
A Cost-oriented Model for Multi-manned Assembly Line Balancing
Problem

Abolfazl Kazemia,*, Abdolhossein Sedighib
a Assistant Professor, Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran

b Msc, Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
Received 5 August, 2012; Revised 20 January, 2013; Accepted 13 March, 2013

Abstract

Many real-world production systems produce large-sized commodities. Due to the size of the production unit, it is typical to see that more
than one worker is working on the same work-piece. This type of assembly line in which multiple workers operate on the same work-piece
simultaneously is called multi-manned assembly line (MAL). In the classical multi-manned assembly line balancing problem (MALBP) the
objective is to minimize the manpower needed to manufacture one product unit. Apart from the manpower, other cost drivers like wage
rates or machinery are neglected in this classical view of the problem.
However due to the high competition in the current production environment, reducing the production costs and increasing utilization of
available resources are very important issues for manufacturing managers. In this paper a cost-oriented approach is used to model the
MALBP with the aim of minimizing total cost per production unit. A mathematical model is developed to solve the problem. Since the
proposed model is NP-hard, several heuristic algorithms and a genetic algorithm (GA) are presented to efficiently solve the problem.
Parameters and operators of the GA are selected using the design of experiments (DOE) method. Several examples are solved to illustrate
the proposed model and the algorithms.
Keywords: Multi-manned assembly line; Cost-oriented approach; Heuristic; Genetic algorithm; Design of experiments.

1. Introduction

Assembly lines are a type of production system used
for mass production of standardized commodities.
However, they can also be used to produce customized
units in low volumes. In an assembly line several
workstations (also called stations) are arranged along a
conveyor belt. In each station a set of tasks are performed
on the work-piece. Beginning from the first station, each
work-piece is moved from station to station with a
constant transportation speed throughout the line. The
cycle time determines the production rate; specifically
production rate is equal to the reciprocal of cycle time.
The work content of each station in the line is constrained
to be less than or equal to the cycle time. The total work
needed to assemble the final product is divided into n
basic operations I= {1, 2… n}, these elementary
operations are called tasks. Each task j needs d୨୲ units of
time to be accomplished; this duration is called task time.
Furthermore there are some precedence relations between
tasks. Typically these relations are presented in a
precedence graph in which each vertex presents a task and
each arc (i,j) presents a precedence relation between tasks
i and j.

The problem of partitioning tasks to stations in order
to optimize some objective functions is called assembly

line balancing (ALB) problem. The most studied problem
in the field of ALB is the simple assembly line balancing
problem (SALBP) and has the following assumptions
(Baybars 1986; Scholl 1999; Scholl and Becker 2006):

 Mass production of one homogenous
commodity.

 Given production process.
 Paced line with a fixed cycle time C.
 Each task j has a Deterministic and integer

operation time	 ݀௧ .
 No assignment constraints besides precedence

constraints.
 Serial line layout with m stations.
 All stations are equally equipped with respect to

machines and workers.
 Maximize the line efficiency: 	݂݂ܧ = ௧ೞೠ

×
		in

which m is the number of stations and ݐ௦௨ =
∑ ݀

௧
ୀଵ 		is the sum of processing time of all

tasks.
These assumptions are very restricting with respect to

real world assembly line systems. Therefore many
researchers have focused on changing or releasing some
of these assumptions to obtain more realistic models. The

*Corresponding author E-mail: abkaazemi@gmail.com

Journal of Optimization in Industrial Engineering 13 (2013) 13-25

13

resultant problems are called generalized assembly line
problem (GALBPs) (Boysen et al. 2007).

Numerous generalizations have been considered for
the ALBP. Some examples of these generalizations are
considering setup times between tasks(Andres et al. 2008;
Martino and Pastor 2010; Seyed-Alagheband et al. 2011),
considering resource constraints (Agpak 2005; Corominas
et al. 2010), considering other objective functions that are
more interesting in real world assembly lines (Pastor
2011), rebalancing assembly lines (Grangeon et al. 2011),
considering U-shaped assembly lines balancing
(Miltenburg and Wijngaard 1994), parallel workstations
(Buxey 1974), considering process alternatives (Pinto et
al. 1983) and two sided assembly lines (Bartholdi 1993).
Some latest surveys of generalized assembly line
problems are Erel and Sarin (1998), Rekiek et al. (2002),
Scholl (1999), Scholl and Becker (2006).

In manufacturing large commodities it is beneficial to
have several workers operate on the same work-piece in
the same station. This situation is first identified and
modeled by Dimitriadis (2006). In a MAL more than one
operator can be working on the same work-piece in each
station. This results in several advantages over simple
assembly lines. Some examples of these advantages are
reducing the length of the line and consequently reducing
the work in process, reducing the costs of tools,
machinery and also transportation system (Fattahi et al.
2011).

MALs are very popular production systems which are
used in many industries that have a large sized work-
piece. For instance this type of assembly system in which
multiple workers are simultaneously operating on the
same work-piece is very common in the final assembly of
automobiles. In this environment bare painted car bodies
arrive at the assembly line operation and complete cars
are leaving it. Installation of different parts of the final car
such as bumpers, seats, windows, wheels and so on, is
performed by multiple workers on the same car body; this
system is a MAL. In more automated environments
multiple robotic arms are used. Robotic arms are an
essential part of car manufacturing. Most industrial robots
work in auto assembly lines, putting cars together. In
these environments multiple robotic arms work
simultaneously on the same work-piece and therefore the
system can be considered a MAL. Other examples of this
type of assembly system are cargo ship and airplane final
assembly

Even though MALs are very common in real world
assembly line production systems, only a small number of
research papers have considered MALBPs. Dimitriadis
(2006) introduced the MALBP and presented a heuristic
assembly line balancing procedure to solve the problem.
Cevikcan et al. (2009) developed a mathematical
programming model to create assembly physical multi-
manned stations in mixed model assembly lines. They
also presented a scheduling-based heuristic to solve the
problem. Chang and Chang (2010) proposed a mixed-
model assembly line balancing problem with multi-

manned workstations and developed a mathematical
model for the mixed-model assembly line balancing
problem with simultaneous production (MALBPS) to
obtain the optimal number of workstations. They
presented a coding system, Four-Position Code (FPC), to
re-code the tasks in order to tackle with this issue, and
they also provided a computerized coding program
written in C++ to generate those FPCs. Fattahi et al.
(2011) developed a mathematical programming model for
MALBP. They also proposed an ant colony meta-heuristic
approach to solve the problem.

In the literature of MAL usually the objective is to
minimize the number of workers for a given cycle time or
minimizing the idle time (Cevikcan et al. 2009; Chang
and Chang 2010; Fattahi et al. 2011). However due to the
high competition in the current production environment,
reducing the production costs and increasing utilization of
available resources are very important issues for
manufacturing managers. Therefore developing a model
to directly minimize the production costs is of significant
interest. In this paper the MAL configuration is
considered with a cost-oriented approach. Generally final
assembly is a labour-intensive production (Amen 2006).
In the cost-oriented approach the objective is to minimize
the total cost per product unit (Amen 1997; Amen 2000a;
Rosenberg and Ziegler 1992; Steffen 1997). Therefore the
significant cost drivers should be analyzed.

