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Abstract 

This paper considers job shop scheduling problem followed by an assembly stage and Lot Streaming (LS). It is supposed here that a 

number of products have been ordered to be produced. Each product is assembled with a set of several parts. The production system 

includes two stages. The first stage is a job shop to produce parts. Each machine can process only one part at the same time. The second 

stage is an assembly shop that contains several parallel machines. Maintenance operations and access restrictions to machines in the first 

stage are also considered. The objective function is to minimize the completion time of all products (makespan). At first, this problem is 

described and modelled as a mixed integer linear programming, and GAMS software is applied to solve small-sized problems. Since this 

problem has been proved to be strongly NP-hard, two new algorithms based on GA and SA are developed to solve the medium- and large-

sized problems. In order to verify the effectiveness of the proposed algorithms, a statistical analysis is used along with Relative Percentage 

Deviation (RPD) factor and well-known criterion. IMP. Various problems are solved by the proposed algorithms. Computational results 

reveal that both of the two proposed algorithms have good performance. However, the method based on the genetic algorithm performs 

better than the other proposed algorithm with respect to the objective function.  
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1. Introduction 

Scheduling is one of the most important activities in the 

production planning and control systems (Cummings and 

Egbelu, 1998). This is because of strong competition and 

limitation of resources in our environment (Maleki-

Darounkolaei et al., 2012). The job shop scheduling 

problem (JSP) has been considered as a notoriously 

stubborn combinatorial optimization problem since the 

1950s (Zhang and Cheng, 2011). In the job shop 

scheduling problem, a finite set of jobs is processed on a 

finite set of machines. Each job is characterized by a fixed 

order of operations, each of which is to be processed on a 

specific machine for a specified duration. Each machine 

can only process one job at the same time, and a job only 

initiates processing on a given machine. The aim of JSP is 

to find a schedule that optimizes a specified objective 

function such as makespan.  

Usually, scheduling for the parts machining and planning 

for the assembly operations have been independently 

considered (Yokoyama and Santos, 2005); however, this 

may not lead to the best results for the total production 

system. Hence, the two-stage assembly scheduling 

problem that has many applications in industries and has 

received increasing attention of researchers lately. Lee et 

al. (1993) described an application in a fire engine 

assembly plant while Potts et al. (1995) described another 

application in personal computer manufacturing. In 

particular, manufacturing of almost all items may be 

modelled as a two-stage assembly scheduling (Allahverdi 

A, Al-Anzi F. S., 2009). Hence, after Lee et al. published 

their paper about 3-machine assembly-type flow shop 

scheduling problem in 1993, the assembly scheduling 

problems have received considerable attention from 

researchers during the last two decades. 

 In these production systems, usually, there is a machining 

stage and an assembly stage. Machining stage that can be 

a single machine, parallel machines, flow shop, hybrid 

flow shop or job shop processes and fabricates the parts 

(components) independently. Assembly stage performs 

assembly (joining) operations into product. The main 

criterion for this problem is the minimization of the 

maximum job completion time (makespan) (Koulamas 

Ch., Kyparisis G.J., 2001). 

In this paper, a two-stage assembly scheduling problem is 

studied in which that the first stage is a job shop. In the 

classic format of job shop scheduling systems, a lot is 

usually invisible and the entire lot must be completed 

before being transferred to its successor machine (chen 

and steiner, 1997). Lot streaming (LS) technique was 

firstly introduced by Reiter (1966) as a methodology of 

splitting a job into a number of smaller sub-jobs, such that 

its successive operations can be overlapped in different 

stages. This increases the material flow between machines 

and, so, reduces the makespan. It is clear that, under a 

condition when more than one of each product is needed, 

determining the batch sizes must be considered. 

According to the studies around this problem, most of 
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researchers have presented an iterative procedure to solve 

this problem. This procedure first computes the sub-lot 

sizes and, then, determines the sequence of sub-lots on the 

machines. Dauzere-Peres and Lasserre (1993) presented a 

model and an iterative procedure in a general job shop 

environment with lot steaming in order to improve the 

makespan. In their suggested procedure, at first, the 

optimal sub-lot sizes were computed, and then, a better 

sequence was computed by solving a standard job shop 

scheduling problem with fixed sub-lot sizes. Wagner and 

Ragatz (1994) studied the job shop scheduling problem 

with lot splitting to minimize the number of tardy jobs. 

They also considered the impact of setup times and the 

size of the transfer batches on lot splitting performance. 

Jeong et al. (1999) presented an iterative approach that 

minimizes the makespan of job shop scheduling problem 

with lot streaming. Their formulated problem reflected the 

real manufacturing environment by considering setup 

times and due dates. They proposed a modified shifting 

bottleneck procedure to solve the problem. Buscher and 

Shen (2009) focused on solving the lot streaming in a job 

shop environment. This research is one of the pioneer 

studies that tried to solve this kind of problems with meta-

heuristic algorithms. They presented a three-phase 

algorithm which consists of the predetermination of sub-

lot sizes, determination of schedules, and the variation of 

sub-lot sizes based on tabu search. Because an iterative 

procedure is a common method used in order to solve the 

job shop scheduling problem with lot streaming, they used 

an iterative procedure in the first phase and a hierarchical 

approach in the second and third phases. Lei and Guo 

(2013) considered lot-streaming problem in a job shop 

with consistent sub-lots and transportation. A modified 

artificial bee colony algorithm has been proposed by them 

to minimize makespan. Demir and Isleyen (2014) 

presented a flexible job shop scheduling problem with 

overlapping in operations. They developed a new 

mathematical model. In addition, a genetic algorithm with 

an effective chromosome representation and new 

decoding methodology was proposed by in their paper. 

As mentioned, this problem has many applications in 

industry and, therefore, has received increasing attention 

from many researchers (Seyedi, Maleki-Daronkolaei and 

Kalashi, 2012; Fattahi, Hosseini and Jolai, 2013; Al-Anzi 

and Allahverdi, 2013; Navaei et al., 2014; Xiong, Xing 

and Wang, 2015). Chan et al. (2008) extended the 

application of lot streaming to an assembly job shop 

problem for the first time. In their model, the objective 

function minimizes inventory and lateness costs. In 

addition, they presented an efficient algorithm based on 

the genetic algorithm and simple dispatching rules. In 

another paper presented by Chan et al. (2009), the 

previous studies of LS to AJSP were extended by 

allowing part sharing among distinct products. The 

objective function of the proposed model is to minimize 

the lateness costs. In addition to the use of simple 

dispatching rules, they proposed an evolutionary approach 

with genetic algorithm to solve the problem. Wong et al. 

(2009) investigated a resource-constrained assembly job 

shop-scheduling problem with a lot streaming technique. 

