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Abstract 
 

This paper describes a low computational direct approach for optimal motion planning and obstacle avoidance of Omni-directional mobile 
robots within velocity and acceleration constraints on the robot motion. The main purpose of this problem is the minimization of a 
quadratic cost function while limitations on velocity and acceleration of robot are considered, and collision with any obstacle in the robot 
workspace is avoided. This problem can be formulated as a constrained nonlinear optimal control problem. To solve this problem, a direct 
method is utilized which employs polynomials functions for parameterization of trajectories. By this transforming, the main optimal control 
problem can be rewritten as a nonlinear programming problem (NLP) with lower complexity. To solve the resulted NLP and obtain optimal 
trajectories, a new approach is used with very small run time. Finally, the performance and effectiveness of the proposed method are tested 
in simulations and some performance indexes are computed for better assessment. Furthermore, a comparison between the proposed 
method and another direct method is done to verify the low computational cost and better performance of the proposed method.  

Keywords: Direct trajectory planning, Obstacle avoidance, Motion constraints, Omni-directional mobile robots. 

1. Introduction 

Omni-directional mobile robots are becoming 
increasingly popular in mobile robot applications since 
they have some distinguishing advantages in comparison 
with nonholonomic mobile robots. The ability to move in 
any direction, irrespective of the orientation of the 
vehicle, makes it an attractive robot. The small-sized 
league of the annual RobuCup competition is an example 
where Omni-directional mobile robots are employed. 
Motion planning is one of the most important issues in 
these competitions. Indeed, the robot must be able to 
move in its workspace while avoiding obstacles to reach 
desired destination position in an optimal trajectory.  
In a common form, the motion planning problem can be 
formulated as an optimal control problem (OCP). Since 
the resulted optimal control problem is a complex and 
nonlinear problem, analytic solutions are hard or even 
non-existent. Thus, numerical methods are needed for the 
solution of these problems. The numerical solutions of 
nonlinear OCPs are generally classified as indirect and 
direct methods (Rao, 2009; Betts, 1998; Von Stryk and  
 
Bulirsch, 1992). In indirect methods, the optimality 
conditions are considered via Pontryagin’s maximum 

principle or vibrational principle (Bryson, 1975; Hartl, 
1995). Then, the problem is converted to a two-point 
boundary value problem which would be solved 
numerically. The main disadvantage of the indirect 
methods is that these methods cannot handle 
discontinuities in the problem which arise from high 
nonlinearities in the constraints of the problem.  
Thus, direct methods come to replace indirect ones to 
solve more complex optimal control problems. The basic 
principle of the direct methods is parameterization of the 
OCP and solving it using appropriate nonlinear 
programming (NLP) techniques (Rao, 2009). The direct 
methods can be employed by parameterization of the state 
variables (Jaddu, 1998; Jaddu, 2002; Jaddu & Vlach, 
2002), control variables (Goh & Teo, 1988) or both the 
state and control variables (Vlassenbroeck and Van 
Dooren, 1988; Frick and Stech, 1993). 
Direct shooting methods (Kirches and Wirsching (2012); 
Assassa and Marquardt (2014)) and direct collocation 
methods (Kameswaran and Biegler (2008); Garg et al., 
(2011); Tohidi & Nik (2015); Von Stryk (1993)) are two 
basic methods of direct methods which operate by 
parameterization of control variable and both of state and 
control variables, respectively. 
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In recent studies on trajectory planning, the following 
papers can be consulted. Duan et al. (2016) presented a 
trajectory planning method for a glass-handing robot 
based on execution time, acceleration and jerk. Richter et 
al. (2016) proposed an algorithm to generate trajectories 
for a differential flat quadrotor model in cluttered indoor 
environments. Li et al. (2015) obtained time-optimal 
trajectory for tractor-trailer vehicles. Lou et al. (2015) 
worked on trajectory planning of industrial robotic 
manipulators based on energy minimization. 
This paper presents an optimal motion planning and 
obstacle avoidance for Omni-directional mobile robots 
under robot motion constraints. To obtain an optimal 
trajectory, a quadratic cost function is considered to be 
minimized. First, the optimal motion planning problem is 
rewritten as an optimal control problem. Since the 
resulted OCP has nonlinear constraints, the indirect 
method results in a complex problem with high 
computational problem. Thus, the direct method is 
utilized for solving the nonlinear constraints of optimal 
control problem. The employed direct method operates 
using state parameterization by polynomial functions. 
Mohseni and Fakharian (2015) presented a solution 
method for solving the resulted NLP. In this method, the 
NLP is solved in pre-defined points in the whole time 
interval. Then, the main solution is obtained by collecting 
these individual solutions.  
In this paper, a technique is employed in which the 
solution of NLP is obtained in one step. This method 
decreases the simulation time of solving the motion 
planning problem sharply. 
The paper is organized as follows. The model of the 
Omni-directional mobile robot is presented is section 2. In 
section 3, necessity and importance of motion planning in 
real environments are stated. Section 4 describes the main 
aims of optimal motion planning problem; by some 
assumption, the final optimal control formulation is 
written. In section 5, the proposed direct method is 
presented. First, the optimal control problem is converted 
to a nonlinear programming problem, and then the new 
solution method for solving the resulted NLP is proposed. 
The proposed method is tested under simulation in section 
6 and is compared with another direct trajectory planning 
method in section 7. Finally, the conclusion of the paper 
is presented in section 8. 

