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Abstract 

We compare two approaches for a Markovian model in flexible manufacturing systems (FMSs) using Monte Carlo simulation. The model, 
which is a development of Fazlollahtabar and Saidi-Mehrabad (2013), considers two features of automated flexible manufacturing systems 
equipped with automated guided vehicle (AGV), namely, the reliability of machines and the reliability of AGVs in a multiple AGV 
jobshop manufacturing system. The current methods for modeling reliability of a system involve determination of system state probabilities 
and transition states. Since the failure of the machines and AGVs could be considered in different states, a Markovian model is proposed 
for reliability assessment.  The traditional Markovian computation is compared with a neural network methodology. Monte Carlo 
simulation has verified the neural network method having better performance for Markovian computations.    
Keywords: Reliability assessment, Markovian model, Neural network, Monte Carlo simulation. 

1. Introduction  

Traditional manufacturing has relied on dedicated mass-
production systems to achieve high production volumes at 
low costs. As living standards improve and the demands 
for new consumer goods rise, manufacturing flexibility 
gains prominence as a strategic tool for the rapidly 
changing markets. Flexibility, however, cannot be 
properly incorporated in the decision-making process if it 
is not well defined and measured in a quantitative manner. 
Flexibility in its most rudimentary sense is the ability of a 
manufacturing system to respond to changes and 
uncertainties associated with the production process 
(Miettinen et al., 2010; Kumar and Sridharan, 2009; Das 
et al., 2009). A comprehensive classification of eight 
flexibility types was proposed in Browne et al. (1984). 
Flexible manufacturing systems (FMS) are crucial for 
modern manufacturing to enhance productivity involved 
with high product proliferation (Paraschidis et al.,1994). 
As one of the critical components of the FMS, the flexible 
material handling system (MHS) plays a strategic role in 
the implementation of the FMS (Beamon, 1998). 
According to Tompkins et al. (2002), about 20–50% of 
the total production cost is spent on material handling. 
This makes the subject of material handling increasingly 
important. In addition, all the complexity of 
manufacturing is passed on to the MHS. Therefore, the 
flexible MHS has been vital for improving the FMS to  

 
 
 
fulfill the requirements of high product proliferation 
(Zhao et al., 2011).  
Automated manufacturing systems (AMS), which are 
equipped with several computer numerical control (CNC) 
machines and AGV-based material handling system are 
designed and implemented to gain the automation and 
efficiency of production. To make use of all features of 
AMS, the planning in the AMS decision making process 
is critical because the planning decision has influence on 
the subsequent decision processes such as scheduling, 
dispatching, etc. The planning in automated 
manufacturing systems can be characterized as being 
online and short-term nature to respond to frequently 
changing production orders. Given a production order, 
manufacturing planning function is responsible to 
establish a plan by decomposing the production task into 
a set of subtasks. An analysis of AMS dealing with 
changing demand can be found in Terkaj et al. (2009). An 
extensive review of the loading problem for an FMS can 
be found in Grieco et al. (2001). An early stochastic 
programming approach to address the short-term 
production planning for an FMS can be found in Terkaj 
and Tolio (2006). Automated Guided Vehicle System 
(AGVS) is becoming popular in many industrial fields 
because of its flexibility, reliability, safety, and 
contribution to the increase of productivity and to the 
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improvement of housekeeping. However, the performance 
of the material handling system is significantly influenced 
by several operating policies. One of the important 
operating policies is the positioning strategy of idle 
vehicles on the guide path (Egbehi, 1993; Kim, 1995; 
Fazlollahtabar and Saidi-Mehrabad, 2013).  
The objective of Aized (2009) was to model and 
maximize performance of an integrated Automated 
Guided Vehicle System (AGVS), which is embedded in a 
pull type multi-product, multi-stage and multi-line 
flexible manufacturing system (FMS). The researcher 
examined the impact of guide-path flexibility on system 
performance through the development of three different 
guide-path configurations which range from dedicated to 
flexible relationships between automated guided vehicles 
(AGVs) and machine/assembly station resources. The 
system was modelled using coloured Petri net method 
(CPN) and the simulation results led to identify the 
resource redundancy which can be rectified to achieve 
lower overall cost of the system through the development 
of flexible guide-path configurations. The study was 
extended to seek global near-optimal conditions for each 
guide-path configuration using response surface method, 
which yields improvements in system throughput and 
cycle time along with a decrease in the numbers of AGVs. 
Material handling in manufacturing systems is becoming 
easier as the automated machine technology is improved. 
Nowadays, most of the research aims at increasing the 
flexibility and improving the performance of the 
automatic guided vehicle (AGV). Yahyaei et al. (2010) 
designed and made AGV in the Industrial Control 
Laboratory in Royce Lab at the University of Manchester 
Institute of Science and Technology. For controlling the 
navigation of the AGV, a newly developed controller 
integrated fuzzy logic with programmable logic controller 
was used. By using integrated fuzzy logic controller with 
programmable logic controller (IFLPLC), the flexibility 
of AGV was increased and they achieved great 
advantages. Since that AGV used programmable logic 
controller and fuzzy logic controllers together, it proved 
usefulness for factories which implement flexible 
manufacturing system (FMS). Online maintenance and 
sending the commands to other machines from AGV and 
so on were the advantages that can be used in FMS.  
In most manufacturing systems, decision making is 
worked out at several stages of design, planning and 
operation. The role of performance modeling is 
significant in advanced manufacturing systems from 
economic viewpoints (Yang, 2011). However, events 
such as machine breakdown, changes in part type and 
volume, tool replacement, raw material and other short 
interruptions are effective on the desired performance of a 
manufacturing system. This problem is critical due to its 
impacts on the capacity of the system (Stoop and Wiers, 
1996). Researches on the automated manufacturing 
systems imply that the machine failure is the major 
problem in analyzing system performance in comparison 
with other factors like raw material, equipment, software 