At first the labour costs are considered. The payment
of a worker is dependent on the “job values” determined
by the well-known work measurement systems (Amen
2000a). In an assembly line there are tasks with different
levels of difficulty and job values assigned to a worker.
For each task i it is possible to consider a wage rate
݇௧௪ , ݅ ∈ ܷܯൣ	ܫ ܷܶൗ ൧ (TU time unit, PU production unit,
MU monetary unit) which is related directly to its job
value. The wage rate of an operator working in a station
along with other operators on the same work-piece, is
determined by the most difficult task assigned to him (or
her) i.e. the task with the highest job value. Therefore, the
wage rate of worker l in station j is: ݇

௦௪ = max൛݇௧௪|݅ ∈
௦ܫ ൟ , ݆ = 1,2… ,ܬ ݈ = ܷܯൣ	ܥܯ…1,2 ܷܶൗ ൧ where ܫ௦ is the
set of tasks assigned to worker l in station j and MC is the
maximum feasible concentration of workers in each
station. It is important to note that the wage rates are paid
for the total cycle time and not only for the sum of
duration of tasks performed by the worker.

Furthermore, costs of capital should be considered.
Examples of this kind of costs are machinery and material
handling system e.g. conveyor. It is assumed that the costs
of capital are directly dependent on the length of the line
i.e. number of stations. The machinery needed to perform
the operations can be a special machinery to perform a
special task or a universal machinery. The number of
special machinery can be assumed to be fixed and
independent of assignment of tasks to the workers in the
stations. In addition, it is assumed that all of the stations

Abolfazl Kazemi et al./ A Cost-oriented Model for Multi-manned...

14

need identical universal machines. Therefore the costs of
capital for all stations are the same.

Other costs such as costs of material are assumed to be
independent of the length of the line or assignment of
tasks to stations (Steffen 1977). Therefore the total costs
per product unit k [MU/PU]	can be formulated as	݇ =
∑ ∑ ܥ × ݇

௦௪
∈∈ +݉ × ݇௦ where ݇௦ [MU/PU] is the

total cost of capital.
Reviewing the literature of cost-oriented assembly line

balancing, Rosenberg and Ziegler (1992) assumed that the
operation of a station k causes a wage rate wk per time
unit equal to the maximum wage rate of all tasks that are
assigned to that station. The objective is to minimize the
aggregate wage rate over all stations, while the number of
stations is variable. They described and evaluated priority
rule-based heuristics, where some of the rules are
available for SALBP-1. Amen (2000a) extended the
problem by considering the costs of capital e.g. cost of
machinery or transportation system. Amen (1997)
proposed a branch and bound algorithm to solve the
problem which applies a station-oriented construction
method and laser search strategy. Amen (2000b) and
Amen (2001) developed station-oriented priority rule
based procedures with cost-oriented dynamic priority
rules and compared them to existing ones using a large set
of problem instances which is generated randomly. The
new rule named “best change of idle cost” had a better
performance than all other rules. For the same problem,
Amen (2006) concentrated on general model formulations
that can be solved by standard optimization tools and
introduced several improvements to existent models.
These models are designed for either general branch-and-
bound techniques with LP-relaxation or general implicit
enumeration techniques. They also discussed the solution
difficulty of the problem and showed that the “maximally-
loaded-station-rule” has to be replaced by the “two-
stations-rule”; which causes an enormous increase in
solution difficulty compared to the time-oriented version.
Malakooti and Kumar (1996), Malakooti (1991) and
Malakooti (1994) considered a multi-objective ALBP
with objectives that are based on cost and capacity.

In this paper a cost-oriented approach is used to model
the MAL which to the best of our knowledge hasn’t been
considered in the literature so far. Then different
heuristics and a GA are proposed to solve the problem
instances of large and medium size. The parameters and
operators of the GA are selected using DOE method. The
rest of this paper is organized as follows: in Section 1 the
proposed model is described and a mathematical
formulation is developed to solve the problem. Seven
heuristic algorithms and a GA are proposed to solve the
problem in Sections 2 and 3 respectively. Computational
results are presented in Section 4. Finally the main
conclusions of the paper and suggestions for future
research are presented in Section 5.

2. Proposed Model and Mathematical Formulation

In this paper the paced assembly line with multi-
manned workstations is considered which is very common
in real world assembly lines but a small number of
research papers have considered this type of assembly
line. The work-piece stays at each station for a certain
amount of time called cycle time. In each station there are
several workers performing different tasks on the same
work-piece. Each worker starts the tasks assigned to him
(or her) as soon as it is technically possible. The main
objective in this type of assembly line is to reduce the
length of line while maintaining the effectiveness of the
line. This type of multiple workers working on the same
work-piece at the same time requires the work-piece to be
of large size e.g. vehicle final assembly. Traditionally in
simple assembly lines all of the tasks assigned to a worker
can be performed continuously if the precedence relations
are observed. But in multi-manned lines some tasks which
are assigned to a worker may be delayed by the tasks
assigned to other workers in the same workstation which
is called unavoidable delay.

The objective is to minimize the total cost per
production unit and the decisions involved in cost-
oriented MALBP include the followings: (1) first how
many workers should be assigned to each station then (2)
which tasks to be performed by which worker. The
notations used in the mathematical model is presented in

Table 1
Notations used in the mathematical model
i, h task
j station
l worker
I Set of tasks
L Set of workers
J Set of workstations

*
i iP (P)

Set	of	direct	(all)	predecessors	of	task	݅

*
i iF (F)

Set	of	direct	(all)	successors	of	task	݅

C Cycle time (ܷܶ ⁄ ܷܲ)
m Number of stations
M A big positive number
MC Maximum concentration of workers in a station
N Number of tasks

t
id

Duration of task i when there are k workers in the station
(TU)

sck

Cost of capital per station (ܷܯ ⁄ ܷܲ)
sw
jlk

Wage rate of worker l in station j. (ܷܯ ⁄ ܷܶ)

tw
ik

 Wage rate of task i. (ܷܯ ⁄ ܷܶ)

ݔ ∈ {0,1} Equals	1	if	task	݅	is	assigned	to	worker	݈	in	station	݆.