2. The Omni-directional Mobile Robot Model 

In this section, the model of Omni-directional mobile 
robot is presented. In trajectory and motion planning 
problems, often the dynamics of the robot are ignored and 
only translations and rotations required to move are 
considered (LaValle, 2006). 
The motion equations of a four-wheeled Omni-directional 
mobile robot by Purwin and D'Andrea (2005) is presented 
as follows: 

(t) q (t)xx   (1) 

y(t) q (t)y  (2) 

where q (t)x and q (t)y  are the control inputs to the robot 
in x  and y  directions, respectively. First, the state 
variables are considered as follows: 

1 2 3 4(t) , (t) , (t) , (t)x x x y x x x y      (3) 

where ,x ,y ,x and y  are the position in x direction, 
position in y direction, velocity in x direction, and 
velocity in y direction, respectively. 
Then, the control inputs are denoted as follows: 

 1 2 1 2, (t) q (t), (t) q (t)T
x yU u u u u    (4) 

Finally, state space model of the robot can be written as 
follows: 

(t) (t) (t)X AX Bu   (5) 

where 

0 0 1 0 0 0
0 0 0 1 0 0

,
0 0 0 0 1 0
0 0 0 0 0 1

A B

   
   
    
   
   
   

 (6) 

3. Applications of the Motion Planning for Mobile 
Robots in Real Environments 

Mobile robots have various applications in different 
fields. One of the important issue for these automatic 
systems is finding appropriate motions to move the robot 
in desired trajectories. Motion planning is a term used in 
robotics for the process of breaking down the desired 
movement task into discrete motions that satisfy 
movement constraints and possibly optimize some aspect 
of the movement. Motion planning problem would take a 
description of these tasks as inputs and produce the speed 
and turning commands sent to the robot’s wheels. 
For instance, consider navigating a rescue robot inside a 
building. It should perform its tasks while avoiding 
collision with walls and other objects. 
Another example is a mobile robot which works in a 
storehouse. It should be able to move from the first point 
to destination point in an appropriate path and avoid the 
collision with other racks and products. 
By the increase and evolution of robotic systems, Robotic 
studies have become a popular field in scientific research 
studies.  
RoboCup is a competition domain designed to advance 
robotics and AI research through a friendly competition. 
The small-sized league of the annual RobuCup 
competition is an example where Omni-directional mobile 
robots are employed. A small-sized robot soccer game 
takes places between two teams of six robots each.  
The robot should be able to move in an optimal trajectory 
while avoiding the collision from other soccer player 
robots. Also, there is a limitation on maximum velocity 

Naser Azim Mosheni et al./ Direct Optimal Motion ...

