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Abstract 

This paper develops a mathematical model using differential equations and considers a bullwhip effect in a supply chain network with 
multiple retailers and distributors. To ensure the stability of the entire system and reduce the bullwhip effect, a robust control method and 
an inventory replenishment policy are proposed. This shows that the choice of the output matrix may reduce the bullwhip effect. It was also 
observed that the inventory replenishment mechanism may be a negative impact on the robustness of the bullwhip effect. However, the 
inventory replenishment behavior may lead to the bullwhip effect on the presented model. This means that the complex supply 
relationships may have a significant role in controlling or reducing the bullwhip effect of fluctuations. 
Keywords: Robust Control, Bullwhip Effect, Inventory Replenishment, Supply Network. 

1. Introduction 

The bullwhip effect is a term used to describe 
progressive fluctuations in customer demand along a 
supply chain from downstream to upstream. Essentially, 
larger phenomena produce a bullwhip effect because the 
process of information dissemination is constantly being 
distorted. This has a step-by-step effect on the upstream 
supply chain in that manufacturers and suppliers of raw 
materials are supplied with distorted information and then 
decisions can easily lead to over-production and inventory 
errors. Various factors contribute to the bullwhip effect 
such as lead-time, type of inventory policy, and 
information on demand forecasting. This article focuses 
on retailers with an inventory replenishment policy 
strategy and incorporates robustness of the bullwhip 
effect in a supply network using parameters of uncertain 
demand behavior. 

Chuang and Huang (2004) declared that inventory-
replenishment decision is vital to the supply chain 
performance. The selection of an appropriate inventory 
policy would not only reduce the total inventory costs but 
also would satisfy the downstream customers and the final 
customer in a supply chain environment. In this aspect, 
most of the existing researches have been devoted the 
supply chain inventory decision to a single known 
demand distribution, such as normal or uniform.  

 
 

 
 
 
 

However, in a supply chain environment, there are always 
multiple downstream customers with different probability 
distributions of a demand quantity. 

Daganzo (2003), Nagatani and Helbing (2004), Surana 
et al. (2005), Helbing et al. (2006) aimed to develop a 
realistic model to describe nonlinear interactions and to 
represent dynamics of the flow of the materials though 
networks. Helbing et al. (2004) proposed a supply 
network governed by balance equations and equations for 
the adaptation of production speeds and studied the 
stability and dynamics of supply networks. Daganzo 
(2004) examined the stability of multistage supply chains 
under arbitrary demand conditions and presented 
commitment-based policies that can maintain any desired 
inventory level for any demand rate. A supply network 
based on a stochastic discrete-time controlled dynamical 
system was proposed by Laumanns and Lefeber (2006), 
in which an explicit state-feedback control policy was 
derived to control the material flow of the supply 
network. Ouyang and Li (2010) analyzed the propagation 
and amplification of order fluctuations in supply chain 
networks and based on inventory management policies. 
They proposed robust analytical conditions to predict the 
presence of the bullwhip effect for any network structure. 
Yang et al. (2009) developed a model of a general closed-
loop supply chain network and optimized the equilibrium 
state of the network by using the variation inequalities 
method. Dong et al. (2011) proposed a supply chain 

* Corresponding author Email address: ghaffari@ustmb.ac.ir 
Acknowledgement: We noticed that this article has 
been published in the Journal of System Engineering 
(Chinese Language). The authors are responsible for 
their misconduct. 

Journal of Optimization in Industrial Engineering 16 (2014) 75-82

75



 

 

network model with reentrant nodes based on partial 
differential equation, which can accurately reflect the 
impacts of the reentrant degree of the product on the 
system performance. Zhang and Zhou (2012) established 
nonlinear complementarily formulation for supply chain 
network equilibrium models and formulated the 
equilibrium state of the network by using the variation 
inequalities method.  Dejonckheere et al. (2003) proved 
that the severity of the bullwhip effect depends more on 
the internal structure of the supply chain system. Ouyang 
and Li (2010) provided a theoretical basis for the transfer 
function of some scholars to basis, the amplitude-
frequency characteristic curve by plotting the calculated 
noise bandwidth of the classical control theory of the 
bullwhip effect to any demand made under the 
measurement and interpretation of research inventory 
strategy, the impact of demand forecasting and 
information sharing and other factors on the bullwhip 
effect. Song et.al. (1999) studied an application of robust 
퐻  control considering the bullwhip effect in a supply 
chain system. 