ݕ ∈ {0,1}
Equals	to	1	if	task	i	and	h	is	assigned	to	the	same	worker
and	task	݅	is	performed	earlier	than	task	ℎ.

sti Start	time	of	task	݅
The problem under consideration is formulated as
follows:

Journal of Optimization in Industrial Engineering 13 (2013) 13-25

15

sc sw
Njl jl

j J l L l L j J
Min J×x k k C

 (1)

1ijl
j J l L

x

 i I (2)

hjl ijl
j J l L j J l L

J×x J×x

ii I, h P (3)

t
i ist d C i I,j J (4)

1 1 t
i h hjl hjl h

l L l L
st st M x M x d

ii I , h P , j J (5)

1 1

1
h i hjl ijl

t
ih i

st st M (x) M (x)

M (y) d

 * *
i i

i I,j J , l L
h { r|r I-(P F) i<r}

(6)

1 1i h hjl ijl

t
ih h

st st M (x) M (x)

M (y) d

 * *
i i

i I,j J , l L
h { r|r I-(P F) i<r}

 (7)

1ij ,l ijl
i I i I

x N x

j J,l L (8)

tw sw
i ijl jlk x k i I , j J,l L (9)

0ist i I (10)

0sw
jlk

j J,l L (11)

ݔ ∈ {0,1} i I,j J,l L (12)

ݕ ∈ {0,1} * *
i i

i I
h { r | r I (P F) i<r}

 (13)

In this formulation, equation (1) indicates the
objective function should to be minimized which is the
total cost per production unit. The first term presents the
cost of capital which equals to the number of stations
multiplied by kୱୡ (cost of capital per station). It is
assumed that the task N is successor of all of the tasks in
the precedence graph; if that’s not the case a fictitious
task with zero duration and wage rate must be considered.
Therefore task N is always assigned to the last station.
The second term in equation (1) presents the costs of
labour which is the sum of wage rates of all workers in all
stations multiplied by cycle time. Constraint (2) implies
that each task i must be assigned to exactly one worker in
one station. Constraint (3) ensures that precedence
relations are observed. Equation (4) implies that all tasks
must be finished before the cycle time. Equation (5)
indicates that if task h is a direct predecessor of task i and
they both assigned to the same station then starting time
of task i must be greater than or equal to the finish time of
task h. Constraint pair (6) and (7) is disjunctive for large
enough values of M. This means that only one of them is
active at the same time. Only when tasks i and h don’t
have any precedence relation and are both assigned to the
same worker in the same station they become active. If
yih=0 equation (6) becomes redundant and equation (7)

implies that	st୧ ≥ st୦ + d୦୲ implying that task i must be
scheduled after task h. On the other hand if yih=1
equation (7) becomes redundant and equation (6) implies
that	st୦ ≥ st୧ + d୧୲ indicating that task h must be
scheduled after task i. Constraint (8) indicates that in each
station, workers are used in an increasing order of their
indexes. Equation (9) implies that among all tasks
assigned to worker l in station j the maximum wage rate is
set to be the wage rate of the worker. Equations (10) and
(11) ensure that start times and wage rates are non-
negative. Equations (12) and (13) indicate that xijl and yih
are binary variables.

3. Heuristic Algorithms Developed

Since the traditional cost oriented assembly line
balancing problem is NP-hard (Amen 2000a; Rosenberg
and Ziegler 1992) and the problem considered here is a
generalization of it, the problem considered in this paper
is also NP-hard. In other words by setting L=1 and

0sck , the problem under consideration is reduced to
the well-known cost oriented assembly line balancing
problem which is NP-hard, therefore the considered

Abolfazl Kazemi et al./ A Cost-oriented Model for Multi-manned...

16

problem is also NP-hard. Therefore it is justified to
develop heuristic algorithms to obtain good solutions in a
computational time short enough to be applied in
industrial real instances.
In this paper seven priority rule based heuristic algorithms
are presented to solve the problem under consideration.
These rules are as follows:

 Max_D: maximum task duration (Tonge 1965).
 Max_R: maximum ranked positional weight

which is ݉ܽݎ}ݔ|݅ ∈ where {ܫ

ݎ = ቊ
݀௧ +∑ ݎ 	, ܨ	݂݅ ≠ ∅∈ி
݀௧ ܨ	݂݅																						 ≠ ∅

 (Hahn 1972;

Helgeson and Birnie 1961).
 Max_F: maximum number of immediate

followers in the precedence graph (Tonge 1965).
 Max_Kt: maximum cost rate (Rosenberg and

Ziegler 1992).
 Min_Kt: minimum cost rate (Steffen 1977).
 Min_Kts: minimal absolute difference to the

workers current cost rate i.e.
݉݅݊൛|݇௧ − ݇

௦௪|ห݅ ∈ ൟ. This rule is aܫ
modification of the rule proposed by Steffen
(1977).

 Min_Ki: best change of idle cost i.e.
݉݅݊{∆݇|݅ ∈ where ;{ܫ

∆݇ = ቊ
−݀௧݇௧ ,																														݂݅	݇௧ ≤ ݇

௦௪

൫݇௧ − ݇
௦௪൯ܥ − ݀௧݇௧ ,			݂݅	݇௧ > ݇

௦௪ .

This rule is a modification of the rule proposed
by Amen (2000b).

The first five rules are static; this means that the
priority of tasks doesn’t change throughout building a
solution. All of the static rules use a main procedure to
assign tasks to workers in each station. This procedure is
as follows:

Step 1: Set the current station Sc=1, and available
tasks Avail_task= {1, 2… N}. Available tasks are the
tasks that haven’t been assigned to any worker in any
station.

Step 2: Set the number of workers in the station Wn=1
and number of Tc=0.

Step 3: Among tasks of Avail_task, ones that are
assignable to station Sc, select the task with the highest
priority, according to one of the priority rules which will
be presented later in this section. Assign it to the worker
that starts the task earlier ties are broken in favor of the
worker that is not idle i.e. assigning the task to the worker
does not lead to unavoidable idle times. The final tie
breaker is the index of the worker and the worker with
lower index has more priority than the one with higher
index. Delete the task from Avail_task then set Tc=Tc+1.
If the selected worker is empty then set Wn=Wn+1.

Repeat this step until there is no task assignable to station
Sc. Then go to step 4. A task is assignable to a station if it
has no predecessor in Avail_task and assigning it to the
station doesn’t violate the cycle time constraint.
Step 4: A station Wn number of workers is completed. If
Avail_task is empty end the procedure, otherwise set
Sc=Sc+1 and go to step 2.

The last two rules are dynamic and the priority of
tasks may change throughout building a solution. These
rules are also dependent on the worker to whom the task
is assigned. Therefore another procedure is needed to
build a solution with these rules. This procedure is as
follows:
 Step 1: Set the current station Sc=1, and available tasks
Avail_task= {1, 2… N}. Available tasks are the tasks that
haven’t been assigned to any worker in any station.

Step 2: Set the number of workers in the station Wn=1 and
number of Tc=0.