The objective of their presented model is to minimize the 

total lateness cost of all final products. They also used 

common part ratio and workload index to enhance the 

model’s usefulness. Since the complexity of AJSSP is 

NP-hard, an innovative approach with genetic algorithm 

was suggested in order to solve the problem. Wong and 

Ngan (2013) studied the assembly job shop scheduling 

with the lot steaming. In this study, their objective 

function is to minimize the makespan time. They 

considered part sharing ratio (PSR) and system congestion 

index (SCI) to differentiate product-specific components 

from general components and creating different starting 

conditions of the shop floor. In order to solve the problem, 

they proposed a hybrid genetic algorithm (HGA) and a 

hybrid particle swarm optimization (HPSO). Daneshamoz 

et al. (2013) proposed a mixed integer linear 

programming model for job shop scheduling with a 

parallel assembly stage in order to minimize makespan. In 

addition, they suggested a particle swarm optimization 

algorithm to solve the problem. Their results showed that 

suggested algorithm could reach near-optimal solutions in 

various dimensions of problem. Yao and Sarin (2014) 

addressed a lot steaming problem for a two-stage 

assembly system involving multiple lots with the 

objective of minimizing the makespan. They proposed a 

branch-and-bound-based methodology for this problem 

that relies on effective lower bounds and dominance 

properties. Mohammadi (2016) addressed a multi-

objective job shop scheduling problem by considering an 

assembly stage and lot streaming. The objective function 

is to minimize the makespan and total weighted earliness 

and tardiness penalties. A mixed integer linear 

programming model was presented in this research. In 

addition, a meta-heuristic algorithm based on a Harmony 

Search was proposed to solve the problem. Nejati et al. 

(2016) considered a two-stage assembly hybrid flow shop 

scheduling problem with a work shift constraint and lot 

streaming to minimize the sum of weighted completion 

times of products in each shift. A mixed integer non-linear 

programming model was introduced to describe the 

problem. In addition, they used a genetic algorithm and 

simulated annealing to determine the best sequence and 

scheduling for the problem. 

Another important fact is that, in most real-life industries, 

it is possible for  machines to be unavailable due to 

unforeseen breakdowns or due to their need for scheduled 

PM activities, where the corresponding unavailability 

periods are known in advance (deterministic 

unavailability). Generally, PMs are planned for time 

intervals of the planning horizon to restore the reliability 

of a machine before it breaks down in order to maintain 

the equipment as well as the shop and provide better 

overall availability (Khoukhi et al., 2017). It should be 

noted that, in some systems, maintenance can only be 

done if all the production lines stop. In other management 

policies, maintenance and production are planned jointly. 

However, it is important to integrate production decisions 

into developing optimal PM policies (Mollahassani-pour, 

Abdollahi, & Rashidinejad, 2014; Xiao, Song, Chen, & 

Coit, 2016).  
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The aggregated problem of production scheduling and 

maintenance planning leads to higher efficiency because 

these two activities interrelate and both of them occupy 

the machine’s capacity. In this respect, production 

depletes the machine’s reliability and maintenance 

restores its reliability. Production scheduling and PM 

planning should be considered along with the integrated 

optimization model to balance the utilization and 

availability of the resource. Therefore, deterministic 

scheduling problems with maintenance and non-

availability intervals have received considerable attention 

since the beginning of the 1990s (Wang & Liu, 2014, and 

Cui et al., 2018).To the best of our knowledge, according 

to the literature review, no one has considered a job shop 

scheduling problem with the lot streaming technique 

followed by an assembly stage considering the 

maintenance operations and access restriction to 

machines. Since the JSSP is known to be a NP-hard 

optimization problem (Garey, Johnson and sethi, 1976), 

this problem is more complex by adding a parallel 

assembly stage and the lot streaming technique to the 

classical job shop scheduling. Therefore, it is necessary to 

solve the medium- and large-sized instances with 

effective meta-heuristics to find the optimal or near-

optimal solutions in a reasonable amount of time.  

In order to structure a relevant literature review of the 

considered problem and to show the main contributions of 

this study, we have classified most previous papers 

according to three characteristics: definition of the 

problem, modeling and solution methods, and objectives 

(see Table 1). The characteristics of our paper are 

presented in the last row of Table 1. 

The paper is organized as follows. In section 2, the 

problem is described in detail and the assumptions and 

mathematical model are presented. Section 3 describes the 

solution approach and proposed algorithms. 

Computational results are reported in section 4. Finally, 

conclusions and recommendations for future research are 

described in Section 5. 

2. Problem Description  

The considered problem in this study is a job shop 

scheduling problem with the lot streaming and a parallel 

assembly stage. This system can be defined as a problem 

consisting of assignment, sequencing, and determining lot 

sizes of jobs in a 2-stage production system. At the first 

stage, a set of J jobs (𝐽1, 𝐽2, … , 𝐽𝑛𝑝) of P products (𝑃1, 𝑃2, … , 𝑃𝑝) is processed on a set of M machines (𝑀1, 𝑀2, … , 𝑀𝑚); then, they are stored in the inventory 

station until all lots from the BOM of the same product 

are completed and at least one unit of the final product 

can be produced. Each job of each product has ℎ𝑗,𝑝 

operations and 𝑠𝑗,𝑝 sub-lots must be processed with 

processing time 𝑝𝑠𝑗,𝑝,ℎ. Then, the assembly operations 

starts at a parallel assembly stage for the final product 

assembly if at least one machine is unemployed at the 

second stage. Otherwise, they will be sent to the inventory 

station. Each sub-lot of each product must be assembled 

with assembly time 𝐴𝑝on a machine from a set of 𝑀′machines (𝑀′1, 𝑀′2, … , 𝑀′𝑚). Figure 1 shows the 

layout of the considered production system.  

 

Basic assumptions of this problem are provided as below: 

 There is no machine breakdown. 

 No preemption of operations (sub-lots) is 

allowed. 

  Each machine can process only one job (sub-lot) 

at the same time. 

 Each job can be processed by only one machine 

at the same time. 

 Each job has a fixed processing route which 

traverses all the machines in a predetermined order.  

 Demand for the final products is specified and all 

jobs are available at time zero. 

 A typical BOM of a product defines the 

assembly relationship between the root components (jobs 

or lots) in the system.  

 Time processing of jobs and assembly of 

products is deterministic. 

 When all lots from the BOM of the same product 

are completed in the work station, the assembly 

operations can start that product. 

 

 

 

 

 

 

 
 

Fig. 1. The layout of the considered problem  
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2.1. Mathematical model 

To better understand the considered problem, its 

mathematical model is developed in this section. For this 

model, the following notations and decision variables are 

used to formulate the problem:
 

 