and workers (Sanchez, 1994). Therefore, reliability 
considerations should be taken into account for 
manufacturing system analysis. Researchers who studied 
this problem include Hilderbrant (1980), Kimemia (1982), 
Liberopoulos (1993), Viswanadham and Narahari (1992), 
Perkins et al. (1994), Vinod (1983), Vinod and Solberg 
(1984), Choi and Lee (1998). Salehipour et al. (2011) 
presented a new solution framework to locate the 
workstations in the tandem automated guided vehicle 
(AGV) systems. So far, the research has focused on 
minimizing the total flow or minimizing the total AGV 
transitions in each zone. The authors focused on 
minimizing total cumulative flow among workstations. 
This objective allocates workstations to an AGV route 
such that total waiting time of workstations to be supplied 
by the AGV is minimized. They developed a property 
which simplified the available mathematical formulation 
of the problem. Also a development in a heuristic 
algorithm was proposed for the problem. Computational 
results showed that the heuristic could yield very high-
quality solutions and in many cases optimal solutions. 
An automated manufacturing system (AMS) is a complex 
network of processing, inspecting, and buffering nodes 
connected by system of transportation mechanisms. For 
an AMS, it is desirable to be capable to increase or 
decrease the output with the rise and fall of demand. Such 
specifications show the complexity of decision making in 
the field of AMSs and the need for concise and accurate 
modeling methods. Therefore, Fazlollahtabar et al. (2010) 
proposed a flexible jobshop automated manufacturing 
system to optimize the material flow. The flexibility was 
on the multi-shops of the same type and also multiple 
products that can be produced. An automated guided 
vehicle was applied for material handling. The objective 
was to optimize the material flow regarding the demand 
fluctuations and machine specifications. 
Fazlollahtabar and Mahdavi-Amiri (2012) proposed an 
approach for finding an optimal path in a flexible jobshop 
manufacturing system considering two criteria of time 
and cost. A network was configured in which the nodes 
are considered to be the shops with arcs representing the 
paths among the shops. An automated guided vehicle 
functioned as a material handling device through the 
manufacturing network. The expert system for cost 
estimation was based on fuzzy rule backpropagation 
network to configure the rules for estimating the cost 
under uncertainty. A multiple linear regression model was 
applied to analyze the rules and find the effective rules for 
cost estimation. The objective was to find a path 
minimizing an aggregate weighted unscaled time and cost 
criteria. A fuzzy dynamic programming approach was 
presented for computing a shortest path in the network. 
Then, a comprehensive economic and reliability analysis 
was worked out on the obtained paths to find the optimal 
producer’s behavior.  
Fazlollahtabar and Mahdavi-Amiri (2013) proposed an 
approach for finding an optimal path in a flexible jobshop 
manufacturing system considering two criteria of time 
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and cost. With rise in demands, advancement in 
technology and increase in production capacity, the need 
for more shops persists. Therefore, a flexible jobshop 
system has more than one shop with the same duty. The 
difference among shops with the same duty is in their 
machines with various specifications. A network was 
configured in which the nodes were considered to be the 
shops with arcs representing the paths among the shops. 
An automated guided vehicle (AGV) functioned as a 
material handling device through the manufacturing 
network. To account for uncertainty, the authors 
considered time to be a triangular fuzzy number and 
applied an expert system to infer cost. The objective was 
to find a path minimizing both the time and cost criteria, 
aggregately. Since time and cost have different scales, a 
normalization procedure was proposed to remove the 
scales. The model being biobjective, the analytical 
hierarchy process weighing method was applied to 
construct a single objective. Finally, a dynamic 
programming approach was presented for computing a 
shortest path in the network. The efficiency of the 
proposed approach was illustrated by a numerical 
example. 
Since the manufacturing systems experience different 
failure states, therefore considering these states in 
modeling a reliability problem is of importance. The best 
way for considering system states in modeling is to 
employ Markovian property. Reibman (1990) stated the 
problem in estimating the probability of failure in 
different state is vital for reliability computations. The 
increasing demand for the reliability assessment in 
manufacturing systems under several random parameters 
has been investigated by several approaches facilitating 
the computations of probability estimations.  

