
Journal of Optimization in Industrial Engineering, Vol.11, Issue 1, Winter and Spring 2018, 67-76  
DOI: 10.22094/JOIE.2017.567.63 

 

67 
 

 

Effects of Probability Function on the Performance of Stochastic 
Programming 

 

Mohammad Ebrahim Krbaschia, Mohammad Reza Bananb,* 
a

Ph.D. in Structural Engineering, Shiraz University, Shiraz, Iran 
b

Professor, Department of Civil and Environment Engineering, Shiraz University, Shiraz, Iran 
 
 

Received 21 December 2015; Revised 17 October 2016; Accepted 20 November 2017 
 

Abstract 
Stochastic programming is a valuable optimization tool where used when some or all of the design parameters of an optimization problem 
are defined by stochastic variables rather than by deterministic quantities. Depending on the nature of equations involved in the problem, a 
stochastic optimization problem is called a stochastic linear or nonlinear programming problem. In this paper, a stochastic optimization 
problem is transformed into an equivalent deterministic problem, which can be solved by any known classical methods (interior penalty 
method is applied here).The paper mainly focuses on investigating the effect of applying various probability functions distributions 
(normal, gamma, and exponential) for design variables. The following basic required equations to solve nonlinear stochastic problems with 
various probability functions for random variables are derived and sensitivity analyses to study the effects of distribution function types and 
input parameters on the optimum solution are presented as graphs and in tables by studying two considered test problems. It is concluded 
that the difference between probabilistic and deterministic solutions to a problem, when the normal distribution of random variables issued, 
is very different from the results when gamma and exponential distribution functions are used. Finally, it is shown that the rate of solution 
convergence tithe normal distribution is faster than the other distributions. 
 
Keywords: Stochastic programming, Sensitivity Analysis, Linear programming, Nonlinear programming, Exponential, Gamma and normal 
probability functions. 
 
1. Introduction 

 
 

Stochastic or probabilistic programming deals with 
situations where some or all of the parameters of an 
optimization problem are defined by stochastic variables. 
Depending on the nature of equations involved in a 
problem, a stochastic optimization problem is called a 
stochastic linear or nonlinear programming problem. The 
basic idea used in stochastic programming is to convert a 
stochastic optimization problem into an equivalent 
deterministic optimization problem. The converted 
equivalent deterministic problem would be solved with 
constrained algorithms such as interior, exterior penalty, 
Rozen, Lagrangian methods. 
Stability and sensitivity of some stochastic constrained 
methods reinvestigated Dentcheva (2006), Dentcheva and 
Ruszczy (2006), Dentcheva and Omisch (2013), Machi et 
al. (2014) and Kuo and Prasad (2000). The mathematical 
derivation of equations required for each method from a 
stochastic viewpoint toward the constrained optimization 
problems is taken into account.  
Some new methods, such as Fuzzy Genetic Algorithm, 
have also been recently introduced by diverse researchers  
 
 

 
 