Parameters  𝑃 Total number of products 𝑝 Products index (𝑝 =  1, 2, . . . , 𝑃) 𝑛 Total number of parts  𝑗 Part index  (𝑗 =  1, 2, . . . , 𝐽) 𝑛𝑝 Number of sub-jobs of product 𝑝 𝑚 Total number of machines at stage 1 𝑖 Machine index at stage 1 (𝑖 =  1, 2, . . . , 𝑚) 𝑚′ Total number of machines at stage 2 𝑖′ Machine index at stage 2  (𝑖′  =  1, 2, . . . , 𝑚′) 𝑂𝐻𝑉𝑡𝑙𝑖  The 𝑙th
 over hall time duration on machine 𝑖 𝑠 Sub-lots index (𝑗 =  1, 2, . . . , 𝑆𝑗,𝑝) 𝑂𝑠,𝑗,𝑝,ℎ Operation ℎ of sub-lot 𝑠 of product 𝑝’s job 𝑗 𝑃𝑡𝑠,𝑗,𝑝,ℎ  Time of operation ℎ of sub-lot 𝑠 of product 𝑝’s job 𝑗 𝑘𝑖 Number of operations dedicated to machine 𝑖 𝑝𝑠j,p,h Processing time of operation ℎ of job 𝑗 of product 𝑝 𝐴𝑝 Assembly time of product 𝑝 𝑆𝑗,𝑝 Number of sub-lots of job 𝑗 of product 𝑝 𝑆𝑝′  Number of sub-lots of product 𝑝 𝑄𝑗,𝑝 Lot size of job 𝑗 of product 𝑝 𝐷𝑀𝑝 Demand for product 𝑝 𝑅𝑗,𝑝 Ratio of job 𝑗 to product 𝑝 𝐿 A large number 𝑎𝑖,𝑗,𝑝,ℎ 1 if 𝑂𝑠,𝑗,𝑝,ℎcan be performed on machine i; 0 otherwise 

 

Decision variables 𝐶𝑚𝑎𝑥  Makespan 𝐹𝑠,𝑗,𝑝 Completion time of sub-lots of job 𝑗 of product  𝑝 𝐹𝑠,𝑝′  Maximum completion time of sub-lots of product 𝑝 Cp Completion time of product 𝑝 𝑡𝑠,𝑗,𝑝,ℎ Start time of the processing of operation Os,j,p,h Sts′,p Starting assembly time of sub-lot 𝑠′ of product 𝑝 𝐹𝑠,𝑗,𝑝,ℎ Completion time of operation Os,j,p,h Tmi,k Start of working time for machine 𝑖 in priority 𝑘 Smi′,k′  Start of working time for machine 𝑖 ′ in priority 𝑘 ′ SOHli Start time of the 𝑙th
 over hall on machine 𝑖 FOHli Completion time of the 𝑙th over hall on machine 𝑖 𝑈1liOs,j,p,h  1 if the 𝑙th

 over hall on machine 𝑖 starts after starting operation Os,j,p,h ; 0, otherwise 𝑈2liOs,j,p,h  1 if the 𝑙th
 over hall on machine 𝑖 starts before finishing operation Os,j,p,h ; 0, otherwise 𝑉1liOs,j,p,h  1 if the 𝑙th
 over hall on machine 𝑖 starts before starting operation Os,j,p,h ; 0, otherwise 𝑉2liOs,j,p,h  1 if the 𝑙th
 over hall on machine 𝑖 finishes after starting operation Os,j,p,h ; 0, otherwise 𝑈liOs,j,p,h  1 if the 𝑙th
 over hall on machine 𝑖 has interference with operation Os,j,p,h ; 0, otherwise xi,s,j,p,h,k 1 if operation Os,j,p,h is preformed on machine 𝑖 in priority  𝑘 ; 0,otherwise  Zi′,s′ ,p,k′  1 if sub-lot 𝑠′ of product 𝑝 is assembled on machine i′ in priority  k′ ; 0, otherwise 𝑄s,j,p,h′  Size of sub-lot 𝑠 of job 𝑗 of product  𝑝 𝑉𝑠′,𝑝 Size of sub-lot 𝑠′ of  product  𝑝 δs,j,p,h 1 if  𝑄s,j,p,h′  is more than zero(positive) ; 0, otherwise γs′,p 1 if  𝑉𝑠′,𝑝 is more than zero(positive) ; 0, otherwise 
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Model formulation 

 

(1) Min 𝑍 = (𝐶𝑚𝑎𝑥) 
 Subject to: 

(2) 𝑐𝑚𝑎𝑥 ≥ 𝐶𝑝                                                                      ∀𝑝 

(3) 𝑡𝑠,𝑗,𝑝,ℎ + 𝑝𝑠𝑗,𝑝,ℎ. 𝑄𝑠,𝑗,𝑝,ℎ′ ≤ 𝑡𝑠,𝑗,𝑝,ℎ+1                         ∀𝑝, 𝑗, 𝑠; ℎ = 1,2, … , 𝐻 − 1 

(4) 𝑡𝑠,𝑗,𝑝,ℎ + 𝐿 × 𝑈1liOs,j,p,h ≥ SOHli                               ∀𝑝, 𝑗, 𝑠; ℎ = 1,2, … , 𝐻 − 1 

(5) SOHli + 𝐿 × 𝑉1liOs,j,p,h ≥ 𝑡𝑠,𝑗,𝑝,ℎ                               ∀𝑝, 𝑗, 𝑠; ℎ = 1,2, … , 𝐻 − 1 

(6) 𝑡𝑠,𝑗,𝑝,ℎ + 𝐿 × 𝑉2liOs,j,p,h ≥ FOHli                               ∀𝑝, 𝑗, 𝑠; ℎ = 1,2, … , 𝐻 − 1 

(7) 𝑉1liOs,j,p,h + 𝑉2liOs,j,p,h ≤ 1                                        ∀𝑝, 𝑗, 𝑠; ℎ = 1,2, … , 𝐻 − 1 

(8) SOHli + 𝐿 × 𝑈2liOs,j,p,h ≥ 𝑡𝑠,𝑗,𝑝,ℎ + 𝑝𝑠j,p,h              ∀𝑝, 𝑗, 𝑠; ℎ = 1,2, … , 𝐻 − 1 

(9) 𝑈liOs,j,p,h + 1 ≥ 𝑈1liOs,j,p,h + 𝑈2liOs,j,p,h                   ∀𝑝, 𝑗, ℎ, 𝑖, 𝑠, 𝑙                     
(10) 𝑈liOs,j,p,h + 1 ≥ 2 − 𝑈1liOs,j,p,h + 𝑉2liOs,j,p,h             ∀𝑝, 𝑗, ℎ, 𝑖, 𝑠, 𝑙 
(11) +(SOHli − FOHli) 

𝐹𝑠,𝑗,𝑝,ℎ + 𝐿 × (1 − 𝑈liOs,j,p,h) ≥ 𝑡𝑠,𝑗,𝑝,ℎ + 𝑃𝑡𝑠,𝑗,𝑝,ℎ  ∀𝑝, 𝑗, ℎ, 𝑖, 𝑠, 𝑙 

(12) 𝑡𝑠,𝑗,𝑝,ℎ + 𝑝𝑠𝑗,𝑝,ℎ. 𝑄𝑠,𝑗,𝑝,ℎ′ ≤ 𝑡𝑠+1,𝑗,𝑝,ℎ                         ∀𝑝, 𝑗, ℎ; 𝑠 = 1,2, … , 𝑠𝑗,𝑝 − 1 

(13) 𝑇𝑚𝑖,𝑘 + 𝑝𝑠𝑗,𝑝,ℎ. 𝑄𝑠,𝑗,𝑝,ℎ′ . 𝑥𝑖,𝑠,𝑗,𝑝,ℎ,𝑘 ≤ 𝑇𝑚𝑖,𝑘+1        ∀𝑝, 𝑗, 𝑠, ℎ, 𝑖;  k = 1,2, … , 𝑘𝑖 − 1 

