

DOI: 10.22094/JOIE.2018.671.1433

107

Diversified Particle Swarm Optimization for Hybrid Flowshop

Scheduling

Javad Behnamian*

Department of Industrial Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran

Received 23

October 2016; Revised 20 April 2017; Accepted 14

February

2018

Abstract

The aim of this paper is to propose a new particle swarm optimization algorithm to solve a hybrid flowshop scheduling with sequence-

dependent setup times problem, which is of great importance in the industrial context. This algorithm is called diversified particle swarm

optimization algorithm which is a generalization of particle swarm optimization algorithm and inspired by an anarchic society whose

members behave anarchically to improve their situations. Such anarchy lets the algorithm explore the solution space perfectly and prevent

falling in the local optimum traps. Besides, for the first time, for the hybrid flowshop, we proposed eight different local search algorithms

and incorporate them into the algorithm in order to improve it with the help of systematic changes of the neighborhood structure within a

search for minimizing the makespan. The proposed algorithm was tested and the numerical results showe that the proposed algorithm

significantly outperforms other effective heuristics recently developed.

Keywords: Particle swarm optimization; Scheduling; Sequence-dependent; Hybrid flowshop.

1. Introduction

Particle swarm optimization (PSO) algorithm has been

successfully applied to a variety of problems, such as

continuous and combinatorial optimization problems,

artificial neural network training, and multi-objective

optimization problems (García-Villoria and Pastor 2009).

However, there are several difficulties to apply PSO to

discrete optimization problems because Kennedy and

Eberhart (1995) originally developed it for continuous

problems. Another shortcoming of PSO is its premature

convergence. To overcome these shortcomings, in this

paper, a diversified particle swarm optimization (DPSO)

algorithm as a powerful generalization of PSO algorithm

is introduced. DPSO algorithm is originally inspired by

the concept of a society whose members behave

anarchically to improve their situations. In DPSO

algorithm, the particles are fickle, and their fickleness

increases when their situations become worse. They also

occasionally behave irregularly and move towards worse

particles of swarm or worse positions which have been

previously visited. DPSO algorithm of such anarchic

particles explores the solution space perfectly and avoids

being trapped into the local optima.

A hybrid flowshop can model the process industry,

including chemical, pharmaceutical, oil, food, tobacco,

textile, paper, and metallurgical industry. In fact, the

hybrid flowshop is a flowshop which consists of parallel

machines in production stages. The flow of products is

unidirectional and each product is processed at only one

facility in each stage and at one or more stages. In this

production environment, we also assume that there is a

setup time for jobs which is sequence-dependent.

Scheduling problems with sequence-dependent setup

times are among the most difficult classes of scheduling

problems (Pinedo 2012) and sequence-dependent setup

scheduling of a hybrid flowshop system is even more

challenging (Allahverdi 2015). In this paper, following

Ahmadi-Javid (2011), we present an DPSO algorithm for

the sequence-dependent hybrid flowshop scheduling

problem (SDST-HFSP).

The paper is organized as follows. Section 2 gives the

literature review of the related papers. Section 3

introduces the problem description. Section 4 presents the

DPSO algorithm implemented for SDST-HFSP.

Numerical study is given in Section 5. Finally, Section 6

is devoted to conclusions and future studies.

2. Literature Review

In this section, first, a brief review of continuous and

discrete PSO algorithms is given in sub-sections 2.1 and

2.2. Then, in sub-section 2.3, some diversification

approaches for PSO algorithm are reviewed. Finally, in

sub-section 2.4, the (meta)heuristics of the hybrid

flowshops are reviewed.

2.1. Continuous PSO algorithm

There are several papers which have reported successful

application of PSO algorithm for optimization problems.

Some successful applications of PSO algorithm are as

follows: inventory planning (Tsou, 2008), robotics

(Coelho & Sierakowski, 2008), water supply systems

(Montalvo et al., 2008), image segmentation (Maitra &

Chatterjee, 2008), classification (Marinakis et al., 2008),

*Corresponding author Email address: behnamian@basu.ac.ir

107- 119, Summer & Autumn 2019,Vol.12, Issue 2

Journal of Optimization in Industrial Engineering

Javad Behnamian/ Diversified Particle Swarm…

108

support vector machines (Lin et al., 2008), resource

allocation (Yang et al., 2008), communication networks

(Huang et al., 2008), dynamic question generation (Cheng

et al., 2009), reliability-redundancy optimization (Coelho,

2009), clustering (Chen & Zhao, 2009), mining breast

cancer pattern (Yeh et al., 2009), gate array placement

(El-Abd et al., 2010), quality control and inspection (Sun,

2009), identify Wiener model (Tang et al., 2010),

assembly sequence planning (Wang and Liu, 2010), and

others.

2.2. Discrete PSO algorithm

Kennedy and Eberhart (1997) proposed the first discrete

PSO algorithm which is characterized by a binary solution

representation and a stochastic velocity model. Several

binary solution representation models were proposed and

tested in Mohan and Al-kazemi (2001). Another approach

for tackling discrete optimization problems by PSO

algorithm was also proposed by Laskari et al. (2002)

which is based on the truncation of the real values to their

nearest integer. Some other papers related to the discrete

PSO algorithm are as follows: n-queens problem (Hu et

al. 2003), polygonal approximation of digital curves (Yin,

2004), no-wait flowshop (Liu et al., 2005), vehicle routing

problem (Chen et al., 2006), resource-constrained project

scheduling (Zhang et al., 2006), job shop (Sha and Hsu,

2006), transmission network expansion planning (Xiong

et al., 2007), data clustering (Karthi et al., 2008),

estimation of polygonal approximation's distribution

(Wang et al., 2009), traveling salesman's problem (Król

and Drożdżowski, 2010), and flowshop (Ahmadi-Javid,

2011).