94



and acceleration of these robots which should be satisfied 
in motion planning problem. 
One image of these competitions is shown in Fig. 1. 

 

Fig. 1. Small-sized Robocop competitions 

4. Problem Statement, Formulation, and Assumption 

In this section, the main purpose of motion planning 
problem is described and formulated as a nonlinear 
optimal control problem.  

 A quadratic cost function be minimized. 

0

1 (x( ) ( ) ( ) ( )) dt
2

ft T T
t

J t Qx t u t Ru t   (7) 

 Collision with obstacles be avoided. 

 
1

(X(t), t) 0
k

i
i

S


  (8) 

 The maximum velocity and acceleration on robot be 
satisfied. 

2 2
3 4 max(t) (t) ,x x v   (9) 

2 2
1 2 max(t) (t)u u a   (10) 

 The robot must move from initial point to goal point. 

01 0 1( ) ,x t x
02 0 2( ) ,x t x  

03 0 3( ) ,x t x
04 0 4( ) ,x t x  

(11) 

1 1( ) ,
ffx t x 2 2( ) ,

ffx t x  

3 3( ) ,
ffx t x 4 4( ) ,

ffx t x  
(12) 

 The model of the Omni-directional robot be 
considered. 

1 3

2 4

3 1

4 2

(t) (t) (t)
(t) (t) (t)

(t) (t) (t)
(t) (t) (t)

x

y

x

y

x x v
x x v

x u a
x u a

 
  
  
  







 (13) 

In which Q  is a symmetric positive semi-definite matrix, 
and R is a symmetric positive definite matrix; 

0jx  and 

,
fjx ( 1,...,4)j   are the initial and final positions and 

velocities of robot, respectively; (X(t), t)iS represents the 
time-varying boundaries of the static obstacles, maxv and 

maxa are the maximum velocity and acceleration of robot, 
respectively. 

Since the desired trajectory will be used for the motion 
planning of Omni-directional mobile robots in small-sized 
league, the following assumptions are considered. 

Assumption 1:  

The weights of all states and inputs in the cost function 
are considered to be equal.  

2 2 2 2 2 2
1 2 3 4 1 20

1 (x x x x ) ,
2

ft
J u u dt       (14) 

Assumption 2:  

Obstacles are presented by circles with radius ir  which 

are centered at .
i i i

T
c c cX x y     

2 2 2
1 2

1
(x (t) x ) (x (t) )

i i

k

c c i
i

y r


       (15) 

Assumption 3:  

The initial time and position of the robot are considered at 
the origin. 

1(0) 0,x  2 (0) 0x   (16) 

Assumption 4:  

The initial and final velocity of the robot should be zero. 

3 (0) 0,x  4 (0) 0,x  3( ) 0,fx t  4 ( ) 0fx t   (17) 

Finally, the resulted nonlinear OCP can be presented as 
follows: 

2 2 2 2 2 2
1 2 3 4 1 20

1 (x x x x ) ,
2

ft
Min J u u dt       (18) 

s.t: 
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1 3

2 4

3 1

4 2

(t) (t) (t)
(t) (t) (t)

(t) (t) (t)
(t) (t) (t)

x

y

x

y

x x v
x x v

x u a
x u a

 
  
  
  







 (19) 

2 2 2
1 2

1
(x (t) x ) (x (t) )

i i

k

c c i
i

y r


       (20) 

2 2
3 4 max(t) (t) ,x x v   (21) 

2 2
1 2 max(t) (t)u u a   (22) 

1 2 1 1 2 2(0) 0, (0) 0, ( ) , ( )
f ff fx x x t x x t x     

3 4 3 4(0) 0, (0) 0, ( ) 0, ( ) 0f fx x x t x t      
(23) 

5. The Proposed Optimal Motion Planning Method 

5.1. Direct method to convert Nonlinear OCP to NLP 

In this subsection, 4-order polynomial functions are 
employed to parameterize the position state variables. By 
this transformation, the Nonlinear OCP is converted to a 
NLP. 

