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Abstract 
 
The aim of this paper is to propose a new particle swarm optimization algorithm to solve a hybrid flowshop scheduling with sequence-

dependent setup times problem, which is of great importance in the industrial context. This algorithm is called diversified particle swarm 

optimization algorithm which is a generalization of particle swarm optimization algorithm and inspired by an anarchic society whose 

members behave anarchically to improve their situations. Such anarchy lets the algorithm explore the solution space perfectly and prevent 

falling in the local optimum traps. Besides, for the first time, for the hybrid flowshop, we proposed eight different local search algorithms 

and incorporate them into the algorithm in order to improve it with the help of systematic changes of the neighborhood structure within a 

search for minimizing the makespan. The proposed algorithm was tested and the numerical results showe that the proposed algorithm 

significantly outperforms other effective heuristics recently developed. 
 

Keywords: Particle swarm optimization; Scheduling; Sequence-dependent; Hybrid flowshop. 

 
1. Introduction 

 

Particle swarm optimization (PSO) algorithm has been 

successfully applied to a variety of problems, such as 

continuous and combinatorial optimization problems, 

artificial neural network training, and multi-objective 

optimization problems (García-Villoria and Pastor 2009). 

However, there are several difficulties to apply PSO to 

discrete optimization problems because Kennedy and 

Eberhart (1995) originally developed it for continuous 

problems. Another shortcoming of PSO is its premature 

convergence. To overcome these shortcomings, in this 

paper, a diversified particle swarm optimization (DPSO) 

algorithm as a powerful generalization of PSO algorithm 

is introduced. DPSO algorithm is originally inspired by 

the concept of a society whose members behave 

anarchically to improve their situations. In DPSO 

algorithm, the particles are fickle, and their fickleness 

increases when their situations become worse. They also 

occasionally behave irregularly and move towards worse 

particles of swarm or worse positions which have been 

previously visited. DPSO algorithm of such anarchic 

particles explores the solution space perfectly and avoids 

being trapped into the local optima. 

A hybrid flowshop can model the process industry, 

including chemical, pharmaceutical, oil, food, tobacco, 

textile, paper, and metallurgical industry. In fact, the 

hybrid flowshop is a flowshop which consists of parallel 

machines in production stages. The flow of products is 

unidirectional and each product is processed at only one 

facility in each stage and at one or more stages. In this 

production environment, we also assume that there is a 

setup time for jobs which is sequence-dependent. 

Scheduling problems with sequence-dependent setup 

times are among the most difficult classes of scheduling 

problems (Pinedo 2012) and sequence-dependent setup 

scheduling of a hybrid flowshop system is even more 

challenging (Allahverdi 2015). In this paper, following 

Ahmadi-Javid (2011), we present an DPSO algorithm for 

the sequence-dependent hybrid flowshop scheduling 

problem (SDST-HFSP). 

The paper is organized as follows. Section 2 gives the 

literature review of the related papers. Section 3 

introduces the problem description. Section 4 presents the 

DPSO algorithm implemented for SDST-HFSP. 

Numerical study is given in Section 5. Finally, Section 6 

is devoted to conclusions and future studies. 

 

2. Literature Review 

 
In this section, first, a brief review of continuous and 

discrete PSO algorithms is given in sub-sections 2.1 and 

2.2. Then, in sub-section 2.3, some diversification 

approaches for PSO algorithm are reviewed. Finally, in 

sub-section 2.4, the (meta)heuristics of the hybrid 

flowshops are reviewed.  

 

2.1. Continuous PSO algorithm 

 

There are several papers which have reported successful 

application of PSO algorithm for optimization problems. 

Some successful applications of PSO algorithm are as 

follows: inventory planning (Tsou, 2008), robotics 

(Coelho & Sierakowski, 2008), water supply systems 

(Montalvo et al., 2008), image segmentation (Maitra & 

Chatterjee, 2008), classification (Marinakis et al., 2008), 
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support vector machines (Lin et al., 2008), resource 

allocation (Yang et al., 2008), communication networks 

(Huang et al., 2008), dynamic question generation (Cheng 

et al., 2009), reliability-redundancy optimization (Coelho, 

2009), clustering (Chen & Zhao, 2009), mining breast 

cancer pattern (Yeh et al., 2009), gate array placement 

(El-Abd et al., 2010), quality control and inspection (Sun, 

2009), identify Wiener model (Tang et al., 2010), 

assembly sequence planning (Wang and Liu, 2010), and 

others. 

 

2.2. Discrete PSO algorithm 

 

Kennedy and Eberhart (1997) proposed the first discrete 

PSO algorithm which is characterized by a binary solution 

representation and a stochastic velocity model. Several 

binary solution representation models were proposed and 

tested in Mohan and Al-kazemi (2001). Another approach 

for tackling discrete optimization problems by PSO 

algorithm was also proposed by Laskari et al. (2002) 

which is based on the truncation of the real values to their 

nearest integer. Some other papers related to the discrete 

PSO algorithm are as follows: n-queens problem (Hu et 

al. 2003), polygonal approximation of digital curves (Yin, 

2004), no-wait flowshop (Liu et al., 2005), vehicle routing 

problem (Chen et al., 2006), resource-constrained project 

scheduling (Zhang et al., 2006), job shop (Sha and Hsu, 

2006), transmission network expansion planning (Xiong 

et al., 2007), data clustering (Karthi et al., 2008), 

estimation of polygonal approximation's distribution 

(Wang et al., 2009), traveling salesman's problem (Król 

and Drożdżowski, 2010), and flowshop (Ahmadi-Javid, 

2011).  

 

2.3. Diversity mechanisms for PSO algorithm 

 

There are different ways to prevent premature 

convergence and to make diversity in PSO algorithm. 