In summary, the existing literature does not clearly 
indicate the bullwhip effect for the simple structure of the 
supply chain system and complex factors using a lateral 
transshipment policy between members of supply chain 
strategies (e.g. impact of bullwhip effect mechanisms). A 
robust control theory considered in this paper is based on 
research needs in an uncertain environment, multiple 
retailers and multiple distribution. Additionally, by 
considering supply network features for a hierarchical 
structure and properties of heterogeneous nodes, dynamic 
equations were established for retailers and distributors to 
build a unified state space model suitable for application 
in robust control theory. An application of a robust H∞ 
control method is in ordering a policy designed a network 
of each node through numerical simulation to study the 
effects of different control methods on robustness of the 
bullwhip effect, and analyzing the impact of demand in 
modeling the bullwhip effect.  

2. Model 

Considering a cycle and inventory situation, the 
supply network consists of multiple levels of distributors 
and multi-retailer. It is assumed that there are n 
distributors and m retailers. All distributors have 
unlimited supply capacity of upstream suppliers and each 
retail manufacturer has its downstream customers with 
many interrelations between supply retailers and 
distributors in order to reduce stock risk and improve the 
level of customer service. Retailers lateral transshipment 
policy inventory cooperation is based on the differences 
in order to simplify modeling and analysis. It is assumed 
that retailers and distributors of goods orders arrived at 
the beginning of the next cycle, which are an order lead-
time cycle affected by transmission of information and by 

factors delays, lateral transshipment policy between the 
time delay τ retailers cycles, where τ is an integer. 

Retailers and distributors operate according to the 
following sequence of events: 1) at the beginning of each 
cycle, retailers and distributors place an order to reach the 
receiver and storage; 2) the retailer’s inventory is made 
according to differences in lateral transshipment policy 
cooperation, in which retailers and distributors 
manufacturers are in inventory orders on the basis of their 
inventory information; 3) during the remaining period of 
time, retailers and distributors both backordered manner 
downstream of customer needs and made horizontal 
transshipment policy orders. 

Supply network node collection includes a set of N  
retailers nodes and N  distributors nodes, distributors 
node indicated by i, 1 ≤ i ≤ m and retailers node 
indicated by j, m + 1 ≤ j ≤ m+ n, where j ∈ N , i ∈ N . 
x (t) represents distributor’s node i at the first t net 
inventory cycle and	x (t) represents the net inventory j at 
the retailer node in the t-th cycle. Matrix A =
(a )	describes the supply relationship between retailers 
and distributors. If a = 1, then the distributors i for 
retailers j relationships with upstream and downstream 
supply. If a = 0, then the distributors	i for retailers j 
supply relationship does not exist because the supply 
network has a hierarchical structure characteristics of the 
supply network nodes have heterogeneous characteristics 
were established retailers and distributors dynamic 
equation. Distributors inventory changes for each cycle 
node as computed by: 

 
푥 (푡) = 푥 (푡 − 1) + 푢 (푡0− 1) − 푎 푢 (푡 − 1)

∈

 (1) 

where 푖 ∈ 푁 , 푢 (푡 − 1) Representatives distributors 
order to reach capacity, 푢 (푡 − 1) Representatives 
distributors 푖 for retailers 푗 supply capacity. 