2.3. Diversity mechanisms for PSO algorithm

There are different ways to prevent premature

convergence and to make diversity in PSO algorithm.

Loovbjerg (2002) used self-organized PSO algorithm. In

this algorithm, when two particles are too close to one

another, a variable called the “critical value” is

incremented. When it reaches the criticality threshold, the

particle disperses its criticality to other particles that are

close to it and relocates itself. Hu and Eberhart (2002)

introduced the use of a dynamic neighborhood to the PSO

algorithm. In this algorithm, having updated swarm, the

particles update their neighborhoods. Xie et al. (2002)

added negative entropy to the particle swarm in order to

discourage premature convergence (excessively rapid

convergence towards a poor quality local optimum). In

some conditions, they weighted the velocity and, in some

conditions, the particle’s locations are set by some

random values. Blackwell and Bentley (2002) reduced the

attraction of the swarm center to prevent the particles

clustering too tightly in one region of the search space.

For multi-objective optimization problem, Parsopoulos

and Vrahatis (2004) suggested theuse of multiple swarms

where the number of swarms is equal to that of objective

functions. Each swarm searches one objective function

and the best solution found by a swarm is fed to another

swarm to direct the search of the particles of that swarm.

Clerc (2006) dynamically changed the size of the swarm

according to the performance of the algorithm. The size of

the swarm is important because too few particles will

cause the algorithm to converge prematurely to a local

optimum, while too many particles will slow down the

algorithm. Gaafar et al. (2008) combined PSO algorithm

with a genetic algorithm to schedule in an agile

environment. Xiang et al. (2008) proposed a new method

in which particles have time-delay to control the process

of information diffusion. Sadati et al. (2009) used

knowledge-based cooperative strategy to particle

diversification. Jie et al. (2008) hybridized PSO algorithm

with a simulated annealing algorithm. García-Villoria and

Pastor (2009) added a random velocity according to the

incongruity of the population in the PSO algorithm. Koua

et al. (2009) enhanced particles' society by adding a co-

evolutionary strategy and evolving direction. In the co-

evolutionary strategy, a deterministic selection strategy is

used to ensure the diversity of the population. In this

study, the infeasible solution was properly accepted as a

feasible solution and the proposed diversity mechanism

was helpful to guide the search direction of infeasible

solution towards the feasible region. Chen (2011)

introduced two layers of PSO algorithm with M swarms

of particles and one swarm of particles in the bottom and

top layers, respectively.

2.4. Hybrid flowshops

Recently, several heuristics have been developed for

hybrid flowshops. Botta-Genoulaz (2000) proposed

several heuristics for a flowshop with multiple identical

machines per stage, positive time lags, and realistic

constraints as well as sequence-independent setup and

removal times. Azizoglu et al. (2001) considered the total

flow time measure in a multi-stage hybrid flowshop and

suggested a branch and bound algorithm that gives the

optimal solutions for moderate-size problems.

Harjunkoski and Grossmann (2002) considered setup

times that only depend on the machine and not on the job.

Lee et al. (2003) developed a dispatching rule-based

approach for the HFSP in a printed circuit board

manufacturing system. Kurz and Askin (2003) compared

several methods for a makespan minimization problem

with sequence-dependent setup times in which jobs are

allowed to skip stages. They also developed an integer

model, some heuristics, and a random keys genetic

algorithm (RKGA) for SDST flexible flowshop (Kurz and

Askin 2004). Wardono and Fathi (2004) developed a tabu

search algorithm for a multi-stage parallel machine

problem with limited buffers. Another research which

addressed the real-world industries' problems was studied

by Andres et al. (2005). They considered the problem of

products grouping in a tile industry. They proposed some

heuristic and metaheuristic algorithms for a three-stage

HFSP with sequence-dependent setup times. For HFSP,

Tang et al. (2006) proposed a new Lagrangian relaxation

algorithm based on stage decomposition for minimizing

the total weighted completion time. Janiak et al. (2007)

Journal of Optimization in Industrial Engineering Vol.12, Issue 2, Summer & Autumn 2019, 107- 119

109

proposed some approximation algorithms for the HFSP

with cost-related criterion. In this paper, the scheduling

criterion consists of three parts: total weighted earliness,

total weighted tardiness, and total weighted waiting time.

An improved ant colony optimization for hybrid flowshop

scheduling was proposed by Alaykiran et al. (2007) to

minimize Cmax criterion. In order to achieve better results,

they conducted a parameter optimization study. Kim et al.

(2008) focused on the scheduling problem of minimizing

makespan for a given set of jobs in a two-stage hybrid

flowshop subject to a product-mix ratio constraint. Ying

(2008) proposed an iterated greedy heuristic to minimize

makespan in a multistage hybrid flowshop with

multiprocessor tasks. In this research, to validate and

verificate the proposed heuristic, computational

experiments were performed on two benchmark problem

sets. Jina et al. (2006) considered the multistage hybrid

flowshop scheduling problem. To minimize the

makespan, based on simulated annealing and the variable-

depth search, they proposed an optimization procedure.