Loovbjerg (2002) used self-organized PSO algorithm. In 

this algorithm, when two particles are too close to one 

another, a variable called the “critical value” is 

incremented. When it reaches the criticality threshold, the 

particle disperses its criticality to other particles that are 

close to it and relocates itself. Hu and Eberhart (2002) 

introduced the use of a dynamic neighborhood to the PSO 

algorithm. In this algorithm, having updated swarm, the 

particles update their neighborhoods. Xie et al. (2002) 

added negative entropy to the particle swarm in order to 

discourage premature convergence (excessively rapid 

convergence towards a poor quality local optimum). In 

some conditions, they weighted the velocity and, in some 

conditions, the particle’s locations are set by some 

random values. Blackwell and Bentley (2002) reduced the 

attraction of the swarm center to prevent the particles 

clustering too tightly in one region of the search space. 

For multi-objective optimization problem, Parsopoulos 

and Vrahatis (2004) suggested theuse of multiple swarms 

where the number of swarms is equal to that of objective 

functions. Each swarm searches one objective function 

and the best solution found by a swarm is fed to another 

swarm to direct the search of the particles of that swarm. 

Clerc (2006) dynamically changed the size of the swarm 

according to the performance of the algorithm. The size of 

the swarm is important because too few particles will 

cause the algorithm to converge prematurely to a local 

optimum, while too many particles will slow down the 

algorithm. Gaafar et al. (2008) combined PSO algorithm 

with a genetic algorithm to schedule in an agile 

environment. Xiang et al. (2008) proposed a new method 

in which particles have time-delay to control the process 

of information diffusion. Sadati et al. (2009) used 

knowledge-based cooperative strategy to particle 

diversification. Jie et al. (2008) hybridized PSO algorithm 

with a simulated annealing algorithm. García-Villoria and 

Pastor (2009) added a random velocity according to the 

incongruity of the population in the PSO algorithm. Koua 

et al. (2009) enhanced particles' society by adding a co-

evolutionary strategy and evolving direction. In the co-

evolutionary strategy, a deterministic selection strategy is 

used to ensure the diversity of the population. In this 

study, the infeasible solution was properly accepted as a 

feasible solution and the proposed diversity mechanism 

was helpful to guide the search direction of infeasible 

solution towards the feasible region. Chen (2011) 

introduced two layers of PSO algorithm with M swarms 

of particles and one swarm of particles in the bottom and 

top layers, respectively.  

 

2.4. Hybrid flowshops 

 

Recently, several heuristics have been developed for 

hybrid flowshops. Botta-Genoulaz (2000) proposed 

several heuristics for a flowshop with multiple identical 

machines per stage, positive time lags, and realistic 

constraints as well as sequence-independent setup and 

removal times. Azizoglu et al. (2001) considered the total 

flow time measure in a multi-stage hybrid flowshop and 

suggested a branch and bound algorithm that gives the 

optimal solutions for moderate-size problems. 

Harjunkoski and Grossmann (2002) considered setup 

times that only depend on the machine and not on the job. 

Lee et al. (2003) developed a dispatching rule-based 

approach for the HFSP in a printed circuit board 

manufacturing system. Kurz and Askin (2003) compared 

several methods for a makespan minimization problem 

with sequence-dependent setup times in which jobs are 

allowed to skip stages. They also developed an integer 

model, some heuristics, and a random keys genetic 

algorithm (RKGA) for SDST flexible flowshop (Kurz and 

Askin 2004). Wardono and Fathi (2004) developed a tabu 

search algorithm for a multi-stage parallel machine 

problem with limited buffers. Another research which 

addressed the real-world industries' problems was studied 

by Andres et al. (2005). They considered the problem of 

products grouping in a tile industry. They proposed some 

heuristic and metaheuristic algorithms for a three-stage 

HFSP with sequence-dependent setup times. For HFSP, 

Tang et al. (2006) proposed a new Lagrangian relaxation 

algorithm based on stage decomposition for minimizing 

the total weighted completion time. Janiak et al. (2007) 
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proposed some approximation algorithms for the HFSP 

with cost-related criterion. In this paper, the scheduling 

criterion consists of three parts: total weighted earliness, 

total weighted tardiness, and total weighted waiting time. 

An improved ant colony optimization for hybrid flowshop 

scheduling was proposed by Alaykiran et al. (2007) to 

minimize Cmax criterion. In order to achieve better results, 

they conducted a parameter optimization study. Kim et al. 

(2008) focused on the scheduling problem of minimizing 

makespan for a given set of jobs in a two-stage hybrid 

flowshop subject to a product-mix ratio constraint. Ying 

(2008) proposed an iterated greedy heuristic to minimize 

makespan in a multistage hybrid flowshop with 

multiprocessor tasks. In this research, to validate and 

verificate the proposed heuristic, computational 

experiments were performed on two benchmark problem 

sets. Jina et al. (2006) considered the multistage hybrid 

flowshop scheduling problem. To minimize the 

makespan, based on simulated annealing and the variable-

depth search, they proposed an optimization procedure. 

This study reveals that the proposed metaheuristic in 

comparison with Johnson (Johnson et al. 1989) and 

shortest processing time (SPT) rules and tabu search was 

an efficient algorithm. Tseng and Liao (2008) proposed a 

PSO algorithm for hybrid flowshop scheduling. In this 

study, computational results show that the PSO algorithm 

outperformed the genetic algorithms and an ant colony 

system algorithm. Wang and Tang (2009) hybridized tabu 

search algorithm with scatter search algorithm to solve the 

hybrid flowshop scheduling with finite intermediate 

buffers, whose objective is to minimize the sum of 

weighted completion time. They showed that this hybrid 

heuristic can provide good solutions compared to lower 

bounds, NEH (Nawaz et al. 1983) and genetic algorithm 

(GA). Behnamian et al. (2009) considered the problem of 

sequence-dependent setup time hybrid flowshop 

scheduling with the objectives of minimizing the 

makespan and sum of the earliness and tardiness of jobs, 

and presented a three-phase multi objective method.  