Lateral transshipment policy retailer cooperation is 
based on differences in stock, the capacity of the lateral 
transfer of the retailer 푗  for retailers 푗 , which is ℎ (푡) 
computed by: 

 
ℎ (푡) = 푟 (푥 (푡 − 휏) − 푥 (푡 − 휏)) (2) 
 

Deliveries lateral shift library determines the sign of 
the direction, 푟  as co-factor, the specific value is 
determined by negotiation of bilateral cooperation, 휏 
lateral transshipment policy behalf of the time delay, so 
the retailer 푗 inventory differential equation can be 
expressed by: 
 

푥 (푡) = 푥 (푡 − 1) + 푎 푢 (푡 − 1)
∈

− 푑 (푡 − 1)

+ 푎 ′(푡)
′∈

 
(3) 

where 푑 (푡) facing the 푗 retailer customer needs. 
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When 푑 (푡) is constant 푑∞, for a stable supply 

network, its inventory and order quantity is a constant 
steady state shall, 
lim →∞ 푥 (푡) = 푥∞, lim →∞ 푥 (푡) =푥∞, lim →∞ 푢 (푡) =푢∞. 
On this basis, the definition of the state vector is shown 
below: 
 
푥(푡) = [푥 (푡) − 푥∞, 푥 (푡) − 푥∞, … , 푥 (푡)

− 푥∞ , 푥 (푡)
− 푥∞ , … , 푥 (푡) − 푥∞ ]  

(4) 

 
In this study, in terms of the supply network, all 

retailers and distributors orders are quantified as a control 
vector. Structure control vector order and supply network 
are assigned a direct relationship because each distributor 
has its unique external suppliers, and each retailer has at 
least one distributor for its supply of goods, so it may be 
assumed that the steady-state minus the constant use of all 
distributors and retailers re-order quantity number to get 
control vector 푢(푡). Then, 푢(푡) is an order the number of 
vector 푚+ ∑ ∑ 푎 . Input vector is defined by: 
 
푑(푡) = [푑 (푡) − 푑∞ , 푑 (푡)

− 푑∞ , … , 푑 (푡) − 푑∞ ]
∈ 푅  

(5) 

 
In the definition of state vector, the basic control 

vector and the input vector on the supply network can be 
established by the following unified state model: 
 
푥(푡) = 퐴 푥(푡 − 1) + 퐴 푥(푡 − 휏) + 퐵 푢(푡 − 1) +

퐵 푑(푡 − 1)
푦(푡) = 퐷푢(푡)

 (6) 

 
where 퐴 , 퐴  are (푚 + 푛) × (푚 + 푛) matrix, 퐵  is 

(푚 + 푛) × 푚+ ∑ ∑ 푎  matrix, 퐵  is (푚 +
푛) × 푛 matrix, 푦(푡) is the output vector, 퐷 is the output 
matrix of the system. Due to robustness of the output 
variable, indicators and systems are closely linked, 
therefore the value of the output matrix and managers 
expected performance of the supply network have a direct 
relation. For example, managers can choose a value for a 
distributors order set by the output matrix as the system 
output, focusing on suppression orders fluctuations 
distributor side. 

3. Robustness Index and Inventory Strategy 
Algorithm 

The main task of robust control for a variety of supply 
networks is to manage uncertainty. The application of a 
robust inventory control strategy designed node 
enterprises to meet the performance requirements of the 
system administrator. A supply network uncertainty does 

not consider demand as uncertainty. The uncertainty of 
supplying raw materials, in advance of uncertainty and 
structural uncertainty due to demand uncertainty is often a 
source of uncertainty generated by the other. This paper 
focuses on the robust demand environment in uncertain 
supply network control problems. According to Wei et al. 
(2013), consideration of robust indicators is determined as 
follows: 
 

푊 = sup
∀ ( )

∑ 푦(푘) 푦(푘)∞

∑ 푑(푘) 푑(푘)∞  (7) 

 
From the definition of 푊  can be seen that the demand 

for any form, as long as the lower value of 푊 , we can 
improve the output variables of the input variables 
interference ability to meet the requirements of a robust 
supply network if the output vector 푦(푡) contains only the 
distributors order quantity, and its steady-state value for 
the order of the matrix, 푊  can be expressed by: 

푊 = lim
→∞

sup
∀ ( )

∑ ∑ (푢 (푘) − 푢∞)

∑ ∑ 푑 (푘) − 푑∞∞

= sup
∀ ( )

∑ 푉푎푟(푢 )∞

∑ 푉푎푟 푑∞  

(8) 

 
As can be seen, ∑ 푉푎푟(푢 )∞ ∑ 푉푎푟 푑∞⁄  is the 

classic expression of the bullwhip effect, which means 
that demand for the unknown, as long as possible to 
minimize the value of 푊 , distributors will be able to end 
the bullwhip effect, or at least to reduce it to the 
minimum. Specifically, in circumstances when 푊 < 1, 
the bullwhip effect can completely control an entire 
network. It is appropriate to apply 푊  bullwhip effect 
robustness index. 