 
for system reliability optimization (Hennig, 2013; Mutingi 
and Mbohwa, 2014). 
Berhan (2016) has considered a vehicle routing problem 
in urban public system and has developed it based on 
stochastic simultaneous pickup and delivery. 
Pourbagheri and Akhavan (2015) considered a 
probabilistic demand model to model a single-vendor 
multiple-retailer supply chain that works according to 
vendor managing inventory policy. 
In engineering problems, we usually encounter various 
random parameters. The sources of randomness of 
variables could be different. For example, the flexural or 
shear strength of concrete is a random variable in 
designing concrete structures, because the compressive 
strength of concrete samples is not the same as different 
samples. In addition, in designing mechanical systems, the 
actual length of a machined part is a random variable 
since this dimension may lie anywhere within a specified 
tolerance range. In stochastic solutions, fitting a 
distribution function that covers samples is essential. In 
choosing appropriate distribution function to cover sample  
points, we may face two or more choices for distribution 
functionsin a probabilistic engineering problem. For*Corresponding author Email address:banan@shirazu.ac.ir 
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example, for annual rainfall, two distribution functions, 
exponential and gamma for 훼 = 1, can be applied 
appropriately. Although two or more distribution 
functions may fit with the same samples, it is shown in 
this research that choosing each one of them has its own 
effects on the rate of convergence and optimum solution. 
To study the effects of probability functions used for 
distribution of variables in stochastic optimization, to the 
best of the authors’ knowledge, a limited number of 
studies have been conducted. For reliability-based design 
optimization techniques, which try to reduce the failure 
probability of a certain objective function by reducing the 
area of its probability density function, Marchi et al. 
(2014) applied polynomial chaos expansion. It is a 
popular technique for the uncertainty quantification of 
stochastic processes. This technique is based on the theory 
of homogeneous chaos that is introduced to the 
description of stochastic Gaussian processes by means of 
an expansion based on Hermitian polynomials. Expansion 
of Hermitan polynomials, employed to solve finite-
element and hydrodynamic problems nowadays, is used as 
a popular method for determination of stochastic 
properties of stochastic problems.  
There are many probability distribution functions from a 
pure stochastic viewpoint, but some of these functions 
have more application in the modeling and solution of 
engineering problems. Among these distribution 
functions, three important ones are normal, gamma, and 
exponential functions used in this paper. Some of the 
applications of these considered distribution functions are 
explained as follows. 
The most widely used probability distribution is the 
normal (Gaussian) distribution. For example, the 
compressive strength of similar concrete samples is a 
random variable in which the data follow a normal 
distribution (Rao, 2009). 
Gamma distribution function is one of the waiting time 
distributions that may offer a good fit to time when 
collected data have gaps. This distribution is used for 
many important practical problems. For example, 
hydrologists usually use it because measuring, collecting, 
and storing hydrological data, such as rainfall in constant 
time intervals, is very difficult. The recording process 
both requires instrumental and personal supplies and there 
are gaps in the data. Since hydrological variables, such as 
rainfall and runoff, are positive values, the gamma 
distribution can be appropriate for them (AK soy, 2000; 
Krishnomorth et al., 2008; Khodabina and Ahmadabadi, 
2010). 
Another distribution function is the exponential function. 
This distribution does not require the previous data; 
therefore, it is well-suited to model the constant hazard 
rate portion of the bath-tub curve used in reliability theory 
(bath-tub curve is widely used in reliability engineering 
for describing a particular form of the hazard functions 
with different failure rates). The exponential distribution 
occurs naturally when describing the lengths of the inter-
arrival times in the Poisson distribution. Exponential 
variables can also be used to model the situations where 

certain events occur with a constant probability per unit 
length, such as the distance between mutations on a DNA 
strand or between road kills on a given road (Aksoy, 
2000; Krishnomorth et al., 2008; Khodabina and 
Ahmadabadi, 2010).  
The focus of this paper is on studying the effects of 
various probability function distributions used to define 
design variables of the optimal solution to a problem. In 
the following section, the basic required equations are 
derived to solve nonlinear stochastic problems with 
various probability functions for variables. To investigate 
the effects of function type and input parameters on the 
solutions, sensitivity analysis is performed on two test 
problems. The results are presented as graphs and tables. 
This paper has shown that input parameters of objective 
function have significant effect on the optimum point 
value. Also, it is shown that the difference between 
probabilistic and deterministic solutions for the gamma 
distribution with α = 1 is much more than that for other 
distribution functions, and so the results are not very 
sensitive to the probability values of normal and gamma 
distributions with α = 2. 
2. Formulations 

In this section, first, some required equations for 
stochastic programming for various distribution functions, 
including normal, gamma and exponential formulations, 
are derived. In derivation of these equations, the 
probability of satisfying constraints is the main factor. 
Now, the required steps for the derivation of essential 
formulas are presented. 
Assume that a random event is the measurement of 
quantityY, which takes on various values in the range of 
−∞ to ∞. Such a quantity is called a random variable. In 
general, random variables are of two types: discrete and 
continuous. When some of the parameters involved in the 
objective function and the associated constraints vary 
their mean value or have a functional distribution as 
normal, gamma, or exponential distributions, a general 
optimization problem has to be formulated as a stochastic 
programming problem. The main difference between 
linear and nonlinear stochastic problems is the need of 
derivatives for nonlinear cases. A stochastic nonlinear 
programming problem can be stated in the standard form 
as in expression (1). 
Find Y which minimizes f(Y)(1)  
Subjected to Eqn. (2): 
P g (Y) ≥ 0 ≥ p   j = 1,2, . . , m (2) 
whereY is the vector of Ndesired variables y , y , … , y : 
some of them may be random in nature and some others 
as deterministic. What follows are basic equations (Eqs. 3 
to 8) for a nonlinear stochastic optimization problem, Rao 
(2009).  