Naderi et al. (2011) investigated the scheduling flexible 

flowshops subject to periodic preventive maintenance on 

machines to minimize the makespan. They proposed a 

genetic algorithm, an artificial immune system, and some 

constructive heuristics to tackle the problem. Behnamian 

et al. (2012) proposed a hybrid metaheuristic algorithm 

including ant system, simulated annealing, and variable 

neighborhood search to determine a scheduling for hybrid 

flowshop problem that minimizes the makespan of jobs. 

Recently, Li et al. (2014) proposed a hybrid variable 

neighborhood search algorithm that combines chemical-

reaction optimization and estimation of distribution to 

minimize the maximum completion in the hybrid 

flowshop scheduling problems.  

This paper proposed a new algorithm to solve the hybrid 

flowshop scheduling with sequence-dependent setup 

times problem. The proposed algorithm is a generalization 

of particle swarm optimization and inspired by the 

concept of an anarchic society whose members behave 

anarchically to improve their situations. Such anarchy lets 

algorithm explore the solution space perfectly and 

prevents falling in local optimum traps. Besides, we 

proposed eight different local search algorithms and 

incorporated them into the algorithm in order to improve 

it by systematic changes of the neighborhood structure 

within a search. 

 

3. Problem Description 

 

Since different constraints and assumptions can result in 

different scheduling problems in hybrid flowshops, we 

clearly mention our assumptions in the following: 

1.  All parameters are known deterministically when the 

scheduling is undertaken. 

2. Stage t  has a set of 
t

m  identical machines in 

capability and processing rate. 

3.  Each stage has at least one machine, and at least one 

stage must have more than one machine. 

4.  A job which has once started on the machine must be 

completed without interruption. 

5.  A job can wait between two stages and the 

intermediate storages are unlimited.  

6.  A job can be processed by each one of the machines 

in each stage, and it will be processed by a single 

machine in each stage.  

7.  A machine can process only one job at a time.  

8.  There is no travelling time between two stages. 

9.  The machines are available at all times if they are not 

busy. Also, there is no breakdowns or scheduled/ 

unscheduled maintenance.  

10. Having been released from the previous stage, each 

job is available for processing at a stage immediately. 

 

4. DPSO Algorithm Framework  

 

Diversified particle swarm optimization algorithm is a 

generalization of PSO algorithm. DPSO algorithm is 

inspired by an anarchic society whose members behave 

anarchically to improve their situations. In DPSO 

algorithm, the particles are fickle, and their fickleness 

increases as their situations become worse. They also 

occasionally behave irregularly and move towards the 

worse particles or worse positions which they have been 

previously visited. DPSO algorithm by such anarchic 

particles is able to search the solution space perfectly and 

prevent falling in the local optimum traps. In the 

following, we will present the DPSO algorithm 

framework. Note that this framework is general and 

presented for any optimization problem. 

The basic notation of DPSO algorithm is quite similar to 

standard PSO algorithm. Let S  be a solution space and 

Sf :  be a function which should be minimized on 

S . Consider a swarm with N particles for solution space 

searching. For particle i  in iteration k , two elements in 

S  are defined as follows:  

 kX i : Position,  

 kPi : The best personal previously visited position, 

called P-best. 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VF8-4FFGJNW-1&_user=10&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=b8903a58009d63c26f693f701bcf8681#aff1
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Also, all particles are aware of the best global position 

visited by all particles in iteration k  denoted by  kGi  

and called G-best.  

 

4.1. The proposed algorithm 

 

To show that the DPSO algorithm framework can be 

implemented for discrete problems, in this section, we 

present a DPSO algorithm for the hybrid flowshop 

scheduling problem with sequence-dependent setup time 

and the objective of minimizing the makespan. Since the 

SDST single machine scheduling problem is equivalent to 

a traveling-salesman problem (Pinedo 2012) and is NP-

hard, SDST-HFSP is also NP-hard. SDST-HFSP is 

broadly used for modeling the process industries such as 

chemical, pharmaceutical, oil, food, tobacco, textile, 

paper, and metallurgical industry. For a comprehensive 

survey, we refer to the recent review paper done by 

Allahverdi (2015).  

The most important issue in applying DPSO algorithm to 

schedule problems is to find a suitable method to relate 

job sequences and positions of the particles. A suitable 

method is to represent each scheduling solution by a 

chromosome. This method enables us to use genetic 

operators, such as crossover and mutation, to simply 

generate movement policies. In the following subsections, 

first, we will explain our solution representation, and then 

present settings of the DPSO algorithm. 

 

4.2. Solution representation 

 

The proposed representation of DPSO algorithm to solve 

hybrid flowshop scheduling is based on coding all jobs as 

blocks in a )1( 1  mn  string in which n and m
1
 are the 

number of jobs and number of machines at the first stage 

of production line, respectively. In this type of 

representation, the sequence of jobs is represented by the 

numbers of blocks from the left to right and )1( 1 m  

asterisks “*” are used to differentiate one machine from 

another.  

An example of the representation is shown in Figure 1. 

 

 

 

2 6 ∗ 8 3 5 9 1 ∗ 7 4 

 
 

 

Fig. 1. Solution representation 

 

 
In this example, there are nine jobs with three machines at 

the first stage. As shown in this figure, jobs 2 and 6 with 

order 2→6 are assigned to machine 1; jobs 7 and 4 are 
assigned to machine 3, and other jobs are assigned to 

machine 2.  