2. Statement of the Problem 

The substantial economic importance of advanced 
manufacturing systems stimulates researchers to consider 
the optimal design and maintenance as well. Despite 
adding flexibility and more accuracy via automation, 
availability of the system is crucial to retain the 
investments and obtain a reliable performance. We 
consider a jobshop manufacturing system having multiple 
AGVs for material handling purpose. In each shop several 
machines perform the part processing according to a 
process plan. To transfer the parts among different shops, 
AGVs are employed. Availability of the whole system 
depends on the performance of machines and AGVs. 
Reliability is a suitable merit for the advanced technology 
availability and performance. The reliability of the whole 
manufacturing system is concerned with the reliability of 
the machines in shops and the reliability of the AGVs. 
The failure of the machines and AGVs could be 
considered in different states. The failure causes for 
machines are (Fazlollahtabar and Saidi-Mehrabad, 2013): 

 Amateur operator 

 Equipment deficiency 
 Inappropriate part specifications     

Also, the failures of AGVs are due to: 
 Carrier overload 
 Guide path fracture 

Using Markovian modelling, we can configure the 
transition diagram and the corresponding matrix. 
The result of the Markovian process is the failure 
probability for machines and AGVs. These probabilities 
are applied in reliability computations. For reliability, first 
we conceptualize different scenarios exist in the proposed 
manufacturing system. The shops are in parallel since the 
parts are disseminated through the system according to 
the process plan. The sequence of machines in a shop may 
be important or unimportant, i.e., the part processing in a 
shop should be performed sequentially on the machines or 
the sequence is not important and parallel machining is 
possible. Therefore, two separate cases of series and 
parallel should be modeled. AGVs are in series since if 
one AGV break down then the whole system should wait 
until the AGV is repaired or taken out of the system 
(Fazlollahtabar and Saidi-Mehrabad, 2013).  
The aim of the decision maker is to maximize the 
performance of the whole system. To achieve the aim, 
two objectives namely maximizing the total reliability of 
machines in shops in the whole jobshop system and the 
maximizing the total reliability of the AGVs, should be 
investigated. Also, for the economic viewpoint of the 
system performance the third objective is to minimize the 
total repair cost in the system. As a unit (machine or 
AGV) in the system is broken down, the repair should be 
performed on it for preparing it to function.          

2.1. Markovian Reliability 
It is necessary to incorporate reliability into the model to 
ensure the level of service for each machine in each shop 
and the AGVs. For modeling reliability, the approach of 
Ball and Lin (1993) is adopted and further extended. 
The reliability is defined as the probability that the system 
works until time t. If a machine in a shop is broken down, 
it can be regarded as a failure. A desired level of 
reliability can be achieved by limiting the failure 
probabilities. This approach for handling reliability is 
called the method of chance constraints and was initially 
suggested by Charnes and Cooper (1959) in the context of 
mathematical programming. The use of chance 
constraints in vehicle routing problem was illustrated in 
Stewart and Golden (1983). Carbone (1974) used chance 
constraints for selecting multiple facilities under normally 
distributed demand. The model minimized an upper 
bound on the total demand-weighted distance while 
ensuring that constraint was satisfied with specified 
chance or probability. Shiode and Drezner (2003) used a 
similar approach in a competitive location problem on a 
tree network. 
It is assumed that the reliability of each machine type and 
the AGV are independently according to Exponential 
distributions. Also, J is total types of machines, i.e., 
drilling machines, turning machines, bending machines 
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show three machine types. We discuss the reliability 
based model as follows: 
 

( )jR t : The probability that machine type jth works until 
time t. 
 