This study reveals that the proposed metaheuristic in

comparison with Johnson (Johnson et al. 1989) and

shortest processing time (SPT) rules and tabu search was

an efficient algorithm. Tseng and Liao (2008) proposed a

PSO algorithm for hybrid flowshop scheduling. In this

study, computational results show that the PSO algorithm

outperformed the genetic algorithms and an ant colony

system algorithm. Wang and Tang (2009) hybridized tabu

search algorithm with scatter search algorithm to solve the

hybrid flowshop scheduling with finite intermediate

buffers, whose objective is to minimize the sum of

weighted completion time. They showed that this hybrid

heuristic can provide good solutions compared to lower

bounds, NEH (Nawaz et al. 1983) and genetic algorithm

(GA). Behnamian et al. (2009) considered the problem of

sequence-dependent setup time hybrid flowshop

scheduling with the objectives of minimizing the

makespan and sum of the earliness and tardiness of jobs,

and presented a three-phase multi objective method.

Naderi et al. (2011) investigated the scheduling flexible

flowshops subject to periodic preventive maintenance on

machines to minimize the makespan. They proposed a

genetic algorithm, an artificial immune system, and some

constructive heuristics to tackle the problem. Behnamian

et al. (2012) proposed a hybrid metaheuristic algorithm

including ant system, simulated annealing, and variable

neighborhood search to determine a scheduling for hybrid

flowshop problem that minimizes the makespan of jobs.

Recently, Li et al. (2014) proposed a hybrid variable

neighborhood search algorithm that combines chemical-

reaction optimization and estimation of distribution to

minimize the maximum completion in the hybrid

flowshop scheduling problems.

This paper proposed a new algorithm to solve the hybrid

flowshop scheduling with sequence-dependent setup

times problem. The proposed algorithm is a generalization

of particle swarm optimization and inspired by the

concept of an anarchic society whose members behave

anarchically to improve their situations. Such anarchy lets

algorithm explore the solution space perfectly and

prevents falling in local optimum traps. Besides, we

proposed eight different local search algorithms and

incorporated them into the algorithm in order to improve

it by systematic changes of the neighborhood structure

within a search.

3. Problem Description

Since different constraints and assumptions can result in

different scheduling problems in hybrid flowshops, we

clearly mention our assumptions in the following:

1. All parameters are known deterministically when the

scheduling is undertaken.

2. Stage t has a set of
t

m identical machines in

capability and processing rate.

3. Each stage has at least one machine, and at least one

stage must have more than one machine.

4. A job which has once started on the machine must be

completed without interruption.

5. A job can wait between two stages and the

intermediate storages are unlimited.

6. A job can be processed by each one of the machines

in each stage, and it will be processed by a single

machine in each stage.

7. A machine can process only one job at a time.

8. There is no travelling time between two stages.

9. The machines are available at all times if they are not

busy. Also, there is no breakdowns or scheduled/

unscheduled maintenance.

10. Having been released from the previous stage, each

job is available for processing at a stage immediately.

4. DPSO Algorithm Framework

Diversified particle swarm optimization algorithm is a

generalization of PSO algorithm. DPSO algorithm is

inspired by an anarchic society whose members behave

anarchically to improve their situations. In DPSO

algorithm, the particles are fickle, and their fickleness

increases as their situations become worse. They also

occasionally behave irregularly and move towards the

worse particles or worse positions which they have been

previously visited. DPSO algorithm by such anarchic

particles is able to search the solution space perfectly and

prevent falling in the local optimum traps. In the

following, we will present the DPSO algorithm

framework. Note that this framework is general and

presented for any optimization problem.

The basic notation of DPSO algorithm is quite similar to

standard PSO algorithm. Let S be a solution space and

Sf : be a function which should be minimized on

S . Consider a swarm with N particles for solution space

searching. For particle i in iteration k , two elements in

S are defined as follows:

 kX i : Position,

 kPi : The best personal previously visited position,

called P-best.

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VF8-4FFGJNW-1&_user=10&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=b8903a58009d63c26f693f701bcf8681#aff1

Javad Behnamian/ Diversified Particle Swarm…

110

Also, all particles are aware of the best global position

visited by all particles in iteration k denoted by  kGi

and called G-best.

4.1. The proposed algorithm

To show that the DPSO algorithm framework can be

implemented for discrete problems, in this section, we

present a DPSO algorithm for the hybrid flowshop

scheduling problem with sequence-dependent setup time

and the objective of minimizing the makespan. Since the

SDST single machine scheduling problem is equivalent to

a traveling-salesman problem (Pinedo 2012) and is NP-

hard, SDST-HFSP is also NP-hard. SDST-HFSP is

broadly used for modeling the process industries such as

chemical, pharmaceutical, oil, food, tobacco, textile,

paper, and metallurgical industry. For a comprehensive

survey, we refer to the recent review paper done by

Allahverdi (2015).

The most important issue in applying DPSO algorithm to

schedule problems is to find a suitable method to relate

job sequences and positions of the particles. A suitable

method is to represent each scheduling solution by a

chromosome. This method enables us to use genetic

operators, such as crossover and mutation, to simply

generate movement policies. In the following subsections,

first, we will explain our solution representation, and then

present settings of the DPSO algorithm.

4.2. Solution representation

The proposed representation of DPSO algorithm to solve

hybrid flowshop scheduling is based on coding all jobs as

blocks in a)1(1  mn string in which n and m
1
 are the

number of jobs and number of machines at the first stage

of production line, respectively. In this type of

representation, the sequence of jobs is represented by the

numbers of blocks from the left to right and)1(1 m

asterisks “*” are used to differentiate one machine from

another.

An example of the representation is shown in Figure 1.

2 6 ∗ 8 3 5 9 1 ∗ 7 4

Fig. 1. Solution representation

In this example, there are nine jobs with three machines at

the first stage. As shown in this figure, jobs 2 and 6 with

order 2→6 are assigned to machine 1; jobs 7 and 4 are
assigned to machine 3, and other jobs are assigned to

machine 2.