First, the position state variables are parameterized as 
follows: 

2 3 4
0 1 2 3 4 ,x a a t a t a t a t      (24) 

2 3 4
0 1 2 3 4y b b t b t b t b t      (25) 

Also, according to (13), velocity and control inputs are 
obtained as follows: 

2 3
1 2 3 4(t) 2 3 4xv a a t a t a t     (26) 

2 3
1 2 3 4(t) 2 3 4yv b b t b t b t     (27) 

2
1 2 3 4(t) 2 6 12u a a t a t    (28) 

2
2 2 3 4(t) 2 6 12u b b t b t    (29) 

Finally, by substituting (24) and (25) into (18)-(23), the 
resulted NLP is obtained as follows: 

ˆmin (a ,b )n nJ  (30) 

subject to: 

 
1

(a ,b , t) 0 ,
n

i n n
i

L


  (31) 

(a ,b , t) 0,n nP   (32) 

Q(a ,b , t) 0n n   (33) 

In which ˆ,J ,iL ,P and Q  are new polynomial functions 
associated with cost function, obstacle constraints, 
maximum velocity constraint, and maximum acceleration 
constraint, respectively. 

5.2. The new approach for solving resulted NLP  

In this subsection, a low computational approach for 
solving the resulted NLP is presented. Unlike the previous 
NLP solution method (Mohseni and Fakharian (2015)) in 
which the nonlinear inequality constraints are considered 
in some pre-defined points, in the new proposed 
approach, the nonlinear inequality constraints are 
considered only once. The main idea for this approach is 
the division of the nonlinear constraints into non-positive 
and non-negative constraints. Then, it is guaranteed that 
minimum value of non-negative constraints is non-
negative, and the maximum value of non-positive 
constraints is non-positive.  

Thus, an optimization problem is created as follows: 

4 4
ˆmin (a ,b )J  (34) 

subject to: 

 4 4
1

min (a ,b , t) 0,
k

i
i

L


 
  

 
  (35) 

 4 4max (a ,b , t) 0,P   (36) 

 4 4max Q(a ,b , t) 0  (37) 

6. Simulation Results 

To demonstrate the computational efficiency of the 
proposed method, simulations are performed. Also, 
simulation results are compared with the result obtained 
by Mohseni and Fakharian (2015).  
Table 1 shows the simulation data in SI units for 
scenario#1 and scenario#2.  
Table 1 
Simulation data 

Parameters Scenario#1 Scenario#2 

fX   2, 2   2, 2  

ft  3.5 3.5 

1 1,cX r   0.3,0.4 ,0.11   0.3,0.4 ,0.11  

2 2,cX r   0.6, 0.5 , 0.1   0.6, 0.5 , 0.1  

3 3,cX r   1, 0.9 , 0.16   1, 0.9 , 0.16  

4 4,cX r   1.3,1.4 , 0.18   1.3,1.4 , 0.18  

maxv   1.5  

maxa   4 
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Polynomials trajectories for scenario#1 are obtained as 
follows: 

2 3 4
1(t) 0.3832 0.0324 0.0087 ,x t t t    (38) 

2 3 4
2 (t) 5.28 3.2037 0.471x t t t     (39) 

2 3
3(t) 0.7664 0.0972 0.0348 ,x t t t    (40) 

2 3
4 (t) 10.5599 9.6111 1.884 ,x t t t     (41) 

2
1(t) 7.6644 0.0194 0.1044 ,u t t    (42) 

2
2 (t) 10.5599 19.2222 5.652u t t     (43) 

Fig. 2 shows the position, velocity, and acceleration of 
robot using two NLP solution methods in scenario#1. 
The optimal trajectories using two NLP solution methods 
for scenario#1 are illustrated in Fig. 3.  
Also, to study the impact of maximum limitation on the 
velocity and acceleration of robot, the diagrams of the 
square of total velocity, and the acceleration of robot 
using two solution methods in scenario#1 is shown in Fig. 
4.  