2.1. Objective function 

Objective function f(Y)can be expanded to the mean 
values of y  as Taylor series (higher order derivative terms 
are omitted) in the form of Eq. (3). 

f(Y) = f(Y) + ∑ ( | )(y − y )(3)  
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If the standard deviations ofy , σ be small, f(Y) can be 
approximated by the first two terms as    Eq. (4). 
f(Y) ≅ (Y) − ∑ ( | )(y ) + ∑ ( | )(y ) =
ψ(Y) (4) 
Assume that all y , i = 1, 2, . . . ,N follow the functional 
distribution ψ(Y), which is a linear function of Y, and 
follow the same distribution function. The mean and the 
variance of ψ are given by Eqs. (5) and (6) because all y s 
are independent variables. 
μ(Y) = ψ (5) 

Var(ψ) = σψ = ∑ ( | ) σ (6) 
For the purpose of optimization, a new objective function 
f(Y) can be constructed as Eq. (7). 
f(Y) = ψ+σψ (7) 
Rao (2009) introduced two parameters k ≥ 0 and k ≥
0whose numerical values indicate the relative importance 
of ψ and σψ  for the minimization of an objective function, 
shown in Eq. (8). (Insection 3.2, the importance of these 
parametersk  and k foran optimum solution to the 
problem is investigated). 
f(Y) = k ψ+k σψ (8)  
2.2 Constraints 

If some parameters are random in nature, the constraints 
will also be probabilistic. The constraint inequality can be 
written as in Eq. (9): 
∫ f (g )dg∞ ≥ p    (9) 
and noting that∫ f(x)∞

∞ dx = 1    
We have Eqn. (10): 
∫ f (g )dg∞ ≥ ∫ f(x)dx∞ (10)  
Parameter Ain Eq. (10) would be chosen in a way that it 
coincides with probability, where f (g ) is the probability 
density function of random variable g ,whose range is 
assumed to be −∞ to ∞. Constraint function g (Y) can be 
expanded to the vector of mean values of random 
variablesY in the form presented by Eq. (11): 
g (Y) ≅ g (Y) + ∑ ( | )(y − y )(11) 
From this equation, mean valueg  and standard 
deviationσ  of g  can be obtained as Eqs. (12) and (13): 
g = g (Y) (12) 

σ = [∑ ( | ) σ ] (13) 
By introducing a new variableθtoEq. (14) 
θ =

σ
(14) we can rewrite Eq. (10) in the form of 

Eq. (15): 
∫ f(∞

σ
θ)dθ ≥ ∫ f(x)dx∞ (15) 

So, Eq. (16) must be satisfied: 

σ
≤ A (16) 

or can be written in the form of Eq. (17): 
−g − σ A ≤ 0    (17) 

Equation (15) can be rewritten in the form of Eq. (18) by 
replacing Eq. (13) instead of σ : 

−g − A ∑ ( | ) σ ≤ 0    (18) 

2.3. Equivalent Deterministic Problem 

Thus, the optimization problem can be stated in its 
equivalent deterministic form as Eqs. (19) and (20): 
Find Y which minimizes f(Y)(19) 
f(Y) = k ψ+k σψ (20) 
where: 
ψ(Y) = ψ  
and its variance is in the form of Eq. (21): 

Var(ψ) = σψ = ∑ ( | ) σ (21) 
Subjected to the probabilistic constraint in the form of Eq. 
(22): 
P g (Y) ≥ 0 ≥ p   j = 1,2, . . , m      (22) 
Similar to Eq. (18), we have Eq. (23): 

−g − A ∑ ( | ) σ ≥ 0        (23) 
Depending on which probability function chosen and 
employed in Eq. (23), σ  and A  in Eqs. (21) and (23) 
would be as follows: 

2.4. Probability Functions 

2.4.1.Exponential Distribution 

The exponential distribution function is expressed in the 
form of Eq. (24). Its density function is shown in Fig. (1). 

 
Fig. 1. Exponential density function. 