(14) 𝑇𝑚𝑖,𝑘 ≤ 𝑡𝑠,𝑗,𝑝,ℎ + (1 − 𝑥𝑖,𝑠,𝑗,𝑝,ℎ,𝑘). 𝐿                       ∀𝑝, 𝑗, 𝑠, ℎ, 𝑘, 𝑖 

(15) 𝑇𝑚𝑖,𝑘 + (1 − 𝑥𝑖,𝑠,𝑗,𝑝,ℎ,𝑘). 𝐿 ≥ 𝑡𝑠,𝑗,𝑝,ℎ                       ∀𝑝, 𝑗, 𝑠, ℎ, 𝑘, 𝑖 

(16) ∑ ∑ ∑ ∑ 𝑥𝑖,𝑠,𝑗,𝑝,ℎ,𝑘 ≤ 1ℎ𝑠𝑗𝑝                                      ∀𝑘, 𝑖 

(17) ∑ 𝑥𝑖,𝑠,𝑗,𝑝,ℎ,𝑘 = 𝑎𝑖,𝑗,𝑝,ℎ . 𝛿𝑠,𝑗,𝑝,ℎ                                  ∀𝑝, 𝑗, ℎ, 𝑖, 𝑠𝑘  

(18) 𝑡𝑠,𝑗,𝑝,ℎ + 𝑝𝑠𝑗,𝑝,ℎ. 𝑄𝑠,𝑗,𝑝,ℎ′ ≤ 𝐹𝑠,𝑗,𝑝                                ∀𝑝, 𝑗, 𝑠, ℎ 

(19) 𝐹𝑠,𝑗,𝑝 ≤ 𝐹𝑠,𝑝′                                                                      ∀𝑗, 𝑝, 𝑠 

(20) 𝐹𝑠,𝑝′ ≤ Sts′ ,p                                                                    ∀𝑝, 𝑠, 𝑠′ 
(21) Sts′,p ≤ Sts′+1,p                                                             ∀𝑝, 𝑠′ 
(12) 𝐴𝑝. 𝑉𝑠′,𝑝 + Sts′,p ≤ 𝐶𝑝                                                  ∀𝑝 

(23) 𝑆𝑚𝑖′,𝑘′ + 𝐴𝑝. Zi′,s′,p,k′ . 𝑉𝑠′,𝑝 ≤ 𝑆𝑚𝑖′,𝑘′+1                 ∀𝑝, 𝑖′, 𝑠′;  𝑘′=1, 2, 3, …, 𝑘′𝑖′ − 1 

(24) 𝑆𝑚𝑖′,𝑘′ ≤ Sts′,p + (1 − Zi′,s′,p,k′). 𝐿                         ∀𝑝, 𝑘′, 𝑖′, 𝑠′ 
(25) 𝑆𝑚𝑖′,𝑘′ + (1 − Zi′,s′,p,k′). 𝐿 ≥ Sts′ ,p                         ∀𝑝, 𝑘′, 𝑖′, 𝑠′ 
(26) ∑ ∑ Zi′,s′,p,k′ = 𝛾𝑠′,𝑝𝑘′                                                ∀𝑝, 𝑠′𝑖′  

(27) ∑ 𝑄𝑠,𝑗,𝑝,ℎ′𝑠𝑗,𝑝
𝑠=1 = 𝑄𝑗,𝑝                                                           ∀𝑝, 𝑗 

(28) 𝑄𝑠,𝑗,𝑝,ℎ′ ≤ 𝑄𝑗,𝑝. 𝛿𝑠,𝑗,𝑝,ℎ                                                    ∀𝑝, 𝑗, 𝑠, ℎ 

(29) 𝛿𝑠,𝑗,𝑝,ℎ ≤ 𝑄𝑠,𝑗,𝑝,ℎ′                                                              ∀𝑝, 𝑗, 𝑠, ℎ 

(30) 𝑄𝑗,𝑝 = 𝐷𝑀𝑝 . 𝑅𝑗,𝑝                                                             ∀𝑝, 𝑗 

(31) 𝛿1,𝑗,𝑝,ℎ = 1                                                                        ∀𝑝, 𝑗, ℎ 

(32) 𝛿𝑠+1,𝑗,𝑝,ℎ ≤ 𝛿𝑠,𝑗,𝑝,ℎ                                                          ∀𝑝, 𝑗, 𝑠, ℎ 

(33) ∑ 𝑉𝑠′,𝑝𝑠′ = 𝐷𝑀𝑝                                                               ∀𝑝 

(34) 𝑉𝑠′,𝑝 ≤ 𝛾𝑠′,𝑝. 𝐷𝑀𝑝                                                             ∀𝑝, 𝑠′ 
(35) 𝛾𝑠′,𝑝 ≤ 𝑉𝑠′,𝑝                                                                       ∀𝑝, 𝑠′ 
(36) 𝑄1,𝑗,𝑝,𝐻′ ≥ 𝑉1,𝑝. 𝑅𝑗,𝑝                                                           ∀𝑝, 𝑗, 𝑠, 𝑠′ 
(37) ∑ 𝑄𝑠𝑠,𝑗,𝑝,𝐻′𝑠𝑠=1 − ∑ 𝑉𝑖𝑖−1,𝑝𝑖𝑖=2 . 𝑅𝑗,𝑝 ≥ 𝑉𝑠′,𝑝. 𝑅𝑗,𝑝              ∀𝑝, 𝑗, 𝑠′ = 2, … , 𝑆𝑝′ , 𝑠′ = 𝑠 

(38) ∑ 𝑄𝑠𝑠−1,𝑗,𝑝,𝐻′𝑠𝑠=2 − ∑ 𝑉𝑖𝑖−1,𝑝𝑖𝑖=2 . 𝑅𝑗,𝑝 < 𝑉𝑠′ ,𝑝. 𝑅𝑗,𝑝          ∀𝑝, 𝑗, 𝑠′ = 2, … , 𝑆𝑝′ , 𝑠′ = 𝑠 

(39) 𝛾1,𝑝 = 1                                                                                ∀𝑝 
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The objective function (1) indicates minimization of 

completion time for all products. Constraint (2) expresses 

that the makespan is not shorter than the completion time 

of any product. Constraint (3) enforces each job to follow 

a predefined processing sequence.  

Constraint (4) ensures that if start time of operation Os,j,p,h 

is planed earlier than start time of 𝑙th 
over the hall 

operation, then the amount of 𝑈1liOs,j,p,h should be 1. 

Similarly, Constraint (5) ensures that if start time of 

operation Os,j,p,h is planned after starting of 𝑙th
 over hall 

operation, then the amount of 𝑉1liOs,j,p,h  should be 1. 