In the field of control engineering, 푊  robustness 
index is also known as the 퐻∞ norm. For a control system, 
the goal of robust 퐻∞ control is through the controller 
design, to ensure stability of the system, based on the 퐻∞ 
norm minimization. The value of 퐻∞ norm, there are two 
methods; namely, the frequency-domain method and the 
time-domain method. In the frequency domain, a transfer 
function is based on a system. If the transfer function is 
퐺(푧), then its 퐻∞ norm is 푚푎푥 퐺(푒 ) ∈( , ), 
calculation of the time domain by defining a suitable 
Lyapunov function, and a robust control problem into the 
LMI problem solving. This idea in a robust control theory 
is widely used.  

Since this construct is a state-space model for 
calculating time-domain method, robustness indicators 
used to optimize robustness of the indicator optimization 
problem can be transformed into a linear matrix inequality 
constraints due to Wei et al. (2013). This gives a general 
model of robust control algorithms, in which direct 
reference to ideas in the literature present the following 
conclusions. 
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Theorem 1: Estimation for the upper bounds of a 

system, Eq. (4) robustness index 푊  can be transformed 
into the following optimization problem if there exists 
훾 > 	0, (푛 + 푚)	×	(푛 + 푚) is positive definite matrix 
푃,푄, 퐿 (i.e., 푃 > 0,푄 > 0, 퐿 > 0 satisfies the following 
optimization problem): 
 
Min	훾 (9) 
 

⎣
⎢
⎢
⎢
⎢
⎢
⎡ −푃 0 0 푃퐴 + 퐿 퐵 √휏푃 퐿 퐷

0 −푄 0 푄퐴 0 0
0 0 −훾 퐼 퐵 0 0

퐴 푃 + 퐵 퐿 퐴 푄 퐵 −푃 0 0
√휏푃 0 0 0 −푄 0
퐷퐿 0 0 0 0 −퐼 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

< 0 

(10)

 
where 퐼  is the identity matrix of order 푛 + 푚, if there is 
an optimal solution of the above optimization problem, 
then the order policy 푢(푡) = 퐿푃 푥(푡) is determined to 
ensure system stability, and to make the robust indicators 
meet 푊 < 훾. 

The above optimization algorithm can be used in the 
LMI toolbox of MATLAB to quickly solve the 
optimization algorithm. It has the following outstanding 
advantages. As long as there is an optimal solution 
optimization algorithm can not only ensure stability of the 

system, but also ensure its robustness, when an entire 
network remains stable as long as customer demand is 
bounded fluctuations supply network inventory and order 
all the nodes are bound, which avoids the cost of 
excessive or unnecessary losses due to inventory in order 
to bring a certain extent, and reduces risk. Furthermore, 
since guaranteed 푊퐼 < 훾, it means that the demand for 
the unknown, the bullwhip effect can be suppressed in 
different applications. 퐷 has different values of the matrix 
corresponding robustness index calculation expression 
will be different, thus the optimization algorithm can get 
different control strategies based on different values of 퐷 
matrix to meet the needs of management practices. 

4. Numerical Analysis  

Robustness of the following numerical simulation 
output matrix 퐷 is a major concern as well as a horizontal 
transshipment policy strategy of the bullwhip effect 
supply network, considering a supply network that 
consists of three levels of distributors and five retailers. It 
is a collection of nodes distributors 푁 	= 	 {1, 2, 3}, in 
which retailers node set is 푁 =	 {4, 5, 6, 7, 8}. 