1

1

1 (1 ( )) , when machines in each

shop are in parallel case
( )

( ) , when machines in each

shop are in series case

J

j

j

system J

j

j

R t

R t

R t





 



 
 
 



 
   







        (1) 

In our proposed problem, AGVs are series and the 
machine types in each shop may be in parallel or series 
cases and the shops are parallel, i.e., a composite system 
is configured. Therefore, the reliability of the system is as 
follows (Fazlollahtabar and Saidi-Mehrabad, 2013): 













))(1(1
1

tR j

J

j
,               (2) 

where   is the lower bound for a desirable reliability of 
the system until time t. The desirable reliability level is 
obtainable having a capable maintenance team using 
different maintenance policies. As previously assumed, 
the reliability of each machine type and AGV are 
independently according to Exponential distribution:  

j

t

j etR 


)( ,       (3) 

 
where j  is the exponential parameter for machine type 
or AGV breakdown’s failure rate. Then, 
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














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j

tJ

j
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It is obvious that to obtain a higher level of reliability, 
more cost is incurred to the system. Hence, a cost function 
( ( )jC t ) is defined to keep machine type jth reliable until 
time t. For the whole system we have: 




J

j
j tC

1
)( .       (5) 

3. Mathematical Formulation 

In this section, we construct the proposed failure state 
diagrams and matrices for machines and AGVs’ using 
Markov system, separately. A Markov system is a system 

that can be in one of several (numbered) states, and can 
pass from one state to another each time step according to 
fixed probabilities. If a Markov system is in state i, there 
is a fixed probability, pij, of it going into state j the next 
time step, and pij is called a transition probability. A 
Markov system can be illustrated by means of a state 
transition diagram, which is a diagram showing all the 
states and transition probabilities. The entries in each row 
add up to 1. 
First, we configure the machines’ state diagram. As stated 
before, the machines may be broken down in three states, 
namely, (A) amateur operator, (B) equipment deficiency, 
and (C) inappropriate part specifications. The state 
transition diagram for machines is shown in Figure 1. 



1



 1









 1  
Fig. 1. The state transition diagram for machines 

 
As a result the corresponding transition matrix Pij is, 

1
1

1
ijP

   

   

   
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  
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where  ,  ,  , , , and   are the transition probability 
from the three states given in Figure 1. Using the 
probability transition matrix and the limiting probability 
we obtain each state’s occurrence probability as follows. 

 



3

1i
ijij p , for j=1,2,3     (7) 





3

1

1
j

j                                   (8) 

 
Using these probabilities, we can compute the reliability 
of each state helping us to assess the total reliability of the 
system.  
We also can compute the long run probability for each 
state using steady state distribution given below. 
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having A+B+C=1, and note that A, B and C are the 
states.. 
The same computations exist for AGVs different failure 
states (as shown in Figure 2), while we stated 2 states, i.e., 
we have two state probability and a 22 transition 
matrix. 
 



1 



1 

 
Fig. 2. The state transition diagram for AGVs 
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Now, for reliability we have,R(t)=1-F(t),  (11) 
 
where, F(t) is the failure probability computed above as 
states’ probabilities. Note that, we can compute the 
reliability in two cases, first for current state, and second 
for steady state. Having the current state of the system by 
Morkovian model and by means of neural network, we 
can compute the steady state probabilities. Next, we 
review the artificial neural network and the 
backpropagation neural network for our proposed work. 
The aim of computing the steady state probability and 
reliability is to obtain an estimation of the system 
availability for long-run planning horizon. Therefore, it is 
significant for a decision maker to determine steady state 
reliability using the corresponding probability accurately. 

3.1. Artificial neural network 

Neural networks are being widely used in many fields of 
study. This could be attributed to the fact that these 
networks attempt to model the capabilities of human 
brains. Since the last decade, neural networks have been 
used as a theoretically sound alternative to traditional 
statistical models. Although neural networks (NNs) 
originated in mathematical neurobiology, the rather 
simplified practical models currently in use have moved 
steadily towards the field of statistics. A number of 
researchers have illustrated the connection of neural 
networks to traditional statistical models. For example, 