Constraint (6) shows that if start time of operation Os,j,p,h 

is planned before the end of 𝑙th over hall operation, then 

the amount of 𝑉1liOs,j,p,h  will be 1. Constraint (7) 

determines that no operation will be done during every 

over hall. Constraint (8) defines that if the 𝑙th over hall 

operation starts before the end of operation Os,j,p,h, the 

amount of 𝑈2liOs,j,p,h  will be 1. Constraint (9) ensures that 

two parameters 𝑈1liOs,j,p,h and 𝑈2liOs,j,p,hcould not be 1 

simultaneously. Constraint (10) determines that if start 

time of operation Os,j,p,h is planned concurrent with the 𝑙th 

over hall operation, 𝑈liOs,j,p,h  should be equal to 1. 

Equation (11) calculates the finish time of operation Os,j,p,h in a condition that this operation interferes in the 𝑙th over hall operation. Constraint (12) ensures 

precedence relationship between sub-lots. Constraint (13) 

expresses that a machine, at stage one, is not able to 

process an operation in priority k+1 before processing the 

operation in priority k. Constraints (14) and (15) force 

each operation 𝑂𝑠,𝑗,𝑝,ℎ which can start after its assigned 

machine is idle and, thus, previous operation 𝑂𝑠,𝑗,𝑝,ℎ−1 is 

completed. Constraints (16) and (17) define the sequence 

restrictions. Constraint (18) shows the maximum 

processing time of each sub-lot of each of job for each 

product. Constraints (19) to (21) define the earliest start 

time of assembly stage. Constraint (22) shows the 

completion time of products. Constraint (23) expresses 

that a machine in the assembly stage, first, assembles the 

parts of product in priority 𝑘′; then, it starts assembling 

the parts of product in priority 𝑘′+1. Constraints (24) and 

(25) imply that assembling each sub-lot of a product in the 

second stage can start when its assigned machine is idle 

and previous product is completed. Constraint (26) 

assigns each sub-lot of a product to a priority at the 

second stage. Constraint (27) shows that the total amounts 

dedicated to the sub-lots of a product’s job are equal to 

those of job’s lot size. Constraint (28) ensures that while 

the amount of  𝑄s,j,p,h′  is not zero, the binary variable δs,j,p,h will be equal to one. However, if  𝑄s,j,p,h′  becomes 

zero, binary variable δs,j,p,h will be equal to zero 

according to constraint (29). Constraint (30) defines the 

amount of each product’s jobs (parts) according to the 

order and the number of jobs needed in each product. 

Constraints (31) and (32) define the presence of sub-lots 

and their sizes at the first stage. Constraint (33) shows that 

the total amounts dedicated to the sub-lots of a product are 

equal to those of product’s demand. Constraints (34-40) 

also define the presence of sub-lots and their sizes in the 

assembly stage. Constraint (41) enforces the binary 

requirements of the decision variables. Constraint (42) 

implies that the completion time of products must be 

positive. According to constraints (13) and (23), this 

model is nonlinear. In these two constraints, a binary 

variable is multiplied in a continuous variable. So, a 

linearization method is used as below.  

 

 

 

2.2.
 

 A numerical example 

For more understanding of the problem, consider a simple 

numerical example as shown in Table 2. Assume that we 

need two operations in job shop and one machine in an 

assembly stage. Four products of the same kind should be 

produced and the number of parts is 3. The data for 

processing time of machining operation, assembly and 

setup time are given in Table 2. To simplify, two 

operations are supposed for each job and there is no over 

hall. 

Four solutions are shown in Figures 2, 3, 4, and 5 for this 

problem. As shown in Figure 2, the operations are 

partitioned into four blocks and each block consists of the 

machining operations, the setup operations, and the 

assembly operations for one product. The completion time 

of all products is 67 in this plan. 

 

(40) 𝛾𝑠′+1,𝑝 ≤ 𝛾𝑠′,𝑝                                                                     ∀𝑝, 𝑠′ 
(41) 𝑥𝑖,𝑠,𝑗,𝑝,ℎ,𝑘    , Zi′,s′,p,k′    , 𝛿𝑠,𝑗,𝑝,ℎ, 𝛾𝑠′,𝑝 ∈ {0,1} 

(42) 𝐶𝑝 ≥ 0                                                                                    ∀𝑝 

(43) 𝑇𝑚𝑖,𝑘 + 𝑉𝑖,𝑠,𝑗,𝑝,ℎ,𝑘 ≤ 𝑇𝑚𝑖,𝑘+1                                          ∀𝑝, 𝑗, 𝑠, ℎ, 𝑖;  k = 1,2, … , 𝑘𝑖 − 1 

(44) 𝑉𝑖,𝑠,𝑗,𝑝,ℎ,𝑘 ≤ 𝑝𝑠𝑗,𝑝,ℎ . 𝑄𝑠,𝑗,𝑝,ℎ′                                                 ∀𝑝, 𝑗, 𝑠, ℎ, 𝑖, k 

(45) 𝑉𝑖,𝑠,𝑗,𝑝,ℎ,𝑘 ≤ 𝐿. 𝑥𝑖,𝑠,𝑗,𝑝,ℎ,𝑘                                                      ∀𝑝, 𝑗, 𝑠, ℎ, 𝑖, k       

(46) 𝑉𝑖,𝑠,𝑗,𝑝,ℎ,𝑘 ≥ 𝑝𝑠𝑗,𝑝,ℎ . 𝑄𝑠,𝑗,𝑝,ℎ′ − 𝐿. (1 − 𝑥𝑖,𝑠,𝑗,𝑝,ℎ,𝑘)          ∀𝑝, 𝑗, 𝑠, ℎ, 𝑖, k  
(47) 𝑉𝑖,𝑠,𝑗,𝑝,ℎ,𝑘 ∈ {0,1}                                                                  ∀𝑝, 𝑗, 𝑠, ℎ, 𝑖, k   
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Fig. 2. A schedule for numerical example with C max = 67 
 

In Figure 3, the operations are partitioned into two blocks. 

Each block consists of the machining operations, the setup  
 

operations, and the assembly operations for two products. 

The completion time of all products is 61 in this plan. 
 

 

 
Fig. 3. A schedule of the numerical example with C max = 61 

 

Figure 4 shows another schedule of this problem. 

According this schedule, the operations are partitioned 

again into two blocks. However, in this solution, the first 

block consists of three products and the second block 

consists of one product. The completion time of all 

products is also 61 in this plan. 

 

 
Fig .4. A schedule for numerical example with C max = 61 

 

Figure 5 shows the best schedule in which the blocks are 

the same as in figure 4; however, the scheduling of parts 

in blocks is different. The completion time of all products 

is 52 in this plan. 

The yellow color in Table 2 and Fig. 2-5 denotes setup 

operations, the gray cells denote assembly operations, and 

the other colors denote process operations of the parts. 

 

 
Fig. 5. The best schedule for numerical example with C max = 52 

 

A summary of the results of the sample problem is 

presented in Table 3. These results indicate that we can 

improve the objective function of this problem with 

changing three factors: 1. the number of blocks, 2.the size 

of blocks, and 3.the sequence of parts in each block.  