 
Fig. 2.  Position, velocity, and acceleration of robot using two NLP 

solution methods in scenario#1 

 

Fig. 3.  Obtained optimal trajectories using two NLP solution methods in 
scenario#1 

As shown in Fig. 4, the maximum of square of total 
velocity and acceleration of robot by two NLP solution 
methods are specified in the diagrams.  With respect to 
these values, we get: 

  

  

  

  

2 2

2 2

2 2 2

2 2 2

max( (t) (t)) 1.805 / ,

max( (t) (t)) 1.889 / ,

max(a (t) (t)) 5.969 / ,

max(a (t) (t)) 5.261 /

new solution method

old solution method

new solution method

old solution method

x y

x y

x y

x y

v v m s

v v m s

a m s

a m s

 

 

 

 

 (44) 

 

Fig. 4. Square of total velocity and acceleration of robot using two NLP 
solution methods in scenario#1 

Thus, the maximum limitation on velocity and 
acceleration of robot in scenario#2 is considered as 
follows: 

max 1.5 1.22 / ,v m s  2
max 4 2 /a m s   (45) 

 

So, we have two constraints as follows: 

 

2 2
3 4(t) (t) 1.22,x x   (46) 

2 2
1 2(t) (t) 2u u   (47) 

 

Polynomials trajectories for scenario#2 are obtained as 
follows: 

2 3 4
1(t) 1.8128 0.8493 0.108 ,x t t t    (48) 

2 3 4
2 (t) 0.1652 0.0922 0.0265x t t t    (49) 

2 3
3(t) 3.6256 2.5479 0.432 ,x t t t    (50) 
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2

x 1(m
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Old solution
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0
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3

x 2(m
)
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0

0.5

1

v x(m
/s

)

0 0.5 1 1.5 2 2.5 3 3.5
-0.5

0

0.5

1

1.5

v y(m
/s

)
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1
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)
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2 3
4 (t) 0.3303 0.2766 0.106 ,x t t t    (51) 

2
1(t) 3.6256 5.0958 1.296 ,u t t    (52) 

2
2 (t) 0.3303 0.5532 0.318u t t    (53) 

 

Fig. 5 shows the position, velocity, and acceleration of 
robot using two NLP solution methods in scenario#2.  

Also, the optimal trajectories by two NLP solution 
methods in scenario#2 are illustrated in Fig. 6.  

Square of total velocity and acceleration of robot using 
two solution methods in scenario#2 is depicted in Fig. 7.  

 
Fig. 5.  Position, velocity, and acceleration of robot using two NLP 

solution methods in scenario#2 

 

Fig. 6.  Obtained optimal trajectories using two NLP solution methods in 
scenario#2 

 

Fig. 7.  Square of total velocity and acceleration of robot using two NLP 
solution methods in scenario#2 

We can see in Figs. 3 and 6 that the robot without 
collision with obstacles obtains the desired goal positions 
in two scenarios. Also, it can be seen in Figs. 2 and 5 that 
the initial and final conditions on the velocity of the robot 
are satisfied in two scenarios. 
As shown in Fig. 7, the maximum of the square of total 
velocity and acceleration of robot by two solution 
methods is limited on 1.5 /m s  and 24 /m s , respectively. 
Table 2 presents simulation times and the cost function 
values by two NLP solution methods. 
where 

newrunt and 
oldrunt  are the simulation times of the 

proposed method and the previous method (Mohseni and 
Fakharian (2015)), respectively. Also, newJ  and oldJ  are 
the performance index values using the proposed method 
and the previous method (Mohseni and Fakharian (2015)), 
respectively. 