4.3. Swarm initialization

Any available method for generating a feasible solution

would be sufficient for our algorithm. Random initializing

for constructive metaheuristics is a common and popular

procedure (Talbi 2009). To generate random positions for

the particles of the initial swarm, the procedure is as

follows:

Generate)1(1 m asterisks “*” and randomly assign

them to the blocks, a chromosome with length of

)1(1  mn blocks, so that at least one unfilled block

must bebetween the asterisks . Then, it assigns numbers 1

to n to the rest of the unfilled blocks. Note that the size

of the swarm depends on the solution space.

4.4. Movement in the next iteration

Each particle has a planning procedure to decide how to

move and change its position in the next iteration. To this

end, each particle provides three movement policies and

then combines them to determine its position in the next

iteration. These movement policies are generated as

follows:

4.4.1. Movement policy based on current position:

 ki

CurrentMP

The first movement policy in iteration k is denoted by

 ki

CurrentMP and is chosen based on the current

position. Each particle is fickle and its position is

determined based on its current position. In general, the

movement policy  ki

CurrentMP is a neighboring method

in which the particles can choose a different neighborhood

method. For this reason, the G-best can be appropriate in

order to prevent falling in the local optimum trap. In this

regard, fickleness index  kFI i for particle i in iteration

k is defined as Equation (1). The fickleness of each

particle may depend on its relative situation to G-best or

its P-best. Therefore, for each particle, the fickleness rate

is defined as

    
  kXf

kGf
kFI

i

i
i 1 (1)

Machine 1 Machine 2 Machine 3

http://en.bookfi.org/g/El-Ghazali%20Talbi

Journal of Optimization in Industrial Engineering Vol.12, Issue 2, Summer & Autumn 2019, 107- 119

111

where objective function f is the makespan of decoded

solution and G and X are G-best and a position of

particles, respectively.

Now, we consider the two following cases:

Case A: Particle i G-best

Based on  kFI i , particle i G-best generates its

movement policy  ki

CurrentMP as follows:

   
 

Current
Apply LS1 for 0 0.5

MP
Apply LS2 for 0.5 1

i

i

i

FI k
k

FI k

     
.

Case B: Particle i G-best

Particle i G-best selects randomly one of the following

movement policies:

 Current

G best

Apply 3

CMP Apply 4

Apply 5

i

LS

k LS

LS

 


 



4.4.2. Movement policy based on other particles:

 ki

SwarmMP

The second movement policy in iteration k is denoted by

 ki

SwarmMP and is chosen based on the positions of

other particles. It is logical and regular that each particle

generates its movement policy  ki

SwarmMP based on G-

best, but since particles are anarchic, it may select other

particles (or a number of them) to generate a movement

policy. Hence, for all particles, we define external

irregularity rates  kEI i as

   kCV

i ekEI
1 (2)

in which  kCV is the coefficient of variation of all

particles fitness, i.e.,      kXfkXf N,,1  . This

means that if the diversity of the swarm increases, the

particles like to behave more irregularly, which is an

expected behavior for anarchic particles. We use the

following scenario for this policy:

 
 
 

Swarm
Apply 6 0 0.5

MP
Apply 7 0.5 1

i

i

i

LS EI k
k

LS EI k

   
 

4.4.3. Movement policy based on past positions:

 ki

PastMP

The third movement policy in iteration k is denoted by

 ki

PastMP and is chosen based on the past positions

visited personally. It is more normal that each particle

generates movement policy  ki

PastMP based on P-best,

but because in our proposed algorithm, particles are

lawless, it may select one of the past positions (or a

number of them) to generate a movement policy. Hence,

we define internal irregularity rate  kIIi for particle i

in iteration k , and we assume that with probability

 kEI i , particle i behaves irregularly. It is assumed that,

for all particles, the internal irregularity rates  kIIi are

zeros, which means that particles generate policies

 ki

PastMP only based on their P-bests. Movement

policy  ki

PastMP is defined as:

 PastMP Apply 8i k LS

4.4.4. Combination rule

After applying three components of velocity (inertia, P-

best, G-best), there are three solutions which must be

combined to update the particles position. In this paper,

three mechanisms are proposed and the better one must be

selected in fine tuning. These mechanisms are as follows:

 Serial: serial implementation { iS → pS →

sS },

 Elitism: minimum{ iS , pS , sS }, and

 Crossover: crossover among { iS , pS , sS }.

Javad Behnamian/ Diversified Particle Swarm…

112

Fig. 2. Flowchart of diversified particle swarm optimization (DPSO) with eight local searches

4.5. Local searches In this paper, we proposed several neighborhood search

structures. Eight-type procedures are introduced in the

following manner as local searches:

Journal of Optimization in Industrial Engineering Vol.12, Issue 2, Summer & Autumn 2019, 107- 119

113

Algorithm 1. LS1:

1: Choose a machine m randomly;

2: Choose two jobs j1 and j2 randomly from machine m;

3: Swap jobs j1 and j2.

Algorithm 2. LS2:

 Choose a machine m randomly;

 Choose job j and a valid position ‘pos’ from machine m randomly;

 Transfer job j at the position pos.

Algorithm 3. LS3:

1: Choose machine m randomly;

2: Choose cutting point from machine i randomly to divide the sequence of jobs into two parts;

3: Swap two parts.

Algorithm 4. LS4:

1: Choose two machines m1 and m2 randomly;

2: Choose job j1 in m1 and job j2 in m2 randomly;

3: Swap jobs j1 and j2.

Algorithm 5. LS5:

1: Choose one job j1 and one machine m2 randomly, where j1 does not belong to m2;

2: Choose a valid position ‘pos’ in m2 randomly;

3: Transfer job j1 to m2 at position pos.