3. Solution Methods  

As mentioned before, the considered problem has been 

proved to be strongly NP-hard and it requires much time 

to solve by exact algorithms. Therefore, utilization of 
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heuristics or meta-heuristics approach would be helpful 

and necessary for medium-sized and large-sized 

problems. The main decision variables of this problem are 

the sequence of products to be processed and assembled, 

the number of lots, the size of each lot and sequence of 

the parts that will be fixed in all blocks. The assignment 

parts to machines are ignored because it is assumed that 

the first idle machine will process the first part that 

arrives. The notation 𝑁/𝑆/𝑄 of Kumar et al. (2000) is 

modified for the considered problem. This notation is 

used throughout this paper to indicate the decision 

methodology used in each of three variables where:  

 N is the method used for deciding the number of 

blocks 

 S is the method used for sizing each block 

 Q is the method used for sequencing the parts in 

each block 
 

This notation 𝑁/𝑆/𝑄 is modified for the considered 

problem as P/𝑁/𝑆/𝑄. The new parameter 𝑃 is defined as 

the method for sequencing the product. 

For example, 𝑅𝑎𝑛𝑑/𝐺𝐴/𝑆𝐴/NEH indicates that 

sequencing of the product is done randomly, Genetic 

Algorithm is applied to determine the number of blocks 

for each product, SA is used to obtain the size of each 

blocks, and lastly, the sequence of the parts is determined 

by the NEH algorithm. Therefore, we have a four-step 

solution approach to the considered problem. These four 

steps are shown as the solution representation scheme in 

Figure 6.  

The methods that have been developed to solve the 

problem in four steps based on Figure 6 are described 

below. 

 

3.1. Extension the johnson algorithm to determine 

the sequence of products 

Fattahi et al. (2014) introduced an extension version of 

Johnson algorithm for sequencing the product in a hybrid 

flow shop scheduling followed by an assembly stage. This 

method is modified for the considered problem that is 

similar to their study. Therefore, we assume the job shop 

as the first stage (or first machine) and assembly as the 

second stage (or second machine). Then, the extended 

Johnson algorithm is used to determine the sequence of 

products.  

The process time of the first stage consists of the process 

operations of parts in job shop and is calculated as (48) 

for any product ℎ. 

  

Algorithm 

A: 
𝑃𝑇𝑝 = ∑ ∑ 𝑝𝑠j,h,p𝑗∈𝑛𝑝ℎ∈𝑛𝑝  For p=1,2,…,P (48) 

 

 

 
 

Fig. 6. An overview of the proposed solution methodology 

Sequencing the products 

Problem data 

Obtain the best size of each 

block 

Sequence the parts in each 

block 

Determine the number of 

blocks 
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 In addition, the assembly time of each product (𝐴𝑝) is 

considered as process time in the second stage. 

After computing 𝑃𝑇𝑝based on (48), the sequencing of the 

products will be done using Johnson algorithm as follows:

 1.

 

Determine th 𝑃𝑇𝑝 according to equations (48) 

and 𝐴𝑝 from the problem data for all products. 

2.

 

Suppose 𝑈 = {𝑝 ∈ 𝑃|𝑃𝑇𝑝 < 𝐴𝑝} and 𝑉 ={𝑝 ∈ 𝑃|𝑃𝑇𝑝 ≥ 𝐴𝑝}. 

3.

 

Sort the set of U non-decreasing in 𝑃𝑇𝑝 and set 

of V non-increasing in 𝐴𝑝.

 4.

 

Determine the sequence of products according to 

the set of U and V. 

 3.2.

 

 NSH heuristic algorithm for determining the 

number of blocks 

Fattahi et al. (2013) introduced a new heuristic, named SH 

heuristic algorithm, in order to determine the number of 

blocks for a hybrid flow shop scheduling problem with 

setup and assembly operations. This method is developed 

in this paper for the job shop stage as a new SH heuristic 

algorithm that is called NSH heuristic algorithm. This 

algorithm scan the scope of the possible number of blocks 

with search and test different possible number of blocks. 

This algorithm is described systematically as below: 

Step1: consider 𝐵1 = 1 (the minimum possible number 

of blocks) and 𝐵2 =number of product p (the maximum 

possible number of blocks for product p) are two amounts 

for number of blocks and calculate the makespan 

according them that is called 𝑀1and 𝑀2 respectively. 

Step 2:  While (round |𝐵1 − 𝐵2|) > 1, do the following. 

If 𝑀2 ≥ 𝑀1
 

 𝐵2 = (1−∝) × 𝐵1+∝× 𝐵2 

  Calculate the new amounts of 𝑀2  

Else 

 𝐵1 =∝× 𝐵1 + (1−∝) × 𝐵2 

  Calculate the new amounts of 𝑀1 

 End 

Step 3:  Return the best number of each block (𝑀𝑖𝑛(𝐵1,  𝐵2)). 

Parameter ∝ indicates the rate of increasing or decreasing 𝐵1 and 𝐵2 during the algorithm. Based on the large-sized 

parameter, algorithm does more search; however, the 

small-sized parameter causes the algorithm to converge 

and terminate sooner. 

Once NSH algorithm is run and a new number for blocks 

are found, two algorithms, based on SA and GA, are used 

as illustrated in section 3.3 to determine the size of each 

block. Finally, an algorithm based on NEH is used as 

stated in section 3.4 to sequence the parts of all blocks. 

3.3. The proposed algorithms for sizing each block 

In order to determine the size of each block, two 

algorithms based on SA and GA are proposed. 

 The proposed algorithm based on SA  

Simulated annealing (SA) is a neighborhood search 

technique that has produced good results for 

combinatorial problems. A standard SA procedure begins 

by generating an initial solution at random. In this section, 

a simulated annealing algorithm is presented to find good 

solutions to the block-sizing problem. Therefore, we use a 

matrix SB×J to represent the size of blocks. The rows of 

this matrix show the blocks and its columns show the 

number of each part 𝑗 in each block. The members of this 

matrix should provide the two following conditions: 

∑ Sb,j = 𝑛𝑝   𝑓𝑜𝑟 𝑗 = 1, 2, … , 𝐽B
b=1  

∑ S𝑏,j ≥ 1   for 𝐽
j=1 b = 1, 2, 3, … , B

 

The initial block sizing is done with a random operator 

that assigns a size to each block considering the two 

above conditions. 

The detailed procedure of this algorithm is shown as 

follows. 

Step 1: Initialization 

Step 1.1: Obtain an initial block sizing (𝐹𝐶  and 𝐹∗). 

Step 1.2: Initiate the initial temperature (𝑇0, 𝑇𝐶 = 𝑇0), 

final temperature (𝑇𝑓), cooling rate (r), and iterate number 

in each temperature (L). 

Step 2: While not yet frozen (𝑇𝐶 ≻ 𝑇𝑓), do the following. 

Step 2.1: Perform the following loop L times. 

Step 2.1.1: Done neighborhood search algorithm and 

select a neighbor 𝐹𝐶′
of 𝐹𝐶 . 

Step 2.1.2: Compute △= 𝑅𝐹𝐶′ − 𝑅𝐹𝐶 (done the 

computation of makespan) 

Step 2.1.3: If  △≤ 0 then 𝐹𝐶 = 𝐹𝐶′
. 