 

4.3. Swarm initialization 

 

Any available method for generating a feasible solution 

would be sufficient for our algorithm. Random initializing 

for constructive metaheuristics is a common and popular 

procedure (Talbi 2009). To generate random positions for 

the particles of the initial swarm, the procedure is as 

follows: 

Generate )1( 1 m  asterisks “*” and randomly assign 

them to the blocks, a chromosome with length of 

)1( 1  mn  blocks, so that at least one unfilled block 

must bebetween the asterisks . Then, it assigns numbers 1 

to n  to the rest of the unfilled blocks. Note that the size 

of the swarm depends on the solution space. 

 

4.4. Movement in the next iteration 

 

Each particle has a planning procedure to decide how to 

move and change its position in the next iteration. To this 

end, each particle provides three movement policies and 

then combines them to determine its position in the next 

iteration. These movement policies are generated as 

follows: 

 

4.4.1. Movement policy based on current position: 

 ki

CurrentMP  

The first movement policy in iteration k  is denoted by 

 ki

CurrentMP  and is chosen based on the current 

position. Each particle is fickle and its position is 

determined based on its current position. In general, the 

movement policy  ki

CurrentMP  is a neighboring method 

in which the particles can choose a different neighborhood 

method. For this reason, the G-best can be appropriate in 

order to prevent falling in the local optimum trap. In this 

regard, fickleness index  kFI i  for particle i  in iteration 

k is defined as Equation (1). The fickleness of each 

particle may depend on its relative situation to G-best or 

its P-best. Therefore, for each particle, the fickleness rate 

is defined as 

    
  kXf

kGf
kFI

i

i
i 1  (1) 

Machine 1 Machine 2 Machine 3 

http://en.bookfi.org/g/El-Ghazali%20Talbi
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where objective function f  is the makespan of decoded 

solution and G and X are G-best and a position of 

particles, respectively.  

 

Now, we consider the two following cases: 

 

Case A: Particle i G-best 

 

Based on  kFI i , particle i G-best generates its 

movement policy  ki

CurrentMP  as follows: 

   
 

Current
Apply LS1  for 0 0.5

MP
Apply LS2        for 0.5 1

i

i

i

FI k
k

FI k

     
. 

 

Case B: Particle i G-best 

 

Particle i G-best selects randomly one of the following 

movement policies:  

 

 Current

G best

Apply 3

CMP Apply 4

Apply 5

i

LS

k LS

LS

 


 



 

 

4.4.2. Movement policy based on other particles: 

 ki

SwarmMP  

 

The second movement policy in iteration k  is denoted by 

 ki

SwarmMP  and is chosen based on the positions of 

other particles. It is logical and regular that each particle 

generates its movement policy  ki

SwarmMP  based on G-

best, but since particles are anarchic, it may select other 

particles (or a number of them) to generate a movement 

policy. Hence, for all particles, we define external 

irregularity rates  kEI i  as 

                                                                                               

   kCV

i ekEI
1  (2) 

 

in which  kCV  is the coefficient of variation of all 

particles fitness, i.e.,      kXfkXf N,,1  . This 

means that if the diversity of the swarm increases, the 

particles like to behave more irregularly, which is an 

expected behavior for anarchic particles. We use the 

following scenario for this policy: 

 
 
 

Swarm
Apply 6          0 0.5

MP
Apply 7         0.5 1 

i

i

i

LS EI k
k

LS EI k

   
 

 

 

4.4.3. Movement policy based on past positions: 

 ki

PastMP  

 

The third movement policy in iteration k  is denoted by 

 ki

PastMP  and is chosen based on the past positions 

visited personally. It is more normal that each particle 

generates movement policy  ki

PastMP  based on P-best, 

but because in our proposed algorithm, particles are 

lawless, it may select one of the past positions (or a 

number of them) to generate a movement policy. Hence, 

we define internal irregularity rate  kIIi  for particle i  

in iteration k , and we assume that with probability 

 kEI i , particle i  behaves irregularly. It is assumed that, 

for all particles, the internal irregularity rates  kIIi  are 

zeros, which means that particles generate policies 

 ki

PastMP  only based on their P-bests. Movement 

policy  ki

PastMP  is defined as: 

 PastMP Apply 8i k LS  

 

4.4.4. Combination rule 

 

After applying three components of velocity (inertia, P-

best, G-best), there are three solutions which must be 

combined to update the particles position. In this paper, 

three mechanisms are proposed and the better one must be 

selected in fine tuning. These mechanisms are as follows: 

 

 Serial: serial implementation { iS → pS  → 

sS }, 

 Elitism: minimum{ iS , pS , sS }, and 

 Crossover: crossover among { iS , pS , sS }. 



Javad Behnamian/ Diversified Particle Swarm… 

112 

 

 
 

Fig. 2. Flowchart of diversified particle swarm optimization (DPSO) with eight local searches 
 

 
4.5. Local searches  In this paper, we proposed several neighborhood search 

structures. Eight-type procedures are introduced in the 

following manner as local searches: 
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Algorithm 1. LS1:  

1: Choose a machine m randomly; 

2: Choose two jobs j1 and j2 randomly from machine m; 

3: Swap jobs j1 and j2. 

Algorithm 2. LS2: 

 Choose a machine m randomly; 

 Choose job j and a valid position ‘pos’ from machine m randomly; 

 Transfer job j at the position pos. 

Algorithm 3. LS3: 

1: Choose machine m randomly; 

2: Choose cutting point from machine i randomly to divide the sequence of jobs into two parts;  

3: Swap two parts. 

Algorithm 4. LS4: 

1: Choose two machines m1 and m2 randomly; 

2: Choose job j1 in m1 and job j2 in m2 randomly; 

3: Swap jobs j1 and j2. 