Gallinari et al. (1991) presented analytical results 
establishing a link between discriminant analysis and 
multilayer perceptrons (MLP) used for classification 
problems. Cheng and Titterington (1994) made a detailed 
analysis and comparison of various neural network 
models with traditional statistical models. They showed 
strong associations of the feed-forward neural networks 
with discriminant analysis and regression models, and 
unsupervised networks such as self-organizing neural 
networks with clustering. Neural networks are being used 
in areas of prediction and classification, areas where 
regression models and related statistical techniques have 
traditionally been used. Ripley (1994) discusses the 
statistical aspects of neural networks and classifies neural 
networks as one of a class of flexible nonlinear regression 
models. Sarle (1994) translates neural network 
terminologies into statistical ones and shows the 
relationship between neural networks and statistical 
models such as generalized linear models, projection 
pursuit and cluster analysis. He explains that neural 
networks and statistical approaches are not competing 
methodologies for data analysis and there is a 
considerable overlap between the two. Warner and Misra 
(1996) present a comparison between regression analysis 
and neural network computation in terms of notation and 
implementation. They also discuss when it would be 
advantageous to use a neural network model in place of a 
parametric regression model, as well as some of the 
difficulties in implementation. Schumacher et al. (1996) 
and Vach et al. (1996) present a comparison between 
feed-forward neural networks and the logistic regression. 
The conceptual similarities and discrepancies between the 
two methods are also analyzed. 
Artificial neural networks have been applied successfully 
to many manufacturing and engineering areas. Zhengrong 
et al. (1996) used quadratic regression to assess the results 
of neural network for improving the efficiency of 
fermentation process development. The results show that 
different sizes of neural nets within a certain range give 
an equally good prediction by using the ‘‘stopping 
training” technique, while quadratic regressions are 
sensitive to the size of the data sets. Smith and Mason 
(1997) mentioned that regression and neural network 
modeling methods have become two competing empirical 
model-building methods. They compared the predictive 
capabilities of NNs and regression methods in 
manufacturing cost estimation problems.  

3.1.1. The Backpropagation Neural Network  

The backpropagation algorithm trains a given feed-
forward multilayer neural network for a given set of input 
patterns with known classifications. When each entry of 
the sample set is presented to the network, the network 
examines its output response to the sample input pattern. 
The output response is then compared to the known and 
desired output and the error value is calculated. Based on 
the error, the connection weights are adjusted. The 
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backpropagation algorithm is based on Widrow-Hoff delta 
learning rule in which the weight adjustment is done 
through mean square error of the output response to the 
sample input (Abdi et al., 1996). The general steps of 
backpropagation are given below. 
1. Propagate inputs forward in the usual way, i.e., all 
outputs are computed using sigmoid thresholding of the 
inner product of the corresponding weight and input 
vectors. All outputs at stage n are connected to all the 
inputs at stage n+1 
2. Propagate the errors backwards by apportioning them 
to each unit according to the amount of the error the unit 
is responsible for.  
We now discuss how to develop the stochastic 
backpropagation algorithm for the general case. The 
following notations and definitions are needed: 

jx : input vector for unit j (xji = ith input to the jth unit)  

jw : weight vector for unit j (wji = weight on xji) 

.j j jz w x
 

: the weighted sum of inputs for unit j  

oj : output of unit j ( ( )j jo z )  
tj : target for unit j  
Downstream(j) : set of units whose immediate inputs 
include the output of j  
Output: Set of output units in the final layer.  
Since we update after each training example, we can 
simplify the notation somewhat by assuming that the 
training set consists of exactly one example and so the 
error can simply be denoted by E.  

We want to calculate
ji

E

w




corresponding to each input 

weight wji of each output unit j. Note first that since zj is 
a function of wji regardless of where in the network unit j 
is located,  

. .j
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ji j ji j
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  

 
   

                (12) 

Furthermore, 
j

E
z



is the same regardless of which input 

weight of unit j we are trying to update. So, we denote 
this quantity by j .  
Consider the case when j  is an output unit. We know 
that  


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2))((
2
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k
kk ztE                   (13) 

Since the outputs of all units k j  are independent of 
wji, we can then drop the summation and consider just the 
contribution to E by j and we call it j : 

  

21
( ) ( )

2

( ) ( ) ( )(1 ( )) ( )

( )(1 ) .

j
j j j j j

j j j

j j j j j j j
j

j j j j

oE
t o t o

z z z

t o z t o z z
z

t o o o



  

 
      
  


     



   

   (14) 

Thus,  

ji j ji
ji

E
w x

w
 


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
                (15) 

 is the learning rate. Now, consider the case when j is a 
hidden unit. Like before, we make the following two 
important observations:  
1. For each unit k downstream from j, zk is a function of 
zj.  
2. The contribution to error by all units l j , in the same 
layer as j, is independent of wji. 

We want to calculate
ji

E
w



for each input weight wji for 

each hidden unit j. Note that wji influences just zj which 
influences oj which influences zk, ( ),k Downstream j 
each of which influences E. So, we can write,  
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Again, note that all the terms except xji in (16) are the 
same regardless of which input weight of unit j we are 
trying to update. Like before, we denote this common 

quantity by j . Also, note that k
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               (17) 

 
we obtain:  





)(

.)1(
jDownstreamk

kjkjjk woo                              (18) 

To adapt the backpropagation algorithm on our proposed 
model, consider the failure causes for machines and 
AGVs as inputs and the current state failure probability of 
machines and AGVs as outputs. We train the network 
collecting data in different time periods and compute the 
importance weight for each input resulting in the 
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corresponding output. A configuration of the proposed 
neural network is shown in Figure 3. 