Step 3: Among tasks of Avail_task, ones that are
assignable to station Sc, select the task with the highest
priority. This involves selecting a pair (݅, ݈) of task i and
worker l which has the highest priority. Ties are broken in
favor of the pairs that don’t create idle times; second level
ties are broken in favor of lower worker indexes. Finally
the third level ties are broken in favor of lower task
indexes. Delete the task from Avail_task then set
Tc=Tc+1. If the selected worker is empty then set
Wn=Wn+1. Repeat this step until there is no task
assignable to station Sc. Then go to step 4. A task is
assignable to a station if it has no predecessor in
Avail_task and assigning it to the station doesn’t violate
the cycle time constraint.

Step 4: A station Wn number of workers is completed.
If Avail_task is empty end the procedure, otherwise set
Sc=Sc+1 and go to step 2.

Therefore five static and two dynamic rules are
presented in this section to solve the problem. In the next
section a genetic algorithm is proposed.

4. Proposed GA

Genetic algorithm is a strong meta-heuristic used in
many combinatorial optimization problems. Many
researches have successfully used genetic algorithm to
solve generalized assembly line balancing problem among
who we can mention (Akpinar and Bayhan 2011; Yolmeh
and Kianfar 2012). In a GA every individual (or
chromosome) is encoded by a structure that represents its
properties, a population of individuals are produced and
then each individual in the populations is evaluated and a
fitness value is assigned to it. This value represents
quality of the individual i.e. the higher fitness value, the
better solution. Afterwards on the basis of a selection
method, a set of individuals are selected as parents for

Journal of Optimization in Industrial Engineering 13 (2013) 13-25

17

crossover and mutation to produce a new population. This
process, which is called generation, is iterated until
stopping criteria are met. The elements of the proposed
GA are described in the following sections.

4.1. Solution encoding and initial population

In the proposed GA, an individual is represented by a
permutation of tasks that shows the relative priority
among tasks. In other words the leftmost task in the
permutation has the highest priority and the rightmost task
has the lowest priority. Fig. 1 shows an example of this
representation. As it can be seen from this figure task 5
has the highest priority among all tasks, task 6 has the
second high priority and task 7 has the least priority. It is
important to note that since the chromosomes only
determine the priority of tasks, observing the precedence
constraints is not necessary. In other words the order in
which the tasks appear in the chromosome is not
necessarily the order in which they are assigned to the
workers in the stations.

Fig. 1 an example of solution representation

To evaluate an individual, using the first procedure
described in Section 2, a solution is created and the
corresponding cost is computed. In simple Gas, initial
population is generated randomly, but in improved Gas,
the result of some heuristic or meta-heuristics is added to
the initial population. Generally, adding the results of
other heuristic or meta-heuristics, genetic algorithms
could obtain better solutions in a shorter time and with
better convergence speed. Two alternatives are considered
for the initial population: (1) the whole population is
generated randomly, (2) all of the priority rule based
heuristics proposed in Section 2 is added to the initial
population.

4.2. Selection mechanism and replacement

In this paper, the Roulette wheel method is used for
selection procedure(Sivanandam and Deepa 2008).
Applying crossover and mutation operators may result in
losing the best known solution so far. To avoid this issue,
a percentage of best solutions in the current population are
directly transferred to the next population, this process is
called replacement. By applying replacement procedure,
the best solutions of the new population will not be worse
than that of previous populations. In this paper, 10 percent
of the best individuals in the current population are
directly transferred to the next population.

4.3. Crossover

Crossover takes two parents and combines their
characteristics to produce an offspring. Therefore the
resulting child will inherit its characteristics from the
parents. Crossover operator is applied to the mating pool
with the hope of creating a better child. In the proposed
GA, three types of crossover methods are considered. The
first considered operator is called “OX or ordered
crossover”; the second and third ones are proposed by
Ruiz et al. (2005) and are called “similar job order
crossover” or SJOX and “similar block order crossover”
or SBOX, respectively. These crossover operators were
used in the flow shop and single machine scheduling
problems (Bahalke et al. 2010; Ruiz et al. 2005).

4.4. Mutation

After crossover process, the chromosomes are
subjected to mutation. Mutation prevents the algorithm to
be trapped in a local optimum. Mutation plays an
important role in searching the whole search space by
introducing unexplored areas. Mutation is considered as a
background operator to maintain diversity in the
population. In this paper three well-known types of
mutation operators are used:

 Scramble mutation: two positions are selected
randomly and the tasks between these positions
are rebuilt randomly.

 Swap mutation: two tasks are selected randomly
and swap their positions.

 Shift mutation: a randomly selected task is
relocated to a randomly selected position and the
tasks between these two positions move along.

1.1. Restart scheme

In GA after some iteration, the population diversity
may be sufficiently low to converge to a local optimum.
To avoid this drawback a process which is called restart
scheme is used. This method has been used for flow shop
and single machine scheduling problems(Bahalke et al.
2010; Ruiz et al. 2005; Ruiz et al. 2006; Vallada and Ruiz
2010) . In this process if the best known solution so far
has not improved for Gr consecutive generations, the
whole population is reproduced. The restart scheme
applied in this paper works as follows:

1) Set	ݐ݊ݑܥ = 0.
2) In each iteration I store the minimum cost: ݐݏܥ
3) If ݐݏܥ = ݐ݊ݑܥ ିଵ thenݐݏܥ = ݐ݊ݑܥ + 1 else

set count=0.
4) If ݐ݊ݑܥ > : do the followingsܩ
 Sort the population in ascending order of cost.
 Skip the first 20% of the population.
 50% of the population is produced by doing

scramble mutation on the first 20% best
chromosomes.

Abolfazl Kazemi et al./ A Cost-oriented Model for Multi-manned...

18

 The remaining 30% of the population is generated
randomly.

4.5. Selecting the parameters and operators of GA

In this section the parameters and operators of the GA
are selected using the design of experiments (DOE)
method. DOE is a structured method that determines the
relationship between the factors that affect output of a
process. In order to calibrate the algorithm, a full factorial
design is chosen i.e. all possible combinations of the
following factors are tested:

 Initial population (Init_pop): 2 levels (using the
results of other heuristic or not).

 Population size (Pool_size): 3 levels (20, 40 And
60).

 Crossover operator (Cross_type): 3 levels (OX,
SJOX and SBOX).

 Mutation operator (Mut_type): 3 levels
(scramble, swap and shift).

 Mutation probability (Mut_prob): 3 levels (0.05,
0.1 and 0.15).

 Gr in the restart scheme (Gr): 3 levels (5, 10 and
M).

All of the above mentioned factors result in 2 × 3 ×
3 × 3 × 3 × 3 = 486	different combinations and thus 486
different genetic algorithms. The following procedure is
applied to produce problem instances. First, the
precedence network (i.e., precedence graph) with the
desired network density (i.e. order strength) is produced
using a problem generator (Gehrlein 1986). Only the
precedence graphs with network densities that fall within
the target range of	±0.05 are selected and processing
times and wage rates of the workers are randomly
generated for each task using a discrete uniform
distribution with minimum and maximum values of 5 and
30, respectively. Cycle time is randomly selected from
one of the values 30, 45 and 60. Finally the maximum
concentration of workers is randomly selected between
values 3, 4 and 5. To produce a problem set following
three levels of N (number of tasks) and OS (order
strength) are considered.