Construction of Eq. (6) is shown in the supply 
network state space model, in which 퐴  is a unit matrix of 
the order 8. The other value of the coefficient matrix is as 
follows: 

 

 
Fig. 1. Supply network structure 

 
 

퐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 −푟 푟 0 0 0
0 0 0 푟 −(푟 + 푟 + 푟 ) 푟 0 푟
0 0 0 0 푟 −푟 0 0
0 0 0 0 0 0 −푟 푟
0 0 0 0 푟 0 푟 −푟 − 푟 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

  (11) 
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퐵 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 0 0 −1 −1 0 0 0
0 1 0 0 0 −1 −1 0
0 0 1 0 0 0 0 −1
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (12) 

 

퐵 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (13) 

 

Considering the existence of inventory replenishment 
between behavior and output matrix according to the 
retailer, different values of 퐷 are controlled according to 
four cases. 

Case 1: Select the retailer's order quantity from output 
vectors (i.e., 퐷 = 푑푖푎푔	(퐼 , 퐼 )) among 퐼  value of all 
the elements 0 three square matrix and 퐼  for the fifth-
order unit matrix. Furthermore, it is assumed 퐴 	= 	0, 
that behavior is not considered as inventory replenishment 
among retailers. 

Case 2: Select output variables and shapes the same 
situation,	퐷 = 푑푖푎푔	(퐼 , 퐼 ), in which 퐼  there are 
elements of the value taken 0 to 3 order of party array, 
퐼 	as 5-order unit matrix; consider inventory 
replenishment strategies among retailers, inventory 
replenishment between the retailer for delay  휏 = 2, set 
푟 = 푟 = 0.0025, 푟 = 푟 = 0.0015, 푟 = 푟 =
0.005, 푟 = 푟 = 0.002. 

Case 3: Select distributors order quantity from the 
output vector 퐷 = 푑푖푎푔	(퐼 , 퐼 ), among  퐼  as 3 order 
unit matrix, 퐼  for all elements 0 to 5 square matrix. 
There is no consideration for inventory replenishment 
between retailers, namely 퐴 = 0. 

Case 4: Select output variables and circumstances 3 
the same, that 퐷 = 푑푖푎푔	(퐼 , 퐼 ), among 퐼  as 3 order 
unit matrix, 퐼  for all elements 0 of 5 square matrix and 
circumstances 3 different strategies are considered for 
inventory replenishment among retailers, inventory 
replenishment between the retailer for delay 휏 = 2, set 
푟 = 푟 = 0.0025, 푟 = 푟 = 0.0015, 푟 = 푟 =
0.005, 푟 = 푟 = 0.002. 

According to Eqs. (7) and (8), an optimization 
algorithm using by the MATLAB of LMI toolbox is 
considered to determine value of the inventory control 
policy, in which 훾 for four different above-mentioned 
cases is minimized. Corresponding to these cases, the 
minimum value of 훾 is shown in Table 1.  

 
 

Table 1 
 Minimum value of 훾 per each case 

 Case 1 Case 2 Case 3 Case 4 
Min of 훾 4.0 6.355 5.656 7.514 

 
This table also shows an inventory replenishment 

policy strategy does not significantly improve robustness 
of the bullwhip effect in supply networks. In order to 
further reveal the advantages of robust control methods, 
using the specific needs of the bullwhip effect model to 
study the particular problem before simulation needs to 
apply the bullwhip effect, retailers and distributors are 
given the bullwhip effect metric expression. 

 

퐵푊 =
∑ 푉푎푟(푢 (푡))∈

∑ 푉푎푟(푑 (푡))∈
 

(14) 

 

퐵푊 =
∑ 푉푎푟(푢 (푡))∈

∑ 푉푎푟(푑 (푡))∈
 

(15) 

 
퐵푊  and 퐵푊  are represented retailers and 

distributors bullwhip effect expression is worth noting 
that in numerical simulation, variance calculation and 
simulation length.  

5. Results and Discussion 

When demand obedience considers 20 retailers, 
variance 100 under normal distribution, Fig. 2 shows that 
in Case 4 there is a steady state under three distributors on 
the dynamic curve. This figure also shows that based on 
robust 퐻∞ control of the supply network design strategies 
to ensure stability of the order of the entire supply 
network helped reduce ordering volatility curve which 
can order to a steady state at a faster rate. It means that the 
system can respond more quickly to customer needs. In 
addition, Fig. 3 shows the convergence curve for the 
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bullwhip effect indicators (Eqs. 14 and 15). The demand 
model shows clearly that there are good results for robust 
control in terms of suppressing the bullwhip effect in a 
supply network. 