 
Table 2 
Simulation times and performance index values 

Parameters Obtained values in 
scenario#1 

Obtained values in 
scenario#2 

oldJ  7.24  7.27  

newJ  7.48  7.69  

(s)
o ldrunt  42.66  59.52  

(s)
newrunt  0.12  0.1  

As shown in Table 2, the simulation times have decreased 
dramatically using new NLP solution method in 
comparison with the old NLP solution method. Also, the 
performance index value using the new NLP solution 
method has increased slightly in comparison with the old 
NLP solution method.  
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7. Comparison with another Direct Method 

In this section, the proposed method is compared with 
another direct method called Gaussian pseudo spectral 
method (GPM) to illustrate its effectiveness.  
The GPM is a direct method which formulates the optimal 
control problem directly into a NLP. In this method, the 
state and control variables are approximated using 
orthogonal polynomials based on interpolation at 
collocation points.   
Recently, this method has become increasingly popular 
and is considered as a powerful direct computational 
method for complex problems (Garg and Hager, 2011; 
Garg et al., 2010; Meng et al., 2014; Wang et al., 2013). 
Table 3 presents the simulation data in SI units for this 
simulation. 
Simulation results are given in Fig. 8-Fig. 10. 
Table 3 
Simulation data 

Parameters Values 

fX   1,1  

ft  3 

1 1,cX r   0.6,0.5 ,0.085  

2 2,cX r   0.3, 0.4 , 0.085  

3 3,cX r   0.7, 0.75 , 0.085  

maxv  3 

maxa  4  

 
Fig. 8.  Position, velocity, and acceleration of robot using three direct 

methods 

 
Fig. 9.  Optimal trajectories using three direct methods 

 
Fig. 10.  Total velocity and acceleration of robot using three direct 

methods 

As seen in Fig. 9, the robot passes obstacles and reaches 
the desired goal positions in all three methods. Also, it 
can be seen in Fig. 8 that the initial and final conditions 
on the velocity of the robot are satisfied using these 
methods. 
As shown in Fig. 10, the maximum of total velocity and 
acceleration of robot by all three methods are satisfied. 
Table 4 compares simulation times and the cost function 
values by three direct methods. 
 

Table 4 
Simulation results 

Parameters Obtained values 

oldJ  1.9  

newJ  2.08  

GPMJ  3.63  

(s)
o ldrunt  20.74  

(s)
newrunt  0.81  

(s)
G P Mrunt  3.4  

 

As shown in Table 4, the simulation times have decreased 
dramatically using new NLP solution method in 
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comparison with the previous NLP solution method 
(Mohseni and Fakharian (2015)) and the Gaussian pseudo 
pectral method (GPM). Also, the cost function values in 
the presented two polynomial methods are obtained less 
than the Gaussian pseudo spectral method (GPM). Thus, 
the proposed method can be employed as an appropriate 
and low computational cost method in optimal motion 
planning of Omni-directional mobile robots in presence of 
obstacles and under motion constraints. 

8. Discussion and Conclusion 

In this paper, a direct method has been presented for 
optimal trajectory planning and obstacle avoidance of 
Omni-directional mobile robot under velocity and 
acceleration constraints. The main idea was to convert the 
main optimal control problem to a NLP using polynomial 
functions for parameterization of the trajectories. Also, 
the paper proposed a new approach for solving the 
resulted NLP which greatly reduces the required 
computational cost for obtaining the desired optimal 
trajectories.  
According to the obtained graphs of simulations using the 
proposed method, the following results were observed in 
all scenarios and situations: 
- The robot moved in obtained optimal trajectory from 
initial position to desired destination position. 
- The robot was stopped at the destination point. 
- The limitations on maximum velocity and acceleration 
of robot were satisfied.  
- The robot was transferred in desired trajectories without 
any collision with obstacles. 
Also, by comparison of obtained values in the presented 
tables, the following results can be stated: 
- The elapsed time in simulation using the new proposed 
method was decreased sharply in comparison with the 
other mentioned direct methods. 
- The cost function values in two direct polynomial 
methods were obtained less than GPM direct method. 
So, the comparison of results obtained by the proposed 
method with the previous polynomial method and 
Gaussian pseudo spectral method (GMP) demonstrates 
the effectiveness and viability of the proposed method as 
a suitable direct method for optimal trajectory planning 
and obstacle avoidance of Omni-directional mobile 
robots.  
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