Algorithm 6. LS6:

1: Consider current solution P1 and choose particle P2 randomly;

2: Choose two crossover points in P1.

3: All blocks outside the crossover points are inherited from P1 to the same positions in new position (N) with no changes.

4: The genes that have already been selected from P1 are deleted from P2 so that the repetition of a gene in N is avoided.

5: The other blocks in N are sorted in the same order as in P2 and complete the remaining empty gene locations with the

undeleted genes that remain in P2 by preserving their gene sequence.

Algorithm 7. LS7:

1: Consider current solution P1 and randomly choose particle P2;

2: Create a binary template (BT) and assign a randomly generated binary to each cell.

3: Copy the genes from P1 corresponding to the locations of “1”s in the BT to the same positions in new position (N).

4: In order to avoid repetition of a gene in N, the copied genes to N are deleted from P2.

5: Complete the remaining empty gene locations with the undeleted genes remained in P2 by preserving their genes

sequence.

Algorithm 8. LS8:

1: Consider current solution P1 and choose its P-best P2;

2: Choose a crossover point in P1.

3: All blocks in the right-hand side of crossover point are inherited from P1 to the same positions in the new position (N)

with no changes.

4: The genes that have already been selected from P1 are deleted from P2, so that the repetition of a gene in N is avoided.

5: The other blocks in N are sorted in the same order as in P2 and complete the remaining empty gene locations with the

undeleted genes that remain in P2 by preserving their gene sequence.

5. Computational Results

We have thoroughly reviewed the literature, and

according to this review, the most related ones are APSO

algorithm proposed by Ahmadi-Javid (2011), PSO

algorithm proposed by Tseng and Liao (2008), and

variable neighborhood search (VNS) proposed by Li et al.

(2014). So, based on literature, we compare DPSO

algorithm against these algorithms. Note that all

algorithms are coded in C++.

5.1. Data generation and settings

The problem data can be characterized by four factors,

and each of these factors can have at least two levels.

These levels are shown in Table 1.

Javad Behnamian/ Diversified Particle Swarm…

114

 Table 1

 Factor levels

Factor Levels

Number of jobs 6 30 100

Machine distribution
Constant:1

Variable: Uniform(1, 4)

2

Uniform(1, 10)

10

Number of stages 2 4 8

Processing times Uniform(50, 70) Uniform(20, 100)

The setup times are uniformly distributed from 12 to 24

which are 20% to 40% of the mean of the processing time

(Rios-Mercado and Bard, 1998). The setup time matrices

are asymmetric and satisfy the triangle inequality.

Probability of skipping a stage is an important

characteristic in the hybrid flowshop problem which, in

this paper, is set at 0, 0.05, or 0.40 (Leon and

Ramamoorthy, 1997). Therefore, there are 252 test

scenarios. Note that some further restrictions are

introduced. The largest number of machines in a stage

must be less than the number of jobs. Thus, the

combination with 10 machines at each stage and 6 jobs

will be skipped and the combination of 1–10 machines per

stage with 6 jobs will be changed to 1–6 machines per

stage with 6 jobs. Also, the variable machine distribution

factor requires that at least one stage have a different

number of machines than the others.

5.2. Stopping rules

For fair comparison between algorithms, similar to Ruiz

and Stützle (2008), we allocated equal time to algorithms.

Furthermore, due to several runs, we are experimentally

aware of the idea that computational time has direct

relation with the number of jobs, machines, and stages.

So, the stopping criterion is set to a computation time that

is fixed to 



g

t

t
gmn

1

2 4)/(milliseconds for all

algorithms.

5.3. Fine-tuning of the PSO algorithm parameters

Fine-tuning the parameters of the metaheuristic algorithm

is almost always a difficult task. The parameter values are

extremely important because the results of the

metaheuristic for each problem are very sensitive to them.

This section describes an empirical testing approach to

find the best tuning parameters of our proposed algorithm.

We have applied parameters tuning for the population size

(popsize), number of local search for G-best (LS), and

selection mechanism in updating the position (UP)

considering the following ranges:

 Population size: three levels (10, 20 and 50),

 Number of local searches for G-best: three levels

(1, 2 and 3)

 The combination rule for each particle: three

levels (elitism, crossover among three results,

and serial implementation).

Twenty-seven different combinations are obtained by

these levels. We generate six instances; two small, two

medium and two large, for each combination of problem’s

factor levels. All these instances are solved by 54 different

combinations.

The results are analyzed by the means of multi-factor

analysis of variance (ANOVA) technique. It is necessary

to notice that to use ANOVA, three main hypotheses,

including normality, homogeneity of variance, and

independence of residuals, must be checked. We did that

and found no bias to question the validity of the

experiment. Table 2 shows the results for different sizes

of problems: small, medium, and large.

 Table 2

 Parameters tuning

Parameters
Problems

Small Medium Large

popsize 20 20 50

LS 3 3 3

UP Serially Serially Serially

5.4. Evaluation metrics

After computation of the objective value of each

algorithm for its instances, the best solution obtained for

each instance (which is named solMin) by any of the four

algorithms is calculated. Relative percentage deviation

(RPD) is obtained by the following formula:

sol

solsol

Min

MinA
RPD




lg (6)

Journal of Optimization in Industrial Engineering Vol.12, Issue 2, Summer & Autumn 2019, 107- 119

115

where solAlg is the objective value obtained for a given

algorithm and instance. RPD of 4% for a given algorithm

means that this algorithm is 4% over the best obtained

solution on average. Clearly, lower values of the RPD are

preferred.

5.5. Results

5.5.1. Analysis of makespan on RPD

The results of the experiments are shown in Tables 3 and

4. As it can be seen, DPSO algorithm provides better

results than the PSO, VNS, and APSO algorithms.