 

 
 

 
Fig. 3. A configuration of the proposed neural network  

 
We are now in a position to state the backpropagation 
algorithm formally.  
Algorithm 1: Formal statement of stochastic 
backpropagation. 
(Training examples,  , ni, nh, no)  

Each training example is of the form ,x t


, where x  is 

the input vector and t


 is the target vector,  is the 
learning rate (e.g., 0.05), ni, nh and no are the number of 
input, hidden and output nodes, respectively. Input from 
unit i to unit j is denoted by xji and its weight is denoted 
by wji. Create a feed-forward network with ni inputs, nh 
hidden units, and no output units.  
Initialize all the weights to small random values (e.g., 
between -0.05 and 0.05).  
While termination condition is not met Do  
For each training example tx

, ,  

1. Input the instance x and compute the output ou of 
every unit.  

2. For each output unit k, calculate  
))(1( kkkkk otoo    (19) 

3. For each hidden unit h, calculate  





)(

.)1(
hDownstreamk

khkhhh woo           (20) 

4. Update each network weight wji as follows:  

jijiji www      (21) 
where, 

jijji xw      (22) 
This way, we can compare the performance of 
backpropagation neural network and limiting distribution 
model for computing the steady state probabilities using 
the current state probabilities. To do that, a Monte Carlo 
simulation is applied that is explained below.    

3.2. Monte Carlo simulation 

While the results from the backpropagation neural 
network and limiting distribution model may be different 
in computing the steady state probabilities using the 
current state probabilities, we apply Monte Carlo 
simulation to verify the more appropriate model. 
Monte Carlo simulation is a comprehensive approach for 
analyzing the behavior of some activities, plans or 
processes that involve uncertainty. If we face uncertain or 
variable market demands, fluctuating costs, variations in a 
manufacturing process, effects of weather on operations, 
or stochastic activity time, we can benefit from using 
Monte Carlo simulation to understand the impact of 
uncertainty, and to develop plans to mitigate or otherwise 
cope with the risk. Whenever we need to make an 
estimate, forecast or decision where there is significant 
uncertainty, we would be well advised to consider Monte 
Carlo simulation (Metropolis and Ulam, 1949). Also, 
Fazlollahtabar et al. (2010) recently applied Monte Carlo 
simulation in manufacturing systems for line balancing 
with stochastic task times.  
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Monte Carlo simulation is a method for iteratively 
evaluating a deterministic model using sets of random 
numbers as inputs. This method is often used when the 
model is complex, nonlinear, or involves more than just a 
couple uncertain parameters. The Monte Carlo method is 
just one of many methods for analyzing uncertainty 
propagation, where the goal is to determine how random 
variation, lack of knowledge, or error affects the 
sensitivity, performance, or reliability of the system that is 
being modeled. Monte Carlo simulation is categorized as 
a sampling method because the inputs are randomly 
generated from probability distributions to simulate the 
process of sampling from an actual population. So, we try 
to choose a distribution for the inputs that most closely 
matches data we already have, or best represents our 
current state of knowledge (Fazlollahtabar et al., 2010). 
The data generated from the simulation can be 
represented as probability distributions (or histograms) or 
converted to error bars, reliability predictions, tolerance 
zones, and confidence intervals. (see Figure 4). 

 

 
Fig. 4. The basic principle behind Monte Carlo simulation 

(Fazlollahtabar et al., 2010) 

The steps in Monte Carlo simulation corresponding to the 
uncertainty shown in Figure 3 are generally simple, and 
can be easily implemented. The following five steps are 
proposed to implement Monte Carlo, 
Step 1: Create a parametric model, y = f(x1, x2, ..., xq). 
Step 2: Generate a set of random inputs, xi1, xi2, ..., xiq. 
Step 3: Evaluate the model and store the results as yi. 
Step 4: Repeat steps 2 and 3 for i = 1 to n. 
Step 5: Analyze the results using histograms, summary 
statistics, confidence intervals, etc. 

4. Computational Results and Analysis 

Here, a numerical example is worked out to imply the 
effectiveness and applicability of the proposed model. 
Using machines’ (amateur operator, equipment 
deficiency, and inappropriate part specifications) and 
AGVs’ (carrier overload and guide path fracture) failure 
probability transition matrices, and by the means of 
limiting probability the states occurrence probabilities for 
each machine or AGV can be computed. 