 

f(x; λ) = λe λ      x ≥ 0
0               x < 0

(24) 
Its mean and variance are in the form of Eq. (25). 
E(X)orμ =

λ
 ;     Var(X)or σ =

λ
(25) 

In multi-dimensional optimization problem with constant 
α, we have Eq. (26): 
E(X)orμ =

λ
;     Var(X)or σ =

λ
(26) 

Similar to Eq. (10), we. (27); 

∫∞ λe λ  dx = p ⇒  A = −
λ

(27) 
  ( )

In multi-dimensional optimization problem,A  can be 
expressed as Eq. (28): 

μ =
λ

⇒ A = −
  ( )

λ
(28) 
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2.4.2.Gamma Distribution 

The gamma distribution function is in the form of Eq. (29) 
whose parameters α and θ would change this function. Its 
density function is shown in Fig. (2). 

f(x) = θαΓ(α) xα  e θ    0 ≤ x < ∞
0               x < 0

(29) 

 
Fig. 2. Gamma density function. 

 
Its mean and variance are in the form of Eq. (30). 
E(X)orμ = αθ; Var(X)orσ = αθ (30) 
In multi-dimensional optimization problem with constant 
α, we haveEq. (31) for  mean value and deviation: 
E(X)orμ = αθ ;        Var(X)orσ = αθ (31) 
 
Similar to Eq. (10), we have Eq. (32) for gamma 
distribution function for α = 1: 

α = 1 ⇒ wehave: ∫ e dx = p∞ (32) 

and A  can be expressed as Eq. (33): 
A = −θ  ln (p )       (33) 
For gamma distribution function for α = 2, Eq. (10) can 
be written in the form of Eq. (34), and the solution to Eq. 
(35) to obtainA can be obtained through numerical 
methods. 

α = 2 ⇒ wehave: ∫
Γ( ) x e dx = p∞ (34) 

e [A + θ ] = θ p (35) 
For gamma distribution function for α = 3, Eq. (10) 
would be changed in the form of Eq. (36): 

α = 3 ⇒we have: ∫
Γ( ) x  e dx = p∞ (36)  

p e + 2[θ e [A + θ ]] = 2θ p (37)  
Eq. (37) is a similar state to Eq. (35) and numerical 
methods are helpful. 
 
2.4.3. Standard normal distribution  

The normal distribution has a probability density function 
given by Eq. (38).Its density function is shown in Fig. (3). 

f (x) =
√

e − ∞ < x < ∞ (38)  
where μ  and σ  are the parameters of the distribution, 
which are also the mean and standarddeviation of X, 
respectively. The distribution 

 
Fig. 3.Standard normal density function. 

function of standard normal variable z is often designated 
as ∅(z),and parameter p is the cumulative probability. 
∅(z ) = p andz = ∅ p (39)Similar to Eq. (10) we. 
(40) for standard normal distribution: 

∫
√

∞ e dθ ≥ ∫
√

∞ e dt(40) 

A is defined in Eq. (41)for normal distribution. 
A = −∅ p (41) 
In the next section, stochastic solutions to two considered 
test problems are numerically studied. The deterministic 
solution to a problem was studied by Rao(2009). 
Investigating the effects of various probability functions 
includes exponential, gamma, and normal distributions of 
random variables on the accuracy, and convergence of 
solution is the main subject of the following section.  
 
3. Analysis 

The objective function as given in Eq. (8) depends on two 
parametersk  and k . In addition, it is shown in Eq. (7) 
that mean value and standard deviation of every variable 
are important factors in the new objective function. 
Similar to the objective function, one can notice that in 
the constraint equations, standard deviation and 
probability of satisfying constraints are also important. To 
investigate the effects and importance of these parameters, 
separate codesare developed using MATLAB 
programming language. To solve an equivalent 
constrained optimization problem, interior penalty method 
is applied. The probability functions used to define 
variables are of three types; exponential, gamma withα =
1, α = 2, α = 3, and normal distributions with various 
mean values and probabilities (90%, 93%, and 96%).Two 
test problems are considered, one of which is a general 
mathematical problem and the other one is a structural 
mechanical problem. The impact of initial point values, 
standard deviations, probability function type is mainly 
pointed out in this paper. These two problems are 
presented as follows. 
 