 Table 3

 Average relative percentage deviation (RPD) for algorithms grouped by n and g

Problem

size

Algorithm

 VNS APSO PSO DPSO

6×2 0.12705 0.06312 0.11021 0.10564

6×4 0.11557 0.08094 0.10732 0.02381

6×8 0.13760 0.06725 0.14472 0.01656

6 Job 0.12674 0.07043 0.12075 0.04867

30×2 0.06782 0.05151 0.06463 0.01143

30×4 0.03856 0.02589 0.04577 0.01024

30×8 0.03237 0.11498 0.12138 0.01048

30 Job 0.04625 0.06413 0.07726 0.01072

100×2 0.03053 0.01526 0.07728 0.00056

100×4 0.03150 0.02771 0.08696 0.00145

100×8 0.02524 0.01199 0.08084 0.00261

100 Job 0.02909 0.01832 0.08170 0.00154

Average 0.06736 0.05096 0.09323 0.02031

Table 4

 Detailed results of algorithms

Problem size
Agorithm

Results

Jobs Stages Var Min Max

30 job

2 stage

APSO 25.38 2328.4 2341.4

VNS 46.95 2338.4 2357.2

PSO 118.93 2341.2 2367.2

DPSO 536.71 2334.7 2398

4 stage

APSO 1986.23 1326.3 1443.2

VNS 32.76 1386.6 1402

PSO 50.05 1386.5 1404.1

DPSO 329.34 1274.8 1323.6

8 stage

PSO 1547.99 830.82 929.57

VNS 64.97 808.06 827.95

SA 99.42 807.27 837.84

DPSO 2.27 789.55 793.96

100 job

2 stage

APSO 225.52 875.31 913.72

VNS 215.15 875.31 917.93

PSO 68.17 898.25 922.33

DPSO 7.06 858.46 865.96

4 stage

APSO 264.96 4097.1 4142.6

VNS 207.23 4105.3 4142.6

PSO 191.86 4106.2 4140

DPSO 19.87 4104.1 4115.7

8 stage

APSO 14677.71 3862.4 4186.2

VNS 51188.63 3644.4 4214.8

PSO 528.40 4164 4220.3

DPSO 1595.27 3906.4 4011.4

Var: Variance

Min: Minimum

Max: Maximum

Javad Behnamian/ Diversified Particle Swarm…

116

In order to verify the statistical validity of the results

shown in Table 3 and to confirm which the best algorithm

is, we performed a design of experiments and an analysis

of variance (ANOVA) in which the algorithms are the

factor and RPDs are the response variable. The means plot

and LSD intervals (at the 95% confidence level) for four

algorithms are shown in Figure 3.

0.01

0.03

0.05

0.07

0.09

1 5

R
P

D
 M

a
k
e
s
p

a
n

PSOVNS APSO DPSO

Fig. 3. Plot of RPD for the type of algorithm factor

The results demonstrate that there is a clear statistically

significant difference among the performances of the

algorithms.

The convergence plot of the proposed algorithm for three

large-sized samples is also presented in Figure 4.

805

815

825

835

845

855

865

875

0 10 20 30

850

900

950

1000

1050

1100

1150

0 20 40 60

1080

1100

1120

1140

1160

1180

1200

1220

0 50 100 150

(a) 100×2 (b) 100×4 (c) 100×8

Fig. 4. Convergence plot of the proposed algorithm for three large-sized instances

5.5.2. Analysis of controlled factors

ANOVA-F test was carried out to determine whether the

treatment means are significantly different from each

other. All tests were conducted at the 5% level of

significance.

5.5.2.1. Analysis of problem size factor (number of jobs)

In order to see the effects of number of jobs on four

algorithms, a two-factor ANOVA is applied. Plot of

RPD for the interaction between the type of algorithm

and number of jobs is shown in Figure 5.

Journal of Optimization in Industrial Engineering Vol.12, Issue 2, Summer & Autumn 2019, 107- 119

117

0.00

0.04

0.08

0.12

6 Job 30 Job 100 Job

R
P

D
 M

a
k
e
s
p

a
n

VNS APSO PSO DPSO

Fig. 5. Plot of RPD for the interaction between the type of algorithm and the number of jobs

As we can see, in all cases, the DPSO algorithm works

better than PSO, VNS, and APSO algorithms.

5.5.2.2. Analyzing factor g (number of stages)

Other two-factor ANOVA and LSD tests are applied to

see the effect of magnitude of stages on quality of the

algorithms. The results are shown in Figure 6.

0.00

0.03

0.06

0.09

0.12

0.15

g =2 g =4 g =8

R
P

D
 M

a
k
e
s
p

a
n

VNS APSO PSO DPSO

Fig. 6. Plot of RPD for the interaction between the type of algorithm and magnitude of the stages

As we can see, in the cases of = 2g , = 4g , and = 8g ,

the DPSO algorithm works better than others.

6. Conclusions and Future Works

Particle swarm optimization as a well-known

metaheuristic has desirable properties, but the

convergence usually happens prematurely and parts of

solution space remain unexplored. Moreover, the standard

particle swarm optimization (PSO) algorithm cannot be

applied to discrete problems. To overcome these

shortcomings, in this paper, we introduce diversified

particle swarm optimization (DPSO) algorithm as a

powerful generalization of PSO algorithm. DPSO

algorithm is inspired by the concept of a society whose

members behave anarchically to improve their situations.

In DPSO algorithm, the particles are fickle, and their

fickleness increases as their situations become worse.