Example 1: 
Also, note that the number of machines is 10, number of 
shops is 4, number of AGVs is 4, and number of jobs to 
be processed on a product is 8. Since each of the failure 
states mentioned cause break down of the system, 
therefore the failure states are parallel. Using these 
probabilities, we can compute the reliability of each state 
using equations (1) and (2) helping us to assess the total 
reliability values of the system as follows: 
Reliability (machine 1): 0.0124 
Reliability (machine 2): 0.0303 
Reliability (machine 3): 0.0435 
Reliability (machine 4): 0.0054 
Reliability (machine 5): 0.0641 
Reliability (machine 6): 0.00398 
Reliability (machine 7): 0.0287 
Reliability (machine 8): 0.00703 
Reliability (machine 9): 0.00239 
Reliability (machine 10): 0.0197 
Reliability (AGV 1): 0.0753 
Reliability (AGV 2): 0.0639 
Reliability (AGV 3): 0.0458 
Reliability (AGV 4): 0.389 
As stated ealier, another way to compute the steady state 
probabilities is backpropagation neural network. The 
input of the system is given by a one dimensional vector 
and the output is given by a two/three dimensional matrix. 
To facilitate the computations of backpropagation neural 
network, MATLAB 7.1 user interface, NNtool, is applied. 
A feedforward network is programmed with one input, 
ten hidden units with logistics activation function, and 
two/three output. Using the MATLAB 7.1 user interface 
NNtool, we insert the data and perform the required 
settings to train the data to obtain an appropriate pattern. 
Then, using the pattern we can approximate the output of 
the proposed neural network.  
Outputs: 
Reliability (machine 1): 0.0133 
Reliability (machine 2): 0.031 
Reliability (machine 3): 0.045 
Reliability (machine 4): 0.0063 
Reliability (machine 5): 0.0628 
Reliability (machine 6): 0.00377 
Reliability (machine 7): 0.0281 
Reliability (machine 8): 0.00723 
Reliability (machine 9): 0.00243 
Reliability (machine 10): 0.0184 
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Reliability (AGV 1): 0.0761 
Reliability (AGV 2): 0.0652 
Reliability (AGV 3): 0.0463 
Reliability (AGV 4): 0.396 
Clearly, the back propagation computations are slightly 
different from the steady state equation ones. Therefore, 
we use Monte Carlo simulation to verify the more 
appropriate method. Using Monte Carlo simulation based 
on the steps given in section 3.2, we obtain, 
Reliability (machine 1): 0.013 
Reliability (machine 2): 0.0307 
Reliability (machine 3): 0.0453 
Reliability (machine 4): 0.0061 
Reliability (machine 5): 0.0623 
Reliability (machine 6): 0.0038 
Reliability (machine 7): 0.0284 
Reliability (machine 8): 0.0073 
Reliability (machine 9): 0.00239 
Reliability (machine 10): 0.0179 
Reliability (AGV 1): 0.0758 
Reliability (AGV 2): 0.0648 
Reliability (AGV 3): 0.047 
Reliability (AGV 4): 0.391 
  The deviation of the limiting distribution (LD) 
computations and neural network (NN) with the results of 
Monte Carlo simulation (MC) is given in Table 1. 

 
Table 1 
The deviation comparison for example 1 

MC vs LD MC vs NN   

2.76923E-05 6.9231E-06 Reliability (machine 1) 

5.21173E-06 2.9316E-06 Reliability (machine 2) 

7.15232E-05 1.9868E-06 Reliability (machine 3) 

8.03279E-05 6.5574E-06 Reliability (machine 4) 

5.20064E-05 4.0128E-06 Reliability (machine 5) 

8.52632E-06 2.3684E-07 Reliability (machine 6) 

3.16901E-06 3.169E-06 Reliability (machine 7) 

9.9863E-06 6.7123E-07 Reliability (machine 8) 

0 6.6946E-07 Reliability (machine 9) 

0.000181006 1.3966E-05 Reliability (machine 10) 

3.29815E-06 1.1873E-06 Reliability (AGV 1) 

1.25E-05 2.4691E-06 Reliability (AGV 2) 

3.06383E-05 1.0426E-05 Reliability (AGV 3) 

1.02302E-05 6.3939E-05 Reliability (AGV 4) 

0.000496115 0.00011915 sum of error 

Example 2: 
Another numerical example is worked out to imply the 
effectiveness and applicability of the proposed model. 
The machines’ (amateur operator, equipment deficiency, 
and inappropriate part specifications) and AGVs’ (carrier 
overload and guide path fracture) failure probability 
transition matrices, and by the means of limiting 

probability the states occurrence probabilities for each 
machine or AGV can be computed. The number of 
machines is 20, number of shops is 8, number of AGVs is 
6, and number of jobs to be processed on a product is 8. 
The computations for limiting distribution and neural 
network are performed as stated in the proposed model.  
The deviation of the limiting distribution (LD) 
computations and neural network (NN) with the results of 
Monte Carlo simulation (MC) is given in Table 2. 