Algorithm 5. LS5: 

1: Choose one job j1 and one machine m2 randomly, where j1 does not belong to m2; 

2: Choose a valid position ‘pos’ in m2 randomly; 

3: Transfer job j1 to m2 at position pos. 

Algorithm 6. LS6: 

1: Consider current solution P1 and choose particle P2 randomly; 

2: Choose two crossover points in P1. 

3: All blocks outside the crossover points are inherited from P1 to the same positions in new position (N) with no changes.  

4: The genes that have already been selected from P1 are deleted from P2 so that the repetition of a gene in N is avoided. 

5: The other blocks in N are sorted in the same order as in P2 and complete the remaining empty gene locations with the 

undeleted genes that remain in P2 by preserving their gene sequence. 

 

 

Algorithm 7. LS7: 

1: Consider current solution P1 and randomly choose particle P2; 

2: Create a binary template (BT) and assign a randomly generated binary to each cell. 

3: Copy the genes from P1 corresponding to the locations of “1”s in the BT to the same positions in new position (N).  

4: In order to avoid repetition of a gene in N, the copied genes to N are deleted from P2.  

5: Complete the remaining empty gene locations with the undeleted genes remained in P2 by preserving their genes 

sequence. 

  
 

 

Algorithm 8. LS8: 

1: Consider current solution P1 and choose its P-best P2; 

2: Choose a crossover point in P1. 

3: All blocks in the right-hand side of crossover point are inherited from P1 to the same positions in the new position (N) 

with no changes.  

4: The genes that have already been selected from P1 are deleted from P2, so that the repetition of a gene in N is avoided. 

5: The other blocks in N are sorted in the same order as in P2 and complete the remaining empty gene locations with the 

undeleted genes that remain in P2 by preserving their gene sequence. 

 

 
5. Computational Results 

 

We have thoroughly reviewed the literature, and 

according to this review, the most related ones are APSO 

algorithm proposed by Ahmadi-Javid (2011), PSO 

algorithm proposed by Tseng and Liao (2008), and 

variable neighborhood search (VNS) proposed by Li et al. 

(2014). So, based on literature, we compare DPSO 

algorithm against these algorithms. Note that all 

algorithms are coded in C++. 
 

5.1. Data generation and settings  

 

The problem data can be characterized by four factors, 

and each of these factors can have at least two levels. 

These levels are shown in Table 1. 
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   Table 1 

   Factor levels 

Factor Levels 

Number of jobs 6 30 100 

Machine distribution 
Constant:1 

Variable: Uniform(1, 4) 

2  

Uniform(1, 10) 

10 

Number of stages 2 4 8 

Processing times Uniform(50, 70) Uniform(20, 100)  

 
The setup times are uniformly distributed from 12 to 24 

which are 20% to 40% of the mean of the processing time 

(Rios-Mercado and Bard, 1998). The setup time matrices 

are asymmetric and satisfy the triangle inequality. 

Probability of skipping a stage is an important 

characteristic in the hybrid flowshop problem which, in 

this paper, is set at 0, 0.05, or 0.40 (Leon and 

Ramamoorthy, 1997). Therefore, there are 252 test 

scenarios. Note that some further restrictions are 

introduced. The largest number of machines in a stage 

must be less than the number of jobs. Thus, the 

combination with 10 machines at each stage and 6 jobs 

will be skipped and the combination of 1–10 machines per 

stage with 6 jobs will be changed to 1–6 machines per 

stage with 6 jobs. Also, the variable machine distribution 

factor requires that at least one stage have a different 

number of machines than the others.  

      

5.2. Stopping rules 

 

For fair comparison between algorithms, similar to Ruiz 

and Stützle (2008), we allocated equal time to algorithms. 

Furthermore, due to several runs, we are experimentally 

aware of the idea that computational time has direct 

relation with the number of jobs, machines, and stages. 

So, the stopping criterion is set to a computation time that 

is fixed to 



g

t

t
gmn

1

2 4)/( milliseconds for all 

algorithms. 

 

 

 

 

 

5.3. Fine-tuning of the PSO algorithm parameters 

 

Fine-tuning the parameters of the metaheuristic algorithm 

is almost always a difficult task. The parameter values are 

extremely important because the results of the 

metaheuristic for each problem are very sensitive to them. 

This section describes an empirical testing approach to 

find the best tuning parameters of our proposed algorithm.  

We have applied parameters tuning for the population size 

(popsize), number of local search for G-best (LS), and 

selection mechanism in updating the position (UP) 

considering the following ranges: 

  

 Population size: three levels (10, 20 and 50), 

 Number of local searches for G-best: three levels 

(1, 2 and 3) 

 The combination rule for each particle: three 

levels (elitism, crossover among three results, 

and serial implementation). 

 

Twenty-seven different combinations are obtained by 

these levels. We generate six instances; two small, two 

medium and two large, for each combination of problem’s 

factor levels. All these instances are solved by 54 different 

combinations.  

The results are analyzed by the means of multi-factor 

analysis of variance (ANOVA) technique. It is necessary 

to notice that to use ANOVA, three main hypotheses, 

including normality, homogeneity of variance, and 

independence of residuals, must be checked. We did that 

and found no bias to question the validity of the 

experiment. Table 2 shows the results for different sizes 

of problems: small, medium, and large. 

 

 Table 2 

 Parameters tuning 

Parameters 
Problems 

Small Medium Large 

popsize 20 20 50 

LS 3 3 3 

UP Serially Serially Serially 

 
5.4. Evaluation metrics 

 
After computation of the objective value of each 

algorithm for its instances, the best solution obtained for 

each instance (which is named solMin ) by any of the four 

algorithms is calculated. Relative percentage deviation 

(RPD) is obtained by the following formula: 

 

sol

solsol

Min

MinA
RPD




lg  (6) 
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where solAlg is the objective value obtained for a given 

algorithm and instance. RPD of 4% for a given algorithm 

means that this algorithm is 4% over the best obtained 

solution on average. Clearly, lower values of the RPD are 

preferred. 