They also occasionally behave irregularly and move

towards worse particles of the swarm or worse positions

which they have previously visited. DPSO algorithm of

such anarchic particles explores the solution space

perfectly and prevents falling in the local optimum traps.

Recently, sequence-dependent hybrid flowshop (SDST-

HFSP) has been solved by almost all the well-known

heuristic methods. We numerically compare the

performance of the DPSO algorithm with three of the best

algorithms recently developed in the literature. A

comprehensive set of computational experiments and

statistical analyses for test instances with different

structures has been carried out. To fairly compare the

algorithms, we allocated equal times to all the algorithms

which was also enough for all of them to converge. For all

the combinations of the problem parameters, especially

for medium and large instances, the DPSO algorithm

considerably outperforms the other ones. According to our

promising results, we expect that DPSO algorithm can be

successfully used in solving other challenging discrete

problems. Also, since the proposed DPSO algorithm

framework includes the standard PSO algorithm which is

Javad Behnamian/ Diversified Particle Swarm…

118

widely used for continuous problems, applying DPSO

algorithm to continuous problems is another interesting

research area.

References

Ahmadi-Javid, A. (2011). Anarchic Society Optimization:

A Human-Inspired Method. In 2011 IEEE Congress

on Evolutionary Computation (CEC), 2586-2592.

Allahverdi, A. (2015). The third comprehensive survey on

scheduling problems with setup

times/costs, European Journal of Operational

Research, 377(2), 345-378.

Behnamian, J. Fatemi Ghomi, S.M.T., & Zandieh, M.

(2009). A multi-phase covering Pareto-optimal front

method to multi-objective scheduling in a realistic

hybrid flowshop using a hybrid metaheuristic. Expert

Systems with Applications, 36(8), 11057-11069.

Behnamian, J. Fatemi Ghomi, S.M.T., & Zandieh, M.

(2012). Hybrid flowshop scheduling with sequence-

dependent setup times by hybridizing max–min ant

system, simulated annealing and variable

neighborhood search, Expert Systems: The Journal of

Knowledge Engineering, 29 (2), 156–169.

Blackwell, T., & Bentley, P.J. (2002). Don’t push me!

Collision-avoiding swarms. In: Proceedings of the

IEEE congress on evolutionary computation, 1691–
96.

Chen, C-C. (2011). Two-layer particle swarm

optimization for unconstrained optimization

problems, Applied Soft Computing, 11(1), 295–304.

Clerc, M. (2006). Particle swarm optimization. ISTE;

Coelho, L.S. (2008). A quantum particle swarm optimizer

with chaotic mutation operator, Chaos, Solitons and

Fractals, 37, 1409–1418.

Coelho, L.S. (2009). Reliability–redundancy optimization

by means of a chaotic differential evolution approach

, Chaos, Solitons & Fractals, 41(2), 594-602

Eberhart, R., & Kennedy, J. (1995). A new optimizer

using particle swarm theory. In: Proceedings of the

IEEE Sixth International Symposium on Micro

Machine and Human Science, 39-43.

El-Abd, M. Hassan, H. Anis, M. Kamel, M.S., & Elmasry,

M. (2010). Discrete cooperative particle swarm

optimization for FPGA placement. Applied Soft

Computing, 284-295.

Gaafar, L.K. Masoud, S.A., & Nassef, A.O. (2008). A

particle swarm-based genetic algorithm for

scheduling in an agile environment. Computers &

Industrial Engineering, 55, 707–720.

García-Villoria, A., & Pastor, R. (2009). Introducing

dynamic diversity into a discrete particle swarm

optimization, Computers & Operations Research,

36(3), 951-966.

He, S. Wu, Q.H. Wen, J.Y. Saunders, J.R. R.C., & Paton,

(2004). A particle swarm optimizer with passive

congregation. Biosystems, 78, 135–47.

Jie, J. Zeng, J. Han, C., & Wang, Q. (2008). Knowledge-

based cooperative particle swarm

optimization. Applied Mathematics and

Computation, 205 (2), 861-873.

Jina, Z. Yang, Z., & Ito, T. (2006). Metaheuristic

algorithms for the multistage hybrid flowshop

scheduling problem. International Journal of

Production Economics, 100(2), 322-334.

Johnson, D.S. Aragon, C.R. Mcgeoch, L.A., & Schevon,

C. (1989). Optimization by simulated annealing: an

experimental evaluation; Part I, graph

partitioning, Operations Research, 37(6), 865–892.

Karthi, R. Arumugam, S., & Ramesh Kumar, K. (2009).

Discrete Particle Swarm Optimization Algorithm for

Data Clustering Nature Inspired Cooperative

Strategies for Optimization (NICSO 2008).

Koua, X. Liu, S. Zhang, J., & Zheng, W. (2009). Co-

evolutionary particle swarm optimization to solve

constrained optimization problems. Computers &

Mathematics with Applications, 57, 11-12.

Król, D., & Drożdżowski, M. (2010). Use of MaSE
methodology and swarm-based metaheuristics to

solve the traveling salesman problem. Journal of

Intelligent and Fuzzy Systems, 21(3), 221-231.

Kurz, M.E., & Askin, R.G. (2003). Comparing scheduling

rules for flexible flow lines. International Journal of

Production Economics, 85, 371-388.

Kurz, M.E., & Askin, R.G. (2004). Scheduling flexible

flow lines with sequence-dependent setup

times. European Journal of Operational Research,

159, 66–82.

Laskari, E.C. Parsopoulos, K.E., & Vrahatis, M.N. (2002).

Particle swarm optimization for integer

programming. In: Proceedings of the IEEE 2002

Congress on Evolutionary Computation, Honolulu

(HI), 1582–1587.