Compute △𝑏= 𝑅𝐹𝐶 − 𝑅𝐹∗. 

If  △𝑏< 0 set 𝐹∗ = 𝐹𝐶 . 

Step 2.1.4: If  △> 0 select a random variable 𝑃 ∽ 𝑈(0,1). 

If  𝑒−△ 𝑇⁄ > 𝑃 set 𝐹𝐶 = 𝐹𝐶′
 

Step 2.2: Set 𝑇𝐶 = 𝑟 × 𝑇𝐶  

Step 3: Return the best solution found for F∗. 

 

Neighborhood search algorithm 

A neighborhood search is proposed in this section. This 

algorithm has two steps as follows: 

 Step 1: select two blocks from existing blocks B 

randomly 𝛽1 , 𝛽2. 

 Step 2: change the size of blocks 𝛽1 and 𝛽2 and 

define the new size as follows: 

1. Select 𝜓𝛼′ 1 ≤ 𝜓𝛼′ ≤ 𝜓𝛼 + 𝜓𝛽 + 𝜓𝛾 − 2 

2. Select 𝜓𝛽′ 1 ≤ 𝜓𝛽′ ≤ 𝜓𝛼 + 𝜓𝛽 + 𝜓𝛾− 𝜓𝛼′ − 1 

3. determine 𝜓𝛾′ 𝜓𝛾′ = 𝜓𝛼 + 𝜓𝛽 + 𝜓𝛾 − 𝜓𝛼′− 𝜓𝛽′ 
Now, there are three new blocks that are different from 

their old version only in size. 
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   In this neighborhood structure, all blocks have a chance 

to be selected and changed. Also, all neighbors are placed 

in a feasible region. 

The final value of the parameters for this proposed 

algorithm is obtained using Taguchi settings considering 

plan of 𝐿𝑛 in three levels. In order to determine the best 

combination of these parameters, three levels of each 

parameter are examined; finally, the best parameter is 

obtained as follows: 

 The initial temperature 𝑇0 = 1000 

 The final temperature 𝑇𝑓 = 10 

 The cooling rate 𝑟 = 0.95 

 The number of iteration in each temperature 𝐿 = 25 

 

 The proposed GA algorithm 

A GA (Holland, 1975) is a search technique that imitates 

the natural selection and biological evolutionary 

processes. GA has been used in a wide variety of 

applications, particularly in combinatorial optimization 

problems which proved to be able to provide near-optimal 

solutions in a reasonable amount of time (Anandaraman 

2011, Luo et al., 2011, and Chakrabortty et al., 2013). 

A GA starts with a population of randomly generated 

candidate solutions (called chromosomes). A chromosome 

is represented by a string of numbers called genes. Each 

chromosome in the population is evaluated according to 

some fitness measures that reflect the objective function 

value and the satisfaction of problem constraints. The 

better the fitness values are, the more chances are given to 

the individual to be selected as a parent. New 

chromosomes are made of a reproduction operator that 

usually consists of crossover and mutation procedures. 

The crossover procedure produces the offspring from two 

parent individuals by combining and exchanging their 

elements. Certain pairs of chromosomes are selected on 

the basis of their fitness. Each of these pairs combines to 

produce new chromosomes, (offspring) and some of the 

offspring are randomly modified. The mutation procedure 

adds small random changes to a chromosome (Maniezzo 

et al., 2009). 

A new population is then formed by replacing some of the 

original population by an identical number of offspring. 

The process is repeated until a stopping criterion is met. 

In this paper, details of the proposed GA with necessary 

illustrations are considered as follow. 

Each solution (chromosome) is represented as a vector 1 × B whose elements (genes) are item indices the size of 

the b
th

 block. An initial population of chromosomes is 

randomly generated. After some experiments, the best 

population size is obtained as 20. The evaluation 

parameter f(c) is the value of objective function. This 

value is used to measure the fitness of a chromosome. For 

each partial (chromosome), block sizing is constructed 

and, accordingly, the makespan of jobs is calculated. 

The roulette wheel and tournament selection without 

replacement is used to select two chromosomes for 

crossover. Marimuthu et al. (2008) illustrated this 

selection method in a genetic algorithm for scheduling m-

machine flow shop with lot streaming. Accordingly, by 

using the method used in this paper, at first, the 

probability of choosing each chromosome p(c) is 

estimated as follows: 

 𝑝(𝑐) =  𝑓∗(𝑐)∑ 𝑓∗(𝑐)𝑝𝑜𝑝_𝑠𝑖𝑧𝑒𝑐=1  where 𝑓∗(𝑐) = 1 𝑓(𝑐)⁄  

 

Then, the cumulative probability 𝑐𝑝(𝑐) for all 

chromosomes is found. 

c𝑝(𝑐) = ∑ 𝑝(𝑐)𝑐𝑐=1  

Then, the random number ‘r’ between 0 and 1 is spun and 

a chromosome ‘c’ is selected, satisfying the following 

condition: 

c𝑝(𝑐 − 1) ≤ 𝑟 < c𝑝(𝑐) 

This selection process is repeated many times equal to 

parent number needed. 

The two-point crossover operator is applied to each pair 

of parent chromosomes with a probability pc (probability 

of crossover). From sensitivity analysis, probability of 

crossover is arrived as 0.85. 

According to the results of experiments, two kinds of 

mutation are used in this algorithm. In type 1, the gene 

being considered is removed from its position and put into 

another randomly chosen position of the same 

chromosome with a probability 
pm 2⁄  in which pm is 

mutation probability. In type 2, two genes (blocks) α , β 

are chosen randomly from each chromosome with a 

probability of 
pm 2⁄ , and their sizes are changed as below: 1 ≤ 𝜓𝛼′ ≤ 𝜓𝛼 + 𝜓𝛽 − 1  𝜓𝛽′ = 𝜓𝛼 + 𝜓𝛽 − 𝜓𝛼′  

For the considered problem, this mutation scheme works 

better than other mutation methods such as swapping two 

genes with another randomly. The probability mutation pm is obtained as 0.20 through trials. For each 

chromosome, a random number is generated (0 < 𝑟 < 1). 

If the random number is less than 0.1, the chromosome is 

selected for mutation type 1; if the random number is 

between 0.1 to 0.2, the chromosome is selected for 

mutation type 2.

 

Seventy percent of chromosomes from the present 

population and thirty percent of chromosomes from 

children (offspring) are selected as new population and 

generation. These chromosomes are selected on the basis 

of their fitness (minimum evaluation makespan). Finally, 

the stopping criterion is based on the number of iterations 

without improvement that is considered up to 15 

iterations.  

𝛽′
 

2 𝛼′
 

1 𝛾′
 

𝐵
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3.4. Algorithm NEH for sequencing the parts in each 

block 

Algorithm NEH is used for sequencing the parts in each 

block, and it is supposed that the sequence of parts is the 

same in all blocks. According to this algorithm, the parts 

are sorted in the non-increasing sum of processing time 

(Nawaz et al., 1983). 

The summary of these heuristics and meta-heuristics is 

shown in Table 4. 