 
The following equation is considered for time process 

of the retailer’s customer needs. 
 

푑 (푡) = 휇 + 휌푑 (푡 − 1) + 휎휀(푡), 푗 = 4, 5, … , 8 (16) 
where 휇	 = 	4, 휎	 = 	2, 휀	(푡)	~	푁	(0, 1) is a normal 

random variable independent and identically distributed, 
휌 is the correlation coefficient in Cases 1 to 4, an 
application of a robust control method for a dynamic 
simulation model of the bullwhip effect can be calculated 
demand indicator (Eq. 16). The calculated results are 
shown in Table 2 and Figs. 3 and 4. 

 
 

 
Fig. 2. Dynamic curves bullwhip effect under Case 4 

 
 

Table 2 
 Bullwhip effect and 훾 per each case 

  휌 = −0.4 휌 = 0 휌 = 0.4 
Case 훾 퐵푊  퐵푊  퐵푊  퐵푊  퐵푊  퐵푊  

1 4.0000 1.0141 1.0005 1.0103 1.0015 1.0086 1.0040 
2 6.3350 0.9035 0.9174 0.9502 0.9418 0.9712 0.9665 
3 5.6569 0.9694 1.0837 0.9773 1.0608 0.9882 1.0393 
4 7.5146 0.8606 1.3337 0.8986 1.2445 0.9394 1.1505 

 

 
Fig. 3. Bullwhip effect 퐵푊  per each case and three correlation coefficients 
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Fig. 4. Bullwhip effect 퐵푊  per each case and three correlation coefficients 

 
From Figs. 3 and 4 and Table 2, the following 

conclusions can be drawn: 1) Comparison of cases shows 
that in Cases 1 and 3 in terms of the bullwhip effect, the 
value of retailers and distributors bullwhip effects have a 
significant number. Cases 2 and 4 are compared to the 
situation bullwhip effect from end retailers to smaller. Its 
distributors bullwhip effect shows a significant number, 
which means the robust control design strategies for an 
inventory can be targeted to select some quantities from 
companies orders as an output variable to reduce the 
effect of these enterprises on the bullwhip effect. 2) Cases 
1 and 2 compared with Cases 3 and 4, there is an amount 
of the order retailer output variables and inventory 
replenishment strategies help reduce the bullwhip effect 
in the supply networks. When selecting distributors, order 
quantity of output variables, the inventory replenishment 
strategy helps to alleviate the bullwhip effect in 
distribution but fluctuations are caused by retailers in the 
orders found in front of the inventory replenishment 
strategy, although the bullwhip effect does not necessarily 
enhance robustness of the supply network, it was able to 
suppress the bullwhip effect nicely under specific demand 
model. 3) Whether customer needs or demands are 
positively correlated or negatively related to the design of 
robust control method for inventory strategies helps to 
curb the overall bullwhip effect in a supply network  and 
improve the speed of a response of the supply network. 

6. Conclusion  

A two-echelon supply network was modeled for 
retailers and distributors with an application of robust 퐻∞ 
control method designed according to ordering policies at 
each node. Studies showed that the application of robust 
control for inventories functions to control the bullwhip 
effect might well inhibit a supply network by setting the 

output matrix. It could be targeted to inhibit the target 
node bullwhip effect and reduced production costs and 
inventory costs. The results of numerical simulation 
showed that the strategy of inventory replenishment, 
although not significantly, might reduce supply bullwhip 
effect of a network, but demand for a particular form, can 
be effective in terms of inhibiting the bullwhip effect. 
This study described the complex supply relationships 
that might be an important factor in inhibiting the 
bullwhip effect in a supply network research; however, 
some shortcomings remained. Moreover, considering only 
two levels of a supply network, the structure in reality a 
supply network had more complexity. 
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