Test problem 1; Rao, (2009): 

It is a mathematical optimization problem whose 
objective function and constraints are nonlinear. 
Objective function:f(x) = 5y x + x −

x − y y x  
Subject to: 
g(1) = x + y y x −

y y
40 ≤ 0 
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g(2) =
y
10 x + y y x − y y ≤ 0 

g(3) = −x ≤ 0 
g(4) = −x ≤ 0 

where 
x
x are deterministic and 

y
⋮

y
 are probabilistic 

(random) variables. 
 

Test problem 2; Rao (2009): 

It is a general and a rather relatively simple nonlinear 
optimization problem to minimize the following objective 
function, but it has been chosen due to its engineering 
feature. Its scheme is shown in Fig. (4). 
 

 
Fig. 4. Scheme of test problem no.2. 

 
Objective function:f(x) = 2√2x + x  
subject to: 
g(1) = σ (X) − σ( ) ≤ 0 
g(2) = σ (X) − σ( ) ≤ 0 
g(3) = σ (X) − σ( ) ≤ 0 

g(4) = x( ) − x ≤ 0 
g(5) = x( ) − x ≤ 0 
g(6) = x −x( ) ≤ 0 
g(7) = x −x( ) ≤ 0 
 

where 
x
x  are deterministic and x( )

x( )  are probabilistic 
(random) variables and: 

σ (X) = P
√2x + x

√2x + 2x x
σ (X) = P

1
√2x + x

σ (X)

= −P
x

√2x + 2x x
 

It is assumed that: 
P = 20  ; σ( ) = 15; σ( ) = 30 . 
 
In sections 3.2, effects of k  and k coefficients of the 
objective function as defined in Eq. (20) and mean value 
are studied. In section 3.3, the solution to each test 
problem in deterministic and probabilistic forms with 

100% probability of satisfying constraints is compared 
with each other. In section 3.4, the rate of convergence for 
various types of probability functions is studied. In all 
these sections, the type of the probability function is the 
focus in the presented results and derived conclusions. 
 

3.1. Input parameters 

In the first step, value of parameter Ain Eq. (23), which is 
a required quantity in the stochastic formulation, is 
derived. Its values are given in Table 1. Two initial values 
of the test problems are chosen based on trial-and-error 
method. Choosing a feasible initial point is a draw back to 
the interior penalty method. However, because of  its 
stability and good precision, when compared with other 
optimization methods such as exterior or Rozen, it has 
been chosen here. This restriction limited us in assigning a 
wider range of probability values, so only probabilities of 
90, 93, and 96% for constraints are considered. For these 
two considered test problems, because objective functions 
have no random variables, changing initial values and 
other input parameters do not affect the solution and only 
the type of the probability function affects the accuracy of 
the optimal point. 
 
3.2. Effects of k1 and k2 

To study the effects of k  and k  values (coefficients of 
objective function in Eq. 8) on the results, four cases as 
given in Table 2 are considered. The effects of probability 
function and probability values for test problem 1 are 
graphically shown in Fig. (5). Comparing the results 
shows that these parameters have significant effect on the 
optimum point value. General trend of all curves is the 
same as for all probabilities’ functions. 
 
Table 2 
k  and k  values 

Case 
Number 

K1 K2 

1 1 1 
2 0.5 0.5 
3 1 0 
4 0 1 

 
3.3. Comparing Probabilistic and Deterministic Solutions 

In the deterministic solution, there are neither random 
variables nor standard deviations representing design 
variables. To compare the accuracy of the optimum points 
in deterministic and stochastic solutions, different mean 
values equal to 4 and 20 for 90%, 93%, and 96% 
probabilities are carried out. It is observed from the 
analyses that the  
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Table 1 
Model parameters for exponential, gamma, and normal probability functions for test problem 1  
with mean values equal to 4 and 20. 