 
Table 2 
 The deviation comparison for example 2 

MC vs LD MC vs NN   
4.7693E-05 3.431E-06 Reliability (machine 1) 
6.2173E-06 4.8316E-06 Reliability (machine 2) 
3.5232E-05 2.868E-06 Reliability (machine 3) 
7.0379E-05 5.574E-06 Reliability (machine 4) 
5.264E-05 3.128E-06 Reliability (machine 5) 
5.563E-06 6.3684E-07 Reliability (machine 6) 
6.6901E-06 7.469E-06 Reliability (machine 7) 
4.9863E-06 3.723E-07 Reliability (machine 8) 
5.5469E-07 6.6946E-07 Reliability (machine 9) 
4.181006 E-07 4.3966E-05 Reliability (machine 10) 
3.8463E-06 5.7123E-07 Reliability (machine 11) 
3.5469E-07 3.63946E-07 Reliability (machine 12) 
6.181406 E-07 6.31966E-05 Reliability (machine 13) 
3.98363E-06 4.723E-07 Reliability (machine 14) 
4.54691E-07 5.63946E-07 Reliability (machine 15) 
3.18116 E-07 2.3966E-05 Reliability (machine 16) 
6.9863E-06 5.723E-07 Reliability (machine 17) 
4.53469E-07 3.6946E-07 Reliability (machine 18) 
8.81006 E-07 7.3966E-05 Reliability (machine 19) 
6.81436 E-06 5.7946E-06 Reliability (machine 20) 
2.29815E-06 2.1873E-06 Reliability (AGV 1) 
3.25E-05 3.4691E-06 Reliability (AGV 2) 
4.06383E-05 3.0426E-05 Reliability (AGV 3) 
4.69815E-06 4.5873E-06 Reliability (AGV 4) 
5.3425E-05 5.7691E-06 Reliability (AGV 5) 
4.86683E-05 4.7426E-05 Reliability (AGV 6) 
4.80243E-05 4.3959E-05 Reliability (AGV 7) 
5.024302E-05 6.3939E-05 Reliability (AGV 8) 
0.00496115 0.0032415 sum of error 

 
The results show better performance of neural network 
method. The reason could be the constraints of the 
limiting distribution model, e.g., the transition matrix 
should not have zero elements, ergodic state and closed 
state. Since, neural network employs several training data 
sets to adapt the appropriate pattern; its results are more 
valid. Thus, using Monte Carlo simulation we could 
verify the proposed backpropagation neural network for 
the Markovian steady state computations.  
But, the computational efforts and past data are the 
significant requirements of NN making its application 
questionable. Therefore the condition of the system under 
study implies employing the appropriate method. If past 
data exist and no limit of computational effort is allowed, 
then NN is useful since having more confident results. On 
the other hand, if past data does not exist and time limit 
for reporting the reliability computations to management 
is obliged, then using steady state Markovian method is 
encouraged.    
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5. Conclusions 

We proposed a Markovian model for flexible 
manufacturing systems (FMSs). The model considered 
two features of automated flexible manufacturing systems 
equipped with automated guided vehicle (AGV), namely, 
the reliability of machines and the reliability of AGVs in a 
multiple AGV jobshop manufacturing system. We made 
use of current state transition matrix for the failure of the 
machines and AGVs in different states. Therefore, a 
Markovian model was proposed for reliability assessment. 
Also, for steady state probability computations, the 
limiting theorem was compared with adapted 
backpropagation neural network showing neural 
network’s effectiveness. We verified the confidence of 
NN computational method using Monte Carlo simulation. 
The computational results illustrated the applicability of 
our proposed model. The results of two examples implied 
the application of the two discussed approaches is fully 
based on the condition of the system under study and the 
limitation obliged by the management. The limitation of 
the study was the availability of required data to handle 
the reliability computations for various purposes 
(considering past data or real time computations. The 
managerial implications of the model can be treated as the 
capability of the proposed methodology to provide the 
reliability of the system at any time, help the decision 
maker to make suitable maintenance policy and determine 
the most defected AGVs and machines for replacement or 
specification improvement. As future research developing 
a hybrid NN-Markovian method for reliability 
computations is forehead.   
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