 

 

 

5.5. Results 

5.5.1. Analysis of makespan on RPD 

 
The results of the experiments are shown in Tables 3 and 

4. As it can be seen, DPSO algorithm provides better 

results than the PSO, VNS, and APSO algorithms. 

 
 Table 3 

 Average relative percentage deviation ( RPD ) for algorithms grouped by n and g 

Problem  

size 

Algorithm 

 VNS APSO PSO DPSO 

6×2 0.12705 0.06312 0.11021 0.10564 

6×4 0.11557 0.08094 0.10732 0.02381 

6×8 0.13760 0.06725 0.14472 0.01656 

     
6 Job 0.12674 0.07043 0.12075 0.04867 

     
30×2 0.06782 0.05151 0.06463 0.01143 

30×4 0.03856 0.02589 0.04577 0.01024 

30×8 0.03237 0.11498 0.12138 0.01048 

     
30 Job 0.04625 0.06413 0.07726 0.01072 

     
100×2 0.03053 0.01526 0.07728 0.00056 

100×4 0.03150 0.02771 0.08696 0.00145 

100×8 0.02524 0.01199 0.08084 0.00261 

     
100 Job 0.02909 0.01832 0.08170 0.00154 

     
Average 0.06736 0.05096 0.09323 0.02031 

 
Table 4 

 Detailed results of algorithms  

Problem size 
Agorithm 

Results 

Jobs Stages Var Min Max 

30 job 

2 stage 

APSO 25.38 2328.4 2341.4 

VNS 46.95 2338.4 2357.2 

PSO 118.93 2341.2 2367.2 

DPSO 536.71 2334.7 2398 

4 stage 

APSO 1986.23 1326.3 1443.2 

VNS 32.76 1386.6 1402 

PSO 50.05 1386.5 1404.1 

DPSO 329.34 1274.8 1323.6 

8 stage 

PSO 1547.99 830.82 929.57 

VNS 64.97 808.06 827.95 

SA 99.42 807.27 837.84 

DPSO 2.27 789.55 793.96 

100 job 

2 stage 

APSO 225.52 875.31 913.72 

VNS 215.15 875.31 917.93 

PSO 68.17 898.25 922.33 

DPSO 7.06 858.46 865.96 

4 stage 

APSO 264.96 4097.1 4142.6 

VNS 207.23 4105.3 4142.6 

PSO 191.86 4106.2 4140 

DPSO 19.87 4104.1 4115.7 

8 stage 

APSO 14677.71 3862.4 4186.2 

VNS 51188.63 3644.4 4214.8 

PSO 528.40 4164 4220.3 

DPSO 1595.27 3906.4 4011.4 

Var: Variance 

Min: Minimum 

Max: Maximum  
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In order to verify the statistical validity of the results 

shown in Table 3 and to confirm which the best algorithm 

is, we performed a design of experiments and an analysis 

of variance (ANOVA) in which the algorithms are the 

factor and RPDs are the response variable. The means plot 

and LSD intervals (at the 95% confidence level) for four 

algorithms are shown in Figure 3. 
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Fig. 3. Plot of RPD  for the type of algorithm factor 

 
The results demonstrate that there is a clear statistically 

significant difference among the performances of the 

algorithms.  

The convergence plot of the proposed algorithm for three 

large-sized samples is also presented in Figure 4. 
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Fig. 4. Convergence plot of the proposed algorithm for three large-sized instances 

 

 
 

5.5.2. Analysis of controlled factors 

 

ANOVA-F test was carried out to determine whether the 

treatment means are significantly different from each 

other. All tests were conducted at the 5% level of 

significance. 

 

5.5.2.1. Analysis of problem size factor (number of jobs) 

 

In order to see the effects of number of jobs on four 

algorithms, a two-factor ANOVA is applied. Plot of 

RPD  for the interaction between the type of algorithm 

and number of jobs is shown in Figure 5.  
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Fig. 5. Plot of RPD  for the interaction between the type of algorithm and the number of jobs 

 

 
As we can see, in all cases, the DPSO algorithm works 

better than PSO, VNS, and APSO algorithms.  

 

 

 

5.5.2.2. Analyzing factor g (number of stages) 

 

Other two-factor ANOVA and LSD tests are applied to 

see the effect of magnitude of stages on quality of the 

algorithms. The results are shown in Figure 6. 
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Fig. 6. Plot of RPD  for the interaction between the type of algorithm and magnitude of the stages 

 
As we can see, in the cases of  = 2g ,  = 4g , and  = 8g , 

the DPSO algorithm works better than others.  

 

6. Conclusions and Future Works 

 

Particle swarm optimization as a well-known 

metaheuristic has desirable properties, but the 

convergence usually happens prematurely and parts of 

solution space remain unexplored. Moreover, the standard 

particle swarm optimization (PSO) algorithm cannot be 

applied to discrete problems. To overcome these 

shortcomings, in this paper, we introduce diversified 

particle swarm optimization (DPSO) algorithm as a 

powerful generalization of PSO algorithm. DPSO 

algorithm is inspired by the concept of  a society whose 

members behave anarchically to improve their situations. 

In DPSO algorithm, the particles are fickle, and their 

fickleness increases as their situations become worse. 

They also occasionally behave irregularly and move 

towards worse particles of the swarm or worse positions 

which they have previously visited. DPSO algorithm of 

such anarchic particles explores the solution space 

perfectly and prevents falling in the local optimum traps. 