Function Probability Function parameters 
휇 = [4 4 4 4] 휇 = [20 20 20 20] 

Exponential 90% 

 

휇=4 휆 = 0.25 A=0.42 휇=20 휆 = 0.05 A=2.1072 
Gamma 훼=1 휃 = 20 A=0.42 훼=1 휃 = 20 A=2.1072 

훼=2 휃 = 10 A=1.04 훼=2 휃 = 10 A=5.29 
훼=3 휃 = 6.66 A=1.82 훼=3 휃 = 6.66 A=7.35 

Normal 휎 = 0.6 ∗Mean value( y) A=1.28 휎 = 0.6 ∗Mean value( y) A=1.28 
Exponential 93% 

 

휇=4 휆 = 0.25 A=0.29 휇=20 휆 = 0.05 A=1.45 
Gamma 훼=1 휃 = 20 A=0.29 훼=1 휃 = 20 A=1.45 

훼=2 휃 = 10 A=0.83 훼=2 휃 = 10 A=4.28 
훼=3 휃 = 6.66 A=1.58 훼=3 휃 = 6.66 A=6.28 

Normal 휎 = 0.6 ∗Mean value( y) A=1.48 휎 = 0.6 ∗Mean value( y) A=1.48 
Exponential 96% 

 

휇=4 휆 = 0.25 A=0.163 휇=20 휆 = 0.05 A=0.8164 
Gamma 훼=1 휃 = 20 A=0.163 훼=1 휃 = 20 A=0.8164 

훼=2 휃 = 10 A=0.59 훼=2 휃 = 10 A=3.10 
훼=3 휃 = 6.66 A=1.26 훼=3 휃 = 6.66 A=4.67 

Normal  휎 = 0.6 ∗Mean value( y) A=1.75 휎 = 0.6 ∗Mean value( y) A=1.75 

 
 
optimum solution of the stochastic form with 100% 
probability of satisfying the constraints will not forms, 
two analyses for test problem 1 with converge to the 
similar results as deterministic solution converged. It is 
due to the simplifications applied to the derivation of the 
probabilistic form of the objective function and 
constraints (see section 2.1). Test problem 1 in the 
deterministic form for a mean value equal to 4 is defined 
as follows: 
objective function:  
f(x) = 100x + 133x − 2x − 400x  
 

 
subject to: 
푔(2) = 2푥 + 400푥 − 400 ≤ 0 
푔(3) = −푥 ≤ 0 
푔(4) = −푥 ≤ 0 
Its optimum point starting from feasible point 푥 = 4

4  

is:푥∗ =
푥
푥 = 0.0666

1.5  and with a starting feasible 

point 푥 = 20
20  is: 푥∗ =

푥
푥 = 0.1120

1.5009 . 
 
 

푔(1) = 푥 + 400푥 − 10 ≤ 0 
 

Fig.5.  Comparing the function values in the optimum point for exponential, gamma, and normal 
probability functions with (a):x , (b):x  and mean value equal to 4. 
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The difference between determinant and probabilistic 
solutions is presented as an error (it is not an error and is 
only a difference between the deterministic and stochastic 
optimum points in the normalized percentage form). 
Results of this comparison for test problem 1 with k1 and 

k equal to one and mean values equal to 4 and 20 with 
normal, gamma, and exponential probability functions are 
summarized in Tables 3 and 4. By comparing the results, 
one can observe that the error for the gamma distribution 
with 훼 = 1 is much more than those for other distribution 
 

 

 

        (a) 
 

 (b)

(c) 
Fig.6. Comparing Function values in the optimum point for exponential, gamma and normal  

probability functions with (a):90%, (b):93% and (c):96% probability and mean value equal to 4. 
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functions, and the results are not very sensitive to the 
probability values of normal and gamma distributions 
with 훼 = 2. 

3.4. Comparing rate of convergence 

Rate of convergence is measured by the speed of analysis. 
For a problem with numerous variables, the speed of 

analysis could be a decisive factor. Although choosing 
probability function depends on the nature of a problem, 
comparing the methods from the speed point of view is 
informative. For this reason, all analyses are carried out in 
a similar situation by a computer with a 2-core i-3 CPU.  

 

 
 
Table3 
Difference between deterministic and probabilistic solutions for test problem one with various distribution functions and probabilities for 
μ(X) = 4. 