 N: 10, 30 and 50.
 OS: 0.25, 0.5 and 0.75.

For each level of N and OS two instances are
generated. Therefore a total of 18 (3 × 3 × 2)	instances
are generated. The stopping criterion for the GA is set to a
CPU time limit of 200 × ܰ	milliseconds. The algorithm is
coded in C language and runs on a personal computer
with Intel Pentium dual processor 2.2 GHz and 2 GB of
RAM. The response variable for this experiment is
calculated as follows:

(ܦܴ)	݊݅ݐܽ݅ݒ݁݀	݁ݒ݅ݐ݈ܴܽ݁ =
ℎ݉௦ݐ݅ݎ݈݃ܣ − ܤܮ

ܤܮ 				(14)

Where ݐ݅ݎ݈݃ܣℎ݉௦ is the solution obtained by a
given algorithm on a given instance, LB is the lower
bound for the instance. To calculate a lower bound on the
total costs, lower bounds on the costs of capital and the
costs of labor are needed. At first the lower bound for the
costs of capital is explained. To calculate a lower bound
on the costs of capital a lower bound on the number of
stations is needed. It is assumed that the first task in the
precedence graph is predecessor of all other tasks.
Similarly it is assumed that the last task in the graph is
successor of all of the other tasks. If there is no such
tasks, fictitious tasks is to be considered. To obtain a
lower bound on the number of stations, the longest path,
also called critical path, from the first task to the last task
is considered. The length of this path is a lower bound on
the time needed to produce one commodity, lessening or
increasing the number of workers in each station does not
change this value. Thus, the formulation for lower bound
is:

௦௧௧ܤܮ = ቜ
∑ ௧	∈௧ݐ

ܥ
ቝ																																					(15)

Therefore a lower bound on the costs of capital is
obtained using the following formulation:
௦௧	௧ܤܮ = ௦௧௧ܤܮ × ݇௦																																					(16)

To obtain a lower bound on the costs of labor at first a
lower bound on the number of workers is calculated using
the formulation: [16].

௪ܤܮ = ቜ
∑ ∈ூݐ

ܥ
ቝ																																																									(17)

Therefore at least ܤܮ௪ workers are needed. The
lower bound on the costs of labor can be computed using
the following formulation:
௦௧	ܤܮ = ܥ (18)																																																	ܴܹܯ×

In this formulation ܴܹܯ	is the sum of ܤܮ௪
smallest wage rate values. Therefore the lower bound on
the costs of production is computed using the following
formula:
ܤܮ = ௦௧	௧ܤܮ + ௦௧	ܤܮ 																																			(19)

The experiment was analyzed by means of a
multifactor ANOVA technique. For results of ANOVA to
be valid three hypotheses should be checked: normality,
homoskedasticity and independence of residuals. The
resultant residuals from the experimental data were
analyzed and all three hypotheses were valid. Table 1
shows the results of ANOVA for this experiment, all
interactions of more than two factors have been ignored as
their F value was too small.

 In ANOVA if the p-value is less than the considered
significance level	ߙ, different levels of the corresponding
factor have a significant effect on the response variable.

Journal of Optimization in Industrial Engineering 13 (2013) 13-25

19

In this study the significance level ߙ is assumed to be
0.05. Since p-values in the table are very small and close
to zero, the analyses are made on the basis of F-ratio. F-
ratio is the ratio between the variance explained by a
factor and unexplained variance, the greater this value the
more effect of the factor on the response variable. The
procedure of selecting operators and parameters for GA is
as follows: starting from the greatest F-ratio for a factor or
interaction, the preferred level is selected for the
corresponding factor. Then the next factor with the
maximum value of F-ratio is considered and the same
process is applied, this procedure is repeated until suitable
levels for all factors are selected.

 As it can be seen in Table 2, the two problem
dependent factors, N and OS, have the greatest values of
F-ratio. This is expected, because as the size and order
strength increases, difficulty of the instance increases and
this leads to more deviation from the lower bound. The
next value of F-ratio corresponds to crossover type
(Cross_type), as it can be seen from the main effects plot

in Fig. 2 the desired level for this factor is 3, which
corresponds to the SBOX crossover. The third greatest
value of F-ratio corresponds to population size and as it
can be seen from the main effects plot in Fig. 2 the
desired level for population size is 3 which corresponds to
a population size of 60, applying this procedure to all
factors, using the main effects plot presented in Fig. 2,
and the interaction plot in Fig. 3, the following levels are
obtained:

 Initial population (Init_pop): using the results of
other heuristic.

 Population size (Pool_size): 60.
 Crossover operator (Cross_type): SBOX.
 Mutation operator (Mut_type): shift mutation.
 Mutation probability (Mut_prob): 0.15.
 Gr in the restart scheme (Gr): 10.

Table 1
 Results of ANOVA for the GA

Source DF Seq SS Adj SS Adj MS F P
N 2 44.2303 44.2303 22.1152 8104.37 0

OS 2 7.073 7.073 3.5365 1295.99 0
Cross_type 2 1.5717 1.5717 0.7859 287.98 0
Mut_type 2 0.007 0.007 0.0035 1.29 0.275
Pool_size 2 0.3274 0.3274 0.1637 60 0
Mut_prob 2 0.0122 0.0122 0.0061 2.23 0.108
Init_pop 1 0.0467 0.0467 0.0467 17.12 0

Gr 2 0.0501 0.0501 0.0251 9.18 0
Cross_type*Mut_type 4 0.0621 0.0621 0.0155 5.69 0
Cross_type*Pool_size 4 0.0344 0.0344 0.0086 3.15 0.014
Cross_type*Mut_prob 4 0.0032 0.0032 0.0008 0.29 0.883
Cross_type*Init_pop 2 0.0028 0.0028 0.0014 0.52 0.595

Cross_type*Gr 4 0.0016 0.0016 0.0004 0.15 0.965
Mut_type*Pool_size 4 0.0526 0.0526 0.0132 4.82 0.001
Mut_type*Mut_prob 4 0.0023 0.0023 0.0006 0.21 0.933
Mut_type*Init_pop 2 0.0007 0.0007 0.0004 0.13 0.878

Mut_type*Gr 4 0.002 0.002 0.0005 0.18 0.949
Pool_size*Mut_prob 4 0.002 0.002 0.0005 0.18 0.947
Pool_size*Init_pop 2 0.0013 0.0013 0.0007 0.24 0.784

Pool_size*Gr 4 0.0073 0.0073 0.0018 0.67 0.615
Mut_prob*Init_pop 2 0.0011 0.0011 0.0006 0.21 0.814

Mut_prob*Gr 4 0.0011 0.0011 0.0003 0.1 0.981
Init_pop*Gr 2 0.0033 0.0033 0.0016 0.6 0.551
S=0.052238 R-Sq=97.35% R-Sq(Adj)=97.28%

321

0.89

0.88

0.87

0.86

0.85

321 321

321

0.89

0.88

0.87

0.86

0.85

21 321

Cross_type

M
ea

n

Mut_type Pool_size

Mut_prob Init_pop Gr

Main Effects Plot for RD
Data Means

Fig. 2. Main effects plot for the GA

Abolfazl Kazemi et al./ A Cost-oriented Model for Multi-manned...