Leon, V.J., & Ramamoorthy, B. (1997). An adaptable

problem-space based search method for flexible flow

line scheduling. IIE Transactions, 29, 115–125.

 Li, J-Q., Pan, Q-K. , & Wang, F-T. (2014). A hybrid

variable neighborhood search for solving the hybrid

flow shop scheduling problem. Applied Soft

Computing, (24), 63–77.

Lozvbjerg, M. Krink, T. (2002). Extending particle

swarms with self-organized criticality. In:

Proceedings of the IEEE congress on evolutionary

computation,1588–93.

Montalvo, I. Izquierdo, J. Pérez, R., & Tung, M.M.

(2008). Particle swarm optimization applied to the

design of water supply systems. Computers &

Mathematics with Applications, 56(3), 769-776.

Naderi, B. Zandieh, M., & Aminnayeri, M. (2011).

Incorporating periodic preventive maintenance into

flexible flowshop scheduling problems. Applied Soft

Computing, 11(2), 2094–2101.

Nawaz, M. Enscore, E., & Ham, I. (1983). A heuristic

algorithm for the m-machine, n-job flow-shop

sequencing problem. Omega, 11, 91–95.

Parsopoulos, K.E. Vrahatis, D.K., & Tasoulis, M.N.

(2004). Multi-objective optimization using parallel

vector evaluated particle swarm optimization. In:

Proceedings of the IASTED international conference

Journal of Optimization in Industrial Engineering Vol.12, Issue 2, Summer & Autumn 2019, 107- 119

119

on artificial intelligence and applications, 2, 823–
828.

Parsopoulos, K.E., & Vrahatis, M.N. (2001). Particle

swarm optimizer in noisy and continuously changing

environments. In: Hamza MH, editor, Artificial

intelligence and soft computing, 289–94.

Pinedo, M.L. (2012). Scheduling Theory, Algorithms, and

Systems, Fourth Edition, Springer, NY.

Rios-Mercado, R.Z., & Bard, J.F. (1998). Computational

experience with a branch-and-cut algorithm for

flowshop scheduling with setups. Computers &

Operations Research, 25 (5), 351–366.

Ruiz, R., & Stützle, T. (2008). An Iterated Greedy

heuristic for the sequence dependent setup times

flowshop problem with makespan and weighted

tardiness objectives. European Journal of

Operational Research, 187(3), 1143–1159.

Sadati, N. Amraee, T., & Ranjbar, A.M. (2009). A global

particle swarm- based-simulated annealing technique

for undervoltage load shedding problem. Applied Soft

Computing, 9(2), 652–657.

Sha, D.Y., & Hs, C-Y. (2006). A hybrid particle swarm

optimization for job shop scheduling

problem. Computers & Industrial Engineering,

 51(4), 791-808

Sun, T-H. (2009). Applying particle swarm optimization

algorithm to roundness measurement. Expert Systems

with Applications, 36 (2), 3428-3438.

Talbi, El-G. (2009). Metaheuristics: From Design to

Implementation, Wiley Series on Parallel and

Distributed Computing.

Tang, Y. Qiao, L., & Guan, X. (2010). Identification of

Wiener model using step signals and particle swarm

optimization. Expert Systems with Applications,

37(4), 3398-3404.

Tseng, C-T., & Liao, C-J. (2008). A particle swarm

optimization algorithm for hybrid flow-shop

scheduling with multiprocessor tasks. International

Journal Of Production Research, 46(17), 4655-4670.

Wang, J. Kuang, Z. Xu, X., & Zhou, Y. (2009). Discrete

particle swarm optimization based on estimation of

distribution for polygonal approximation

problems. Expert Systems with Applications, 36 (5),

9398-9408.

Wang, X., & Tang, L. (2009). A tabu search heuristic for

the hybrid flowshop scheduling with finite

intermediate buffers. Computers & Operations

Research, 36(3), 907–918.

Wang, Y., & Liu, J.H. (2010). Chaotic particle swarm

optimization for assembly sequence

planning. Robotics and Computer-Integrated

Manufacturing, 26(2), 212-222.

Xiang, T. Wong, K-w., & Liao, X. (2007). A novel

particle swarm optimizer with time-delay. Applied

Mathematics and Computation, 186 (1), 789-793.

Xie, X.F. Zhang, W.J., & Yang, Z.L. (2002). A dissipative

particle swarm optimization. In: IEEE congress on

evolutionary computation (CEC’02), HI, USA.

Xiong, Y. Cheng, H-Z. Yan, J-Y., & Zhang, L. (2007).

New discrete method for particle swarm optimization

and its application in transmission network

expansion planning. Electric Power Systems

Research, 77(3-4), 227-233.

Yang, Y. Xiaoxing, L., & Chunqin, G. (2008). Hybrid

particle swarm optimization for multiobjective

resource allocation, Journal of Systems Engineering

and Electronics, 19(5), 959-964.

Yeh, W-C. Chang, W-W., & Ying Chung, Y. (2009). A

new hybrid approach for mining breast cancer pattern

using discrete particle swarm optimization and

statistical method. Expert Systems with Applications,

 36(4), 8204-8211.

Yin, P-Y. (2004). A discrete particle swarm algorithm for

optimal polygonal approximation of digital

curves, Journal of Visual Communication and Image

Representation, 15(2), 241-260.

This article can be cited: Behnamian, J. (2019) Diversified Particle Swarm Optimization for
 Hybrid Flowshop Scheduling. Journal of Optimization in Industrial Engineering. 12 (2), 107-119.

http://www.qjie.ir/article_538342.html

DOI: 10.22094/JOIE.2018.671.1433

http://www.qjie.ir/article_538342.html

