sum of holding

and delay costs. Computers & Operations Research,

44, 52–65.

Nejati, M., Mahdavi, I., Hassanzadeh, R., &Mahdavi-

Amiri, N. (2016). Lot streaming in a two-stage

assembly hybrid flow shop scheduling problem with

a work shift constraint. International Journal of

Production Research, 33(7), 459-471.

 Potts C.N, Sevast'Janov S.V, Strusevich V. A, Van

Wassenhove L.N, Zwaneveld C.M (1995). The two-

stage assembly scheduling problem: Complexity and

approximation. Operations Research 43:346-355.

Reiter, S. (1966). A system for managing job-shop

production. Journal of Business, 39 (3), 371–393.

Seyedi, I., Maleki-Daronkolaei, A., &Kalashi, F. (2012).

Tabu search and simulated annealing for new three-

stage assembly flow shop scheduling with blocking.

Interdisciplinary Journal of Contemporary Research

In Business, 4 (8), 394-402.

Spears, W. M., &De Jong, K. A. (1991). On the virtues of

uniform crossover. Proceedings of the Fourth

International Conference on Genetic Algorithms,

230-236.

Wagner, B.J., &Ragatz, G. (1994). The impact of lot

splitting on due date performance. Journal of

Operations Management, 12 (1), 13-25.

Wagner, H. (1959). An integer linear-programming model

for machine scheduling. Naval Research logistics

Quarterly, 6 (2), 131-140.

Wang, S., & Liu, M. (2014). Two-stage hybrid flow shop

scheduling with preventive maintenance using multi-

objective tabu search method. International Journal

of Production Research, 52(5), 1495–1508.

Wong, T.C., Chan, F.T.S., &Chan, L.Y. (2009). A

resource-constrained assembly job shop scheduling

problem with Lot Streaming technique. Computers &

Industrial Engineering, 57 (3), 983–995.

Wong, T.C., &Ngan, S.C. (2013). A comparison of hybrid

genetic algorithm and hybrid particle swarm

optimization to minimize makespan for assembly job

shop. Applied Soft Computing, 13(3), 1391–1399.

Xiao, L., Song, S., Chen, X., and Coit, D.W. (2016). Joint

optimization of production scheduling and machine

group preventive maintenance. Reliability

Engineering & System Safety, 146, 68–78.

http://www.sciencedirect.com/science/article/pii/S0377221796000914
http://www.sciencedirect.com/science/journal/03772217
http://www.sciencedirect.com/science/journal/03608352
http://link.springer.com/journal/170
http://link.springer.com/journal/170
http://www.sciencedirect.com/science/journal/03050548
http://www.sciencedirect.com/science/journal/03050548
http://www.sciencedirect.com/science/journal/02726963
http://www.sciencedirect.com/science/journal/02726963

Seyed Mohamad Hasan Hosseini / Modelling And Solving…

78

Xiong, F., Xing, K., &Wang, F. (2015). Scheduling a

hybrid assembly-differentiation flow shop to

minimize total flow time. European Journal of

Operational Research, 240, 338-354

Yao L., &Sarin, C.S. (2014). Multiple-Lot Lot Streaming

in a Two-stage Assembly System. Essays

inProduction Project Planning and

Scheduling, Springer US.

Yazdani, M., Amiri, M., &Zandieh, M. (2010). Flexible

job shop scheduling with parallel variable

neighborhood search algorithm. Expert system with

applications, 37(1), 678-687.

Yokoyama, M., &Santos, D.L. (2005). Three-stage flow-

shop scheduling with assembly operations to

minimize the weighted sum of product completion

times. European Journal of Operational Research,

161, 754–770.

Zhang, R., &Cheng, W. (2011). A simulated annealing

algorithm based on blocking properties for the job

shop scheduling problem with total weighted

tardiness objective. Computer and operation

research, 38 (5), 854-867.

This article can be cited: Hosseini S.M.H.(2019). Modelling and Solving the Job Shop

Scheduling Problem Followed by an Assembly Stage Considering Maintenance Operations

 and Access Restrictions to Machines. Journal of Optimization in Industrial Engineering.

 12 (1), 63- 78.

http://www.qjie.ir/article_539595.html

DOI: 10.22094/JOIE.2018.760.1484

http://link.springer.com/search?facet-creator=%22Subhash+C.+Sarin%22
http://link.springer.com/search?facet-creator=%22Subhash+C.+Sarin%22
http://link.springer.com/book/10.1007/978-1-4614-9056-2
http://link.springer.com/book/10.1007/978-1-4614-9056-2
http://link.springer.com/book/10.1007/978-1-4614-9056-2
http://link.springer.com/book/10.1007/978-1-4614-9056-2
http://www.qjie.ir/article_539595.html