20

321

0.90

0.89

0.88

0.87

0.86

0.85

0.84

Mut_type

M
ea

n

1
2
3

Cross_type

Interaction Plot for RD
Data Means

Fig. 3. Interaction plot between Cross_type and Mut_type factors

5. Computational Results

In this section computational experiments are
presented. All of the algorithms are coded in C language
and runs on a personal computer with Intel Pentium dual
processor 2.2 GHz and 2 GB of RAM. Parameters and
operators of the GA are selected according to the results
obtained in Section 3.6. The stopping criterion when
testing algorithms with instance is set to a CPU time limit
of 200 × ܰ milliseconds.

In the first experiment the motivation is comparing the
cost-oriented model with the traditional time-oriented
model. Therefore an example is presented and solved with
both time-oriented and cost-oriented approaches. The
precedence graph and task times for this example are
taken from the well-known instance of Mertens which is
available at www.assembly-line-balancing.de. In the time
oriented model at first the number of workers is
minimized as the primary objective and then the number
of stations is minimized as the secondary objective. The
precedence graph of this example with duration and wage
rate of tasks is shown in Fig. 4. The cycle time and
maximum feasible worker concentration in each station
for this instance is assumed to be 8 and 3 respectively.
Also total cost of capital per station	(kୱୡ) is assumed to be
equal to 5.
Optimum solutions for cost-oriented and time-oriented
versions of this problem are presented in Figures 5 and 6
respectively. In these figures for each task, starting time
and finishing time are shown alongside its bar. Shaded
rectangles designate idle time at the end of the cycle time.

Fig. 4. example of a problem instance

Table 3 shows the cost calculations for the optimal
solutions obtained by time-oriented and cost-oriented
approaches. As seen from this table a total of 199
monetary units are needed to produce one production unit
are being used in the traditional line balancing model,
while this number could be reduced to 183 with the
proposed model. Thus, 16 monetary units are saved.
Besides, the required number of workers and stations are
calculated as 5 and 3 respectively. These numbers are the
same with the ones obtained by the time-oriented model,
which means that the solution is also optimal in terms of
number of workers and stations. Consequently, the
solution is the best in terms of the total cost, and while
reaching this best, the best number of stations and
workers are also achieved.

In the second experiment the performance of the
proposed algorithms is illustrated. To do so, each of the
25 different precedence graphs available at
www.assembly-line-balancing.de is used to generate an
instance. For each task in each instance the wage rate of
task i is assumed to be: k୧୲୵ = dାଵି୧୲ . The cycle time is
generated randomly between maximum task time tmax
and 2* tmax. The cost of capital for each station is
assumed to be: 	kୱୡ = ୡమ

ଶ
. Each instance is solved by the

proposed algorithms (the GA is run once for each
instance) and the relative deviation is computed using
equation (1) in Section 3.6. The results are presented in
Fig. 7.

Journal of Optimization in Industrial Engineering 13 (2013) 13-25

21

Fig. 5. The optimum solution for cost-oriented approach

Fig. 6. The optimum solution for time-oriented approach

Table 2
Optimal solutions to the example

Station Worker Time-oriented optimal
solution Cost-oriented optimal

solution
j l ܫ௦ ݇

௦௪ ܫ௦ ݇
௦௪

1 1 {1,2} 6 {1,2} 6
2 1 {5} 4 {5} 4
 2 {4,7} 3 {3,4} 5
3 1 {6} 5 {6} 5
 2 {3} 5 {7} 1

 ݇
௦௪

∈∈

 23 21

m 3 3

݇ =ܥ × ݇
௦௪

∈∈

+ ݉× ݇௦ 199 183

Fig. 7 performance of the proposed heuristic methods
As seen in Fig. 7 the two dynamic priority rules,

Min_Kts and Min_Ki, have a better overall performance
comparing to other priority rules. This highlights the
importance of considering the current cost rate of the
workers while building the solution. Furthermore, as
expected, the GA performs significantly better than other
algorithms. This provides the motivation to perform a

final experiment to illustrate the performance of the
proposed GA and provide a background to compare the
results of the GA with other future algorithms. For this
experiment another data set is generated using a selection
of well-known instances for SALBP-1. In order to
facilitate comparison of the proposed algorithm with other
future algorithms, the wage rates for each task: ݇௧௪ =

0

0.5

1

1.5

2

2.5

3

3.5

4

٢ ١١ ٩ ٧۵ ٣٢ ٢٩ ۴۵ ۵٧ ٨۵ ٩ ٨٩۴ ١۴٢٩٧ ٨

Re
la

tiv
e

de
vi

at
io

n

Number of tasks

Max_D

Max_R

Max_F

Max_Kt

Min_kt

Min_Kts

Min_Ki

GA

Abolfazl Kazemi et al./ A Cost-oriented Model for Multi-manned...

22

݀ேାଵି௧ and cost of capital for each station is set to
be:	݇௦ = మ

ଶ
. For each instance the GA is run for 5

iterations and the average cost and the computed lower
bound for the instance are reported in Table 4. The
optimum numbers of stations for Mertens, Bowman and

JAESCHKE examples are obtained by solving the
mathematical model using Lingo 11. For these instances
the optimum solutions found by the GA are marked with a
star. For other examples a lower bound is computed using
equation (6) in Section 5.4.