4. Test Problems and Computational Results 

In order to test the proposed model and evaluate its 

performance and effectiveness in problem solving, some 

test problems have been applied in various conditions. 

The mathematical model is solved by GAMS IDE 

(ver.23.5) software and the proposed algorithms are coded 

with MATLAB R2013a software. In order to evaluate the 

performance of the proposed algorithms, 20 instances are 

generated randomly. The instances are categorized into 

three groups (small-, medium-, and large-sized problems) 

based on the number of operations. For each instance, the 

algorithms are replicated 10 times. The random sample 

problems are generated from the distributions in Table 5. 

In what follows, some indexes used for analysis are 

shown. 

For comparing the effectiveness of algorithms, Relative 

Percentage Deviation (RPD) factor is used. RPD factor is 

formulated as (49) and compares the performance of each 

procedure to hat of other procedures for each instance:  

 RPD = Algsol − MinsolMinsol ∗ 100 (49) 

 

To evaluate the performance of the proposed algorithm 

and compare its effectiveness with others, the 

improvement in initial solutions is measured using a well-

known criterion. IMP factor is computed as in Equation 

(50). 

 𝐼𝑀𝑃 = 𝐴𝑙𝑔𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑠𝑜𝑙 − 𝐴𝑙𝑔𝑓𝑖𝑛𝑎𝑙𝑠𝑜𝑙𝐴𝑙𝑔𝑓𝑖𝑛𝑎𝑙𝑠𝑜𝑙 ∗ 100 (50) 

 

In addition, a factor named 𝐷𝑓∗ is used to determine the 

mean deviation of the best solution. This factor is 

computed according to Equation (51). 

 𝐷𝑓∗ = ∑ (𝑓𝑖 − 𝑓∗)𝑛𝑖=1𝑛. 𝑓∗  (51) 

 

where parameter 𝑓∗is the best solution obtained by the 

mathematical model or the algorithms. Therefore, this 

analysis could only be done for the small-sized problems. 

Some other analyses are done on objective function, 

calculation time, etc. 

 

4.1.  Result analysis of small-sized problems 

This section presents the results of solving test problems 

on small scales using a mathematical model and the 

proposed algorithm. In the small-sized problems, 

according to the 𝐷𝑓∗ factor, the proposed algorithms 

achieved almost good performance. In the comparison of 

two proposed algorithms, this factor is about on average 

for algorithm JS/NSH/SA/NEH and for algorithm 

JS/NSH/GA/NEH. 

Figure 7 shows the result of solving the small-sized 

problems using the mathematical model and two 

developed algorithms. Based on these results, the 

algorithm developed based on GA has better performance 

in solving all small-sized problems. 

 

 
Fig. 7. Performance of proposed algorithm and mathematical 

model in solving the small-sized problems 

 

In addition, Figure 8 presents the mean deviation of the 

best solution for two proposed algorithm. As shown in 

Figure 7, the result of algorithm based on GA has less 

deviation from the best solution. However, both of two 

algorithms show good performance in this indicator. 
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Fig. 8. Comparison of D* in two algorithms 

 

 
Fig.  9. Interval plot of RPD value for small-sized problems applying algorithm JS/NSH/SA/NEH 

 

 
Fig. 10. Interval plot of RPD value for small-sized problems applying algorithm JS/NSH/GA/NEH 

 

The RPD values with 95% confidence interval for the 

small-sized problems are shown in Figures 9 and 10 for 

algorithms JS/NSH/SA/NEH and JS/NSH/GA/NEH, 

respectively. We used the optimum solution obtained 

from mathematical model as the minimum solution. These 

figures show the amount of RPD for each run of solving 
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five problems. Based on this index, the JS/NSH/GA/NEH 

performs better than the other algorithm again.  

These results also represent more convergence for the 

algorithms JS/NSH/SA/NEH. On the other hand, although 

algorithm JS/NSH/GA/NEH has better performance in 

general and on average, but its different runs have more 

diversity in results. 

 

4.2. Result analysis on medium and large-sized 

problems 

In this section, results are presented for all kinds of 

problems. Figure 11 shows that algorithm 

JS/NSH/GA/NEH has better performance in all kinds of 

problems. Preference for this algorithm is clearer, 

especially in solving the large-sized problems. 

Performance of the two proposed algorithms in improving 

the initial solution is also presented in Figure 12. As this 

figure shows, both of two algorithms could improve the 

initial solution as appropriate. However, algorithm 

JS/NSH/GA/NEH is again better in this index. By 

increasing the size of the problem and the search space, 

the improvement in initial of JS/NSH/GA/NEH increases. 

In addition, the lack of improvements in small problems 

indicated that the algorithms can meet the optimal 

solution in the first iteration. 

 

Fig. 11. Performance of proposed algorithms for all of the problems (Makespan) 

 

Fig. 12. Performance of proposed algorithms in improvements the initial solution (IMP %) 

 

Trend of improvement is the same for two algorithms; 

however, the conditions are different for some problems. 

For example, in solving problem L3, algorithm 

JS/NSH/GA/NEH could improve the initial solution more 

than problem L2; however, algorithm JS/NSH/SA/NEH 

has improved less than problem L2 did. This condition is 

in reverse with respect to problem L4. These points show 

situations that one of two algorithm sticks to the local 

optimum probability. 

Finally, due to Figure 13, the algorithm based on SA has 

presented the final solution sooner than algorithm GA. 

This difference is clear especially in solving the large-

sized problems.  
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Fig. 13. Computational time of two algorithms CPU time (s) 

 

5. Conclusion  

A two-stage production system was studied in this paper. 

In this system, a number of products of different kinds are 

ordered to be produced. Each product is assembled with a 

set of several parts. The first stage is a job shop to 

produce parts and the second stage is an assembly shop 

with several parallel machines. Maintenance operations 

and access restrictions to machines were considered in the 

first stage. The objective function was to minimize the 

completion time of all products (makespan). This kind of 

production system has many applications in industry and, 

thus, has been studied by many researchers during three 

last decades. 

At first, this problem was described and modelled as a 

mixed integer linear programming. Since this problem has 

been proved to be strongly NP-hard, two new algorithms 

based on heuristic, GA, and SA were developed to solve 

the medium- and large-sized problems. For evaluation of 

the effectiveness of the proposed algorithms, a statistical 

analysis was used along with some factors such as 

Relative Percentage Deviation (RPD) and well-known 

criterion IMP. Various problems were designed and 

solved by the proposed algorithms. Computational results 

revealed that both two proposed algorithms have good 

performance. However, the method based on a genetic 

algorithm performs better than the other proposed 

algorithm with respect to the objective function. However, 

the algorithm based on SA obtained the final solution in a 

shorter amount of time. 

In solving the small-sized problems, both of two 

algorithms presented less than 15% deviation from the 

global optimum. In addition, both of the two proposed 

algorithms show a good improvement in initial solution. 

This improvement increases more than 30% for the large-

sized problems. 

For future study, this problem can be considered under the 

condition of uncertainty for the parameters. Another study 

could be solving the same problem by developing the 

other meta-heuristic algorithms and comparing results 

with the proposed algorithms in this paper. 
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