96% PRO. 93% PRO. 90% PRO. Function 

Error- 

푥 % 

Error-  

푥 % 

푥  푥  Error- 

푥 % 

Error-  

푥 % 

푥  푥  Error- 

푥 % 

Error-  

푥 % 

푥  푥  

-106.2 -45.4 -0.0006 0.0053 22268.0 42.3 2.1697 0.0138 8813.5 40.2 2.1749 0.0136 Normal 

24507.2 2650.5 2.3869 0.2668 -105.2 -36.1 -0.0005 0.0062 -102.0 -36.1 -0.0005 0.0062 α=1 Gam

ma -104.1 -41.2 -0.0004 0.0057 -104.1 -36.1 -0.0004 0.0062 -101.6 -36.1 -0.0004 0.0062 α=2 

-103.1 -38.1 -0.0003 0.006 -103.1 -38.1 -0.0003 0.006 -101.2 -38.1 -0.0003 0.006 α=3 

24507.2 2650.5 2.3869 0.2668 -105.2 -36.1 -0.0005 0.0062 -102.0 -36.1 -0.0005 0.0062 Exponential 

 

 

Table 4 
Difference between deterministic and probabilistic solutions for test problem one with various distribution functions and probabilities for 
μ(X) = 20. 

96% PRO. 93% PRO. 90% PRO. Function 

Error- 

푥 % 

Error-  

푥 % 

푥  푥  Error- 

푥 % 

Error-  

푥 % 

푥  푥  Error- 

푥 % 

Error-  

푥 % 

푥  푥  

21617.0 4.0 2.1717 0.0104 21617.0 4.0 2.1717 0.0104 8621.7 4.0 2.1717 0.0104 Normal 

-105.0 -16.0 -0.0005 0.0084 -105.0 -16.0 -0.0005 0.0084 -102.0 -16.0 -

0.0005 

0.0084 α=1 Ga

mm

a -105.0 46.0 -0.0005 0.0146 -105.0 38.0 -0.0005 0.0138 -102.0 -20.0 -

0.0005 

0.008 α=2 

-104.0 -228.0 -0.0004 -0.0128 -105.0 -19.0 -0.0005 0.0081 -102.0 -16.0 -

0.0005 

0.0084 α=3 

-105.0 -16.0 -0.0005 0.0084 -105.0 -16.0 -0.0005 0.0084 -102.0 -16.0 -

0.0005 

0.0084 Exponential 
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Table 5 
 Comparing Speed of analyses for Normal, gamma, and exponential probability  
functions with mean values equal to 4 (test problem 1). 

Function 풙ퟏ 풙ퟐ Function value Elapsed time 

(Min:Sec) 

Normal 0.0136 2.1749 -2.6717 352 

Gamma α=1 0.0062 -0.0005 0.0439 592 

α=2 0.0062 -0.0004 0.0194 522 

α=3 0.006 -0.0003 0.0103 496 

Exponential 0.0062 -0.0005 0.0439 582 

 

Number of iterations for the convergence of interior 
penalty function algorithm in all cases is3.  Results are 
summarized in Table 5. It is shown that normal 
distribution has a faster speed than other methods. Sorting 
other distribution functions is in the form of: gamma with 
α = 3, exponential, gamma with α=2, and gamma with 
α = 1. Although exponential and gamma with α = 1 have 
similar optimum solutions, their rates of convergence are 
not the same.  
 
4. Conclusion 

The main concern of this paper is studying the effects of 
application of various probability functions used for a 
random variable distribution on the stochastic 
programming solution. To do so, normal, gamma, and 
exponential distributions are considered. In addition, the 
effects of inputs (initial point value, mean value, etc.) on 
the stochastic programming formulation are investigated. 
Toanalyze, two test problems are included and general 
conclusions are derived from results of the analyses. Main 
conclusions are: 
1- Required parameters for stochastic programming for 
normal, gamma, and exponential probabilistic distribution 
functions can be regarded appropriately according to the 
derived formulations. 
2- Generally, gamma distribution forα = 1yields similar 
results to those of exponential function except for rate of 
convergence. 
3- Importance coefficients (k  and k ) in the probability 
formulation of an objective function have significant 
effect on the accuracy of the solution, especially when 
they are unequal. 
4- Generally, the difference between probabilistic and 
deterministic solutions with an increase of probability 
increases for all distribution functions. 
5-With the same expectancy (E(X)) and variance 
(Var(X)), optimum solution of the normal distribution 
 
 
 

  
function differs considerably from the other distributions 
(i.e., gamma and exponential distribution functions), 
while for the other ones, optimum solutions are very close 
to each other.  
6-Generally, the rate of solution convergence for normal 
distribution is much faster than the other distributions and 
gamma for α = 3, gamma for α = 2, exponential and 
gamma for α = 1are in thelower stairs, consequently. 
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