Recently, sequence-dependent hybrid flowshop (SDST-

HFSP) has been solved by almost all the well-known 

heuristic methods. We numerically compare the 

performance of the DPSO algorithm with three of the best 

algorithms recently developed in the literature. A 

comprehensive set of computational experiments and 

statistical analyses for test instances with different 

structures has been carried out. To fairly compare the 

algorithms, we allocated equal times to all the algorithms 

which was also enough for all of them to converge. For all 

the combinations of the problem parameters, especially 

for medium and large instances, the DPSO algorithm 

considerably outperforms the other ones. According to our 

promising results, we expect that DPSO algorithm can be 

successfully used in solving other challenging discrete 

problems. Also, since the proposed DPSO algorithm 

framework includes the standard PSO algorithm which is 
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widely used for continuous problems, applying DPSO 

algorithm to continuous problems is another interesting 

research area. 

 

References 

 

Ahmadi-Javid, A. (2011). Anarchic Society Optimization: 

A Human-Inspired Method. In 2011 IEEE Congress 

on Evolutionary Computation (CEC), 2586-2592. 

Allahverdi, A. (2015). The third comprehensive survey on 

scheduling problems with setup 

times/costs, European Journal of Operational 

Research, 377(2), 345-378. 

Behnamian, J. Fatemi Ghomi, S.M.T., & Zandieh, M. 

(2009). A multi-phase covering Pareto-optimal front 

method to multi-objective scheduling in a realistic 

hybrid flowshop using a hybrid metaheuristic. Expert 

Systems with Applications, 36(8), 11057-11069. 

Behnamian, J. Fatemi Ghomi, S.M.T., & Zandieh, M. 

(2012). Hybrid flowshop scheduling with sequence-

dependent setup times by hybridizing max–min ant 

system, simulated annealing and variable 

neighborhood search, Expert Systems: The Journal of 

Knowledge Engineering, 29 (2), 156–169. 

Blackwell, T., & Bentley, P.J. (2002). Don’t push me! 

Collision-avoiding swarms. In: Proceedings of the 

IEEE congress on evolutionary computation, 1691–
96. 

Chen, C-C. (2011). Two-layer particle swarm 

optimization for unconstrained optimization 

problems, Applied Soft Computing, 11(1), 295–304. 

Clerc, M. (2006). Particle swarm optimization. ISTE; 

Coelho, L.S. (2008). A quantum particle swarm optimizer 

with chaotic mutation operator, Chaos, Solitons and 

Fractals, 37, 1409–1418. 

Coelho, L.S. (2009). Reliability–redundancy optimization 

by means of a chaotic differential evolution approach 

, Chaos, Solitons & Fractals, 41(2), 594-602 

Eberhart, R., & Kennedy, J. (1995). A new optimizer 

using particle swarm theory. In: Proceedings of the 

IEEE Sixth International Symposium on Micro 

Machine and Human Science, 39-43. 

El-Abd, M. Hassan, H. Anis, M. Kamel, M.S., & Elmasry, 

M. (2010). Discrete cooperative particle swarm 

optimization for FPGA placement. Applied Soft 

Computing, 284-295. 

Gaafar, L.K. Masoud, S.A., & Nassef, A.O. (2008). A 

particle swarm-based genetic algorithm for 

scheduling in an agile environment. Computers & 

Industrial Engineering, 55, 707–720. 

García-Villoria, A., & Pastor, R. (2009). Introducing 

dynamic diversity into a discrete particle swarm 

optimization, Computers & Operations Research, 

36(3), 951-966. 

He, S. Wu, Q.H. Wen, J.Y. Saunders, J.R. R.C., & Paton, 

(2004). A particle swarm optimizer with passive 

congregation. Biosystems, 78, 135–47. 

Jie, J. Zeng, J. Han, C., & Wang, Q. (2008). Knowledge-

based cooperative particle swarm 

optimization. Applied Mathematics and 

Computation,  205 (2), 861-873. 

Jina, Z. Yang, Z., & Ito, T. (2006). Metaheuristic 

algorithms for the multistage hybrid flowshop 

scheduling problem. International Journal of 

Production Economics, 100(2), 322-334. 

Johnson, D.S. Aragon, C.R. Mcgeoch, L.A., & Schevon, 

C. (1989). Optimization by simulated annealing: an 

experimental evaluation; Part I, graph 

partitioning, Operations Research, 37(6), 865–892. 

Karthi, R.  Arumugam, S., &  Ramesh Kumar, K. (2009). 

Discrete Particle Swarm Optimization Algorithm for 

Data Clustering Nature Inspired Cooperative 

Strategies for Optimization (NICSO 2008). 

Koua, X. Liu, S. Zhang, J., & Zheng, W. (2009). Co-

evolutionary particle swarm optimization to solve 

constrained optimization problems. Computers & 

Mathematics with Applications, 57, 11-12. 

Król, D., & Drożdżowski, M. (2010). Use of MaSE 
methodology and swarm-based metaheuristics to 

solve the traveling salesman problem. Journal of 

Intelligent and Fuzzy Systems, 21(3), 221-231. 

Kurz, M.E., & Askin, R.G. (2003). Comparing scheduling 

rules for flexible flow lines. International Journal of 

Production Economics, 85, 371-388. 

Kurz, M.E., & Askin, R.G. (2004). Scheduling flexible 

flow lines with sequence-dependent setup 

times. European Journal of Operational Research, 

159, 66–82. 

Laskari, E.C. Parsopoulos, K.E., & Vrahatis, M.N. (2002). 

Particle swarm optimization for integer 

programming. In: Proceedings of the IEEE 2002 

Congress on Evolutionary Computation, Honolulu 

(HI), 1582–1587. 

Leon, V.J., & Ramamoorthy, B. (1997). An adaptable 

problem-space based search method for flexible flow 

line scheduling. IIE Transactions, 29, 115–125. 