Table 3
Results of the GA for a selection of well-known instances

Author Tasks Cycle
time

Optimal
number of
stations for

SALBP

Optimal
number of

stations and
workers (or a

lower bound of
it)

Average
Obtained
number of

stations and
workers

Average
Space

utilization
(%)

Optimal cost
(or a lower
bound of it)

Average
Obtained

cost
MC

MERTENS 7 6 6 3,6 3,6 50.0 198 198.0* 4
 7 5 3,5 3,5 60.0 220.5 220.5* 4
 8 5 3,5 3,5 60.0 264 264.0* 4
 10 3 3,3 3,3 100.0 300 300.0* 4
 15 2 2,2 2,2 100.0 390 390.0* 3

BOWMAN8 8 20 5 4,5 4,5 80.00 1820 1820* 4
JAESCHKE 9 6 8 5,7 6,8 75.0 306 306.0* 4

 7 7 6,7 6,7 85.7 371 371.0* 4
 8 6 5,6 5,6 83.3 368 368.0* 4
 10 4 3,5 3,5 60.0 360 360.0* 4
 18 3 2,3 2,3 66.7 540 540.0* 4

JACKSON 11 7 8 4,7 5,9 55.6 250 409.5 4
 9 6 3,6 3,7 42.9 273 409.5 4
 10 5 3,5 3,7 42.9 270 470.0 4
 13 4 2,4 2,6 33.3 272 533.0 4
 14 4 2,4 2,6 33.3 308 588.0 4

MANSOOR 11 48 4 2,4 3,5.5 54.5 3456 7776.0 4
 62 3 2,3 2,4 50.0 4712 9362.0 4
 94 2 1,2 1,3 33.3 4982 10152.0 4

MITCHELL 21 14 8 6,8 6,10 60.0 854 1526.0 4
 15 8 5,7 6,10 60.0 800 1680.0 4
 21 5 4,5 4,8 50.0 1090 1890.0 4
 26 5 3,5 3,6.5 46.2 1274 2223.0 4
 35 3 3,3 3,4 75.0 1976 2957.5 3

HESKIA 28 138 8 4,8 4,10.5 38.1 43056 104397.0 4
 205 5 3,5 3,8 37.5 65906 139810.5 4
 216 5 3,5 2,8 25.0 73008 129924.0 4
 256 4 2,4 2,7 28.6 67840 153344.0 4
 324 4 2,4 2,6 33.3 107892 193104.0 4

SAWYER30 30 25 14 4,13 7,18 38.9 2973 7225.0 6
 27 13 4,12 6.5,15 43.3 3076 7431.8 5
 30 12 4,11 6,14 42.9 3330 7950.0 5
 33 11 3,10 6,14 42.9 3051 8761.5 5
 36 10 3,9 6,13 46.2 3240 9486.0 5

KILBRID 45 56 10 3,10 3.5,14.5 24.1 7000 19852.0 6
 57 10 3,10 3,14.5 20.7 7209 20491.5 6
 62 9 3,9 3,13 23.1 7998 21328.0 5
 69 8 2,8 2.5,11.5 21.7 6899 21786.8 5
 79 7 2,7 2.5,11 22.7 8294 25023.3 5

TONGE70 70 160 23 8,22 8,29.5 27.1 154400 403520.0 5
 168 22 8,21 8,30 26.7 163296 422016.0 5
 176 21 7,20 8,28 28.6 156816 439032.0 5
 185 20 7,19 8,27.5 29.1 166404 455192.5 5
 195 19 7,18 7,24.5 28.6 177934 439238.0 5

ARC83 83 3786 21 11,20 12,25 48.0 115654728 205104500.0 4
 3985 20 11,19 12,23 52.2 123792027 210840000.0 4
 4206 19 10,18 10,21.5 46.5 124493394 206861500.0 4
 4454 18 10,17 10,20.5 48.8 134782494 222246000.0 4
 4732 17 9,16 8,20 40.0 135841524 216399000.0 4

ARC111 111 5755 27 11,27 12,39.5 30.4 192576682 599806000.0 5
 5785 27 11,26 12,39 30.8 193597912 600683000.0 5
 6016 26 11,25 12.5,38 32.9 208219776 649234500.0 5
 6267 25 10,24 12,36.5 32.9 205137706 659191000.0 5
 6540 24 10,23 12,37.5 32.0 222209580 710823000.0 5

total 293.5,759 45.95

Journal of Optimization in Industrial Engineering 13 (2013) 13-25

23

As seen in this table, GA has reached the optimum
solution for all instances of MERTENS, BOWMAN and
JAESCHKE (the entire instance solved to optimality
using lingo 11). Another observation is the significant
decrease in the number of stations in comparison to
SALBP-1, this result in better space utilization. Space
utilization can be defined as the proportion of one station
used by one worker and can be calculated by the
following equation [16, 18]:

݂ =
௧௪

 (7)

 In this equation f is the space utilization factor, m is
the number of stations and tw is the number of workers.
This factor ranges between 1 and	1/ݓݐ and is of special
importance if there are space constraints in the production
floor which may happen because of the building design or
redesigning the line to produce a new product.
The multi-manned system results in a shorter physical line
length and improves the space utilization. Because in this
system the same number of workers can be allocate to
fewer stations comparing to the traditional approach. In
Table 3, in many instances the space utilization factor has
improved and for all examples the average space
utilization factor is 45.95 percent. This means that the
required space has reduced to 45.95 percent of its
previous value for the traditional approach.

6. Conclusions and Future Research

MALs are a new type of lines in which there can be
more than one worker in each station working on the
same work-piece. This type of line is very common in
manufacturing of large-sized products e.g. vehicle final
assembly. MALs have several advantages over the
traditional lines which include reducing the length of the
line and better utilization of the tools and machinery in
stations. On the other hand this type of lines results in
reducing the work in process and throughput time which
is of high priority for production managers.

In the classical MALBP the objective is to minimize
the manpower needed to manufacture one product unit.
Apart from the manpower, other cost drivers like wage
rates or machinery are neglected in this classical view of
the problem. But due to the high competition in the
current production environment, reducing the production
costs and increasing utilization of available resources are
very important issues for manufacturing managers.

Although minimizing the costs of production is of
major importance in practice, there has not been sufficient
consideration in the literature of MAL. In this paper the
MALBP was considered with the aim of minimizing the
total costs of one production unit. For this aim a
mathematical formulation was presented. Furthermore, in
order to be able to solve the medium- and large-size
scales of the problem, several heuristics and a GA were
proposed. Several examples were solved to show the

effectiveness of the proposed model and proposed
algorithms.

However, since the tasks are performed by human
being, it is reasonable to assume task times be stochastic.
Therefore the current research can be extended to the
stochastic environments in MALs and incompletion costs
can be additionally considered. Also developing other
heuristic or meta-heuristics such as Tabu search or ant
colony optimization to solve the introduced model are
recommended for future research in this area.

7. References

[1] Agpak, K.K. (2005). Assembly line balancing: two
resource constraint cases. International Journal of
Production Economics, 96, 129–140.

[2] Akpinar, S., Bayhan, G.M. (2011). A hybrid genetic
algorithm for mixed model assembly line balancing
problem with parallel workstations and zoning constraints.
Engineering Applications of Artificial Intelligence, 24,
449–457.

[3] Amen, M. (1997). Ein exaktes Verfahren zur
kostenorientierten Fliebbandabstimmung, in: U.
Zimmermann et al.., (Eds.), Operations Research
Proceedings 1996, Springer, Berlin, pp. 224-229.

[4] Amen, M. (2000a). An exact method for cost-oriented
assembly line balancing. International Journal of
Production Economics 64, 187–195.

[5] Amen, M. (2000b). Heuristic methods for cost-oriented
assembly line balancing: A survey. International Journal of
Production Economics, 68, 1–14.