 Li, J-Q.,  Pan, Q-K. , & Wang, F-T. (2014). A hybrid 

variable neighborhood search for solving the hybrid 

flow shop scheduling problem. Applied Soft 

Computing, (24), 63–77. 

Lozvbjerg, M. Krink, T. (2002). Extending particle 

swarms with self-organized criticality. In: 

Proceedings of the IEEE congress on evolutionary 

computation,1588–93. 

Montalvo, I. Izquierdo, J. Pérez, R., & Tung, M.M. 

(2008). Particle swarm optimization applied to the 

design of water supply systems. Computers & 

Mathematics with Applications,  56(3), 769-776. 

Naderi, B. Zandieh, M., & Aminnayeri, M. (2011). 

Incorporating periodic preventive maintenance into 

flexible flowshop scheduling problems. Applied Soft 

Computing, 11(2), 2094–2101. 

Nawaz, M. Enscore, E., & Ham, I. (1983). A heuristic 

algorithm for the m-machine, n-job flow-shop 

sequencing problem. Omega, 11, 91–95. 

Parsopoulos, K.E. Vrahatis, D.K., & Tasoulis, M.N. 

(2004). Multi-objective optimization using parallel 

vector evaluated particle swarm optimization. In: 

Proceedings of the IASTED international conference 



Journal of Optimization in Industrial Engineering Vol.12, Issue 2, Summer & Autumn 2019, 107- 119 

 

119 

 

on artificial intelligence and applications, 2, 823–
828. 

Parsopoulos, K.E., & Vrahatis, M.N. (2001). Particle 

swarm optimizer in noisy and continuously changing 

environments. In: Hamza MH, editor, Artificial 

intelligence and soft computing, 289–94. 

Pinedo, M.L. (2012). Scheduling Theory, Algorithms, and 

Systems, Fourth Edition, Springer, NY. 

Rios-Mercado, R.Z., & Bard, J.F. (1998). Computational 

experience with a branch-and-cut algorithm for 

flowshop scheduling with setups. Computers & 

Operations Research, 25 (5), 351–366. 

Ruiz, R., & Stützle, T. (2008). An Iterated Greedy 

heuristic for the sequence dependent setup times 

flowshop problem with makespan and weighted 

tardiness objectives. European Journal of 

Operational Research, 187(3), 1143–1159. 

Sadati, N. Amraee, T., & Ranjbar, A.M. (2009). A global 

particle swarm- based-simulated annealing technique 

for undervoltage load shedding problem. Applied Soft 

Computing, 9(2), 652–657. 

Sha, D.Y., & Hs, C-Y. (2006). A hybrid particle swarm 

optimization for job shop scheduling 

problem. Computers & Industrial Engineering, 

 51(4), 791-808 

Sun, T-H. (2009). Applying particle swarm optimization 

algorithm to roundness measurement. Expert Systems 

with Applications, 36 (2),  3428-3438. 

Talbi, El-G. (2009). Metaheuristics: From Design to 

Implementation, Wiley Series on Parallel and 

Distributed Computing. 

Tang, Y. Qiao, L., & Guan, X. (2010). Identification of 

Wiener model using step signals and particle swarm 

optimization. Expert Systems with Applications, 

37(4), 3398-3404. 

Tseng, C-T., & Liao, C-J. (2008). A particle swarm 

optimization algorithm for hybrid flow-shop 

scheduling with multiprocessor tasks. International 

Journal Of Production Research, 46(17), 4655-4670. 

Wang, J. Kuang, Z. Xu, X., & Zhou, Y. (2009). Discrete 

particle swarm optimization based on estimation of 

distribution for polygonal approximation 

problems. Expert Systems with Applications,  36 (5), 

9398-9408. 

Wang, X., & Tang, L. (2009). A tabu search heuristic for 

the hybrid flowshop scheduling with finite 

intermediate buffers. Computers & Operations 

Research, 36(3), 907–918. 

Wang, Y., & Liu, J.H. (2010). Chaotic particle swarm 

optimization for assembly sequence 

planning. Robotics and Computer-Integrated 

Manufacturing,  26(2), 212-222. 

Xiang, T. Wong, K-w., & Liao, X. (2007). A novel 

particle swarm optimizer with time-delay. Applied 

Mathematics and Computation,  186 (1), 789-793. 

Xie, X.F. Zhang, W.J., & Yang, Z.L. (2002). A dissipative 

particle swarm optimization. In: IEEE congress on 

evolutionary computation (CEC’02), HI, USA. 

Xiong, Y. Cheng, H-Z. Yan, J-Y., & Zhang, L. (2007). 

New discrete method for particle swarm optimization 

and its application in transmission network 

expansion planning. Electric Power Systems 

Research,  77(3-4), 227-233. 

Yang, Y. Xiaoxing, L., & Chunqin, G. (2008). Hybrid 

particle swarm optimization for multiobjective 

resource allocation, Journal of Systems Engineering 

and Electronics,  19(5), 959-964. 

Yeh, W-C. Chang, W-W., & Ying Chung, Y. (2009). A 

new hybrid approach for mining breast cancer pattern 

using discrete particle swarm optimization and 

statistical method. Expert Systems with Applications, 

 36(4), 8204-8211. 

Yin, P-Y. (2004). A discrete particle swarm algorithm for 

optimal polygonal approximation of digital 

curves, Journal of Visual Communication and Image 

Representation,  15(2), 241-260. 

 

 

 

This article can be cited: Behnamian, J. (2019) Diversified Particle Swarm Optimization for 
 Hybrid Flowshop Scheduling. Journal of Optimization in Industrial  Engineering. 12 (2), 107-119. 

 

http://www.qjie.ir/article_538342.html 

DOI: 10.22094/JOIE.2018.671.1433 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

http://www.qjie.ir/article_538342.html