[6] Amen, M. (2001). Heuristic methods for cost-oriented
assembly line balancing: A comparison on solution quality
and computing time. International Journal of Production
Economics, 69, 255–264.

[7] Amen, M. (2006). Cost-oriented assembly line balancing:
Model formulations, solution difficulty, upper and lower
bounds. European Journal of Operational Research, 168,
2006, 747–770.

[8] Andrés, C., Miralles, C., Pastor, R. (2008). Balancing and
scheduling tasks in assembly lines with sequence-
dependent setup times. European Journal of Operational
Research, 187 (3), 1212–1223.

[9] Bahalke, U., Yolmeh, A.M., Shahanaghi, K. (2010).
Meta-heuristics to solve single-machine scheduling
problem with sequence-dependent setup time and
deteriorating jobs. Int J Adv Manuf Technol, 50, 749–759.
DOI: 10.1007/s00170-010-2526-5.

[10] Bartholdi, J.J. (1993). Balancing two-sided assembly lines:
A case study. International Journal of Production
Research, 31, 2447–2461.

[11] Baybars, I. (1986). A survey of exact algorithms for the
simple assembly line balancing problem. Management
Science , 32, 909–932.

[12] Boysen, N., Fliedner M., Scholl A. (2007). A classification
of assembly line balancing problems. Eur J Oper Res
183:674–693.

[13] Buxey, G.M., (1974). Assembly line balancing with
multiple Stations. Management Science, 20, 1010–1021.

[14] Cevikcan, E., Durmusoglu, BM., Unal, ME. (2009). A
team-oriented design methodology for mixed model
assembly systems. Comput Ind Eng, 56,576–599.

Abolfazl Kazemi et al./ A Cost-oriented Model for Multi-manned...

24

[15] Chang, H. J., Chang, T. M. (2010). Simultaneous
Perspective-Based Mixed-Model Assembly Line
Balancing Problem. Tamkang Journal of Science and
Engineering, 13 (3), 327_336.

[16] Corominas, A., Ferrer, L., Pastor, R. (2010). Assembly
line balancing: general resource-constrained case,
International Journal of Production Research, 49(12), 3527
– 3542,
DOI: 10.1080/00207543.2010.481294.

[17] Dimitriadis, SG. (2006). Assembly line balancing and
group working: a heuristic procedure for workers’ groups
operating on the same product and workstation. Comput
Oper Res 33:2757–2774

[18] Erel, E., Sarin, S. (1998). A survey of the assembly line
balancing procedures. Production Planning and Control, 9,
414 – 434.

[19] Fattahi, P., Roshani, A., Roshani, A. (2011). A
mathematical model and ant colony algorithm for multi-
manned assembly line balancing problem. Int J Adv
Manuf Technol, 53, 363–378.

[20] Gehrlein, W. (1986). On methods for generating random
partial orders.Operation s Research Letters 5 (6), 285–291.

[21] Grangeon, N., Leclaire, P., Norre, S. (2011). Heuristics for
the re-balancing of a vehicle assembly line. International
Journal of Production Research, DOI:
10.1080/00207543.2010.539025 (to appear)

[22] Hahn, R. (1972). Produktionsplanung bei Linienfertigung,
Walter de Gruyter, Berlin.

[23] Helgeson, W.B., Birnie, D.P. (1961). Assembly line
balancing using the ranked positional weight technique.
Journal of Industrial Engineering, 12, 394-398.

[24] Malakooti, B. (1991). A multiple criteria decision making
approach for the assembly line balancing problem.
International Journal of Production Research, 29, 1979–
2001.

[25] Malakooti, B. (1994). Assembly line balancing with
buffers by multiple criteria optimization. International
Journal of Production Research, 32, 2159–2178.

[26] Malakooti, B., Kumar, A. (1996). An expert system for
solving multi-objective assembly line balancing problems.
International Journal of Production Research, 34, 2533–
2552.

[27] Martino, L., Pastor, R. (2010). Heuristic procedures for
solving the general assembly line balancing problem with
setups. International Journal of Production Research, 48
(6), 1787 – 1804. DOI: 10.1080/00207540802577979

[28] Miltenburg, J., Wijngaard, J. (1994). The U-line line
balancing problem. Management Science, 40, 1378–1388.

[29] Pastor, R. (2011). LB-ALBP: the lexicographic bottleneck
assembly line balancing problem. International Journal of
Production Research, 49 (8), 2425 — 2442, DOI:
10.1080/00207541003705856

[30] Pinto, P.A., Dannenbring, D.G., Khumawala, B.M. (1983).
Assembly line balancing with processing alternatives: an
application. Management Science, 29, 817–830.

[31] Rekiek, B., Dolgui, A., Delchambre, A., Bratcu, A. (2002).
State of art of optimization methods for assembly line
design. Annual Reviews in Control, 26, 163–174.

[32] Rosenberg, O., Ziegler, H. (1992). A comparison of
heuristic algorithms for cost-oriented assembly line
balancing, Zeitschrift fur Operations Research, 36, 477-
495.

[33] Ruiz, R., Maroto, C., Alcaraz, J. (2005). Solving the
flowshop scheduling problem with sequence-dependent

setup times using advanced metaheuristics. Eur J Oper
Res, 165, 34–54.

[34] Ruiz, R., Maroto, C., Alcaraz, J. (2006). Two new robust
genetic algorithms for the flowshop scheduling problem.
Omega, 34, 461–476.

[35] Scholl, A. (1999). Balancing and sequencing assembly
lines, 2nd edn. Physica, Heidelberg.

[36] Scholl, A., Becker, C. (2006). State-of-the-art exact and
heuristic solution procedures for simple assembly line
balancing. European Journal of Operational Research, 168,
666-693.

[37] Seyed-Alagheband, S. A., Fatemi Ghomi, S.M.T.,
Zandieh, M. (2011). A simulated annealing algorithm for
balancing the assembly line type 2 problem with sequence-
dependent setup times between tasks.

[38] Sivanandam, SN., Deepa, SN. (2008). Introduction to
genetic algorithms. Springer, New York.

[39] teffen, R. (1977). Produktionsplanung bei
Fliebbandfertigung, Gabler, Wiesbaden.

[40] Tonge, F.M. (1965). Assembly line balancing using
probabilistic combinations of heuristics. Management
Science, 11, 727-735.

[41] Vallada, E., Ruiz, R. (2010). Genetic algorithms with path
relinking for the minimum tardiness permutation flowshop
problem. Omega, 38, 57–67.
doi:10.1016/j.omega.2009.04.002.

[42] Yolmeh, A., Kianfar, F. (2012). An efficient hybrid
genetic algorithm to solve assembly line balancing
problem with sequence-dependent setup times. Computers
& Industrial Engineering, 62, 936–945.

Journal of Optimization in Industrial Engineering 13 (2013) 13-25

25

