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Abstract 

Many real-world production systems produce large-sized commodities. Due to the size of the production unit, it is typical to see that more 
than one worker is working on the same work-piece. This type of assembly line in which multiple workers operate on the same work-piece 
simultaneously is called multi-manned assembly line (MAL). In the classical multi-manned assembly line balancing problem (MALBP) the 
objective is to minimize the manpower needed to manufacture one product unit. Apart from the manpower, other cost drivers like wage 
rates or machinery are neglected in this classical view of the problem.  
However due to the high competition in the current production environment, reducing the production costs and increasing utilization of 
available resources are very important issues for manufacturing managers. In this paper a cost-oriented approach is used to model the 
MALBP with the aim of minimizing total cost per production unit. A mathematical model is developed to solve the problem. Since the 
proposed model is NP-hard, several heuristic algorithms and a genetic algorithm (GA) are presented to efficiently solve the problem. 
Parameters and operators of the GA are selected using the design of experiments (DOE) method. Several examples are solved to illustrate 
the proposed model and the algorithms. 
Keywords: Multi-manned assembly line; Cost-oriented approach; Heuristic; Genetic algorithm; Design of experiments. 

1. Introduction 

Assembly lines are a type of production system used 
for mass production of standardized commodities. 
However, they can also be used to produce customized 
units in low volumes. In an assembly line several 
workstations (also called stations) are arranged along a 
conveyor belt. In each station a set of tasks are performed 
on the work-piece. Beginning from the first station, each 
work-piece is moved from station to station with a 
constant transportation speed throughout the line. The 
cycle time determines the production rate; specifically 
production rate is equal to the reciprocal of cycle time. 
The work content of each station in the line is constrained 
to be less than or equal to the cycle time. The total work 
needed to assemble the final product is divided into n 
basic operations I= {1, 2… n}, these elementary 
operations are called tasks. Each task j needs d୨୲ units of 
time to be accomplished; this duration is called task time. 
Furthermore there are some precedence relations between 
tasks. Typically these relations are presented in a 
precedence graph in which each vertex presents a task and 
each arc (i,j) presents a precedence relation between tasks 
i and j. 

The problem of partitioning tasks to stations in order 
to optimize some objective functions is called assembly  

 

 
 
 

line balancing (ALB) problem. The most studied problem 
in the field of ALB is the simple assembly line balancing 
problem (SALBP) and has the following assumptions 
(Baybars 1986; Scholl 1999; Scholl and Becker 2006): 

 Mass production of one homogenous 
commodity. 

 Given production process. 
 Paced line with a fixed cycle time C. 
 Each task j has a Deterministic and integer 

operation time	 ݀௧ . 
 No assignment constraints besides precedence 

constraints. 
 Serial line layout with m stations. 
 All stations are equally equipped with respect to 

machines and workers. 
 Maximize the line efficiency: 	݂݂ܧ = ௧ೞೠ

×
		in 

which m is the number of stations and ݐ௦௨ =
∑ ݀

௧
ୀଵ 		is the sum of processing time of all 

tasks. 
These assumptions are very restricting with respect to 

real world assembly line systems. Therefore many 
researchers have focused on changing or releasing some 
of these assumptions to obtain more realistic models. The 
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resultant problems are called generalized assembly line 
problem (GALBPs) (Boysen et al. 2007). 

Numerous generalizations have been considered for 
the ALBP. Some examples of these generalizations are 
considering setup times between tasks(Andres et al. 2008; 
Martino and Pastor 2010; Seyed-Alagheband et al. 2011),  
considering resource constraints (Agpak 2005; Corominas 
et al. 2010), considering other objective functions that are 
more interesting in real world assembly lines (Pastor 
2011), rebalancing assembly lines (Grangeon et al. 2011), 
considering U-shaped assembly lines balancing 
(Miltenburg and Wijngaard 1994), parallel workstations 
(Buxey 1974), considering process alternatives (Pinto et 
al. 1983) and two sided assembly lines (Bartholdi 1993). 
Some latest surveys of generalized assembly line 
problems are Erel and Sarin (1998), Rekiek et al. (2002), 
Scholl (1999), Scholl and Becker (2006). 

In manufacturing large commodities it is beneficial to 
have several workers operate on the same work-piece in 
the same station. This situation is first identified and 
modeled by Dimitriadis (2006). In a MAL more than one 
operator can be working on the same work-piece in each 
station. This results in several advantages over simple 
assembly lines. Some examples of these advantages are 
reducing the length of the line and consequently reducing 
the work in process, reducing the costs of tools, 
machinery and also transportation system (Fattahi et al. 
2011). 

MALs are very popular production systems which are 
used in many industries that have a large sized work-
piece. For instance this type of assembly system in which 
multiple workers are simultaneously operating on the 
same work-piece is very common in the final assembly of 
automobiles. In this environment bare painted car bodies 
arrive at the assembly line operation and complete cars 
are leaving it. Installation of different parts of the final car 
such as bumpers, seats, windows, wheels and so on, is 
performed by multiple workers on the same car body; this 
system is a MAL. In more automated environments 
multiple robotic arms are used. Robotic arms are an 
essential part of car manufacturing. Most industrial robots 
work in auto assembly lines, putting cars together. In 
these environments multiple robotic arms work 
simultaneously on the same work-piece and therefore the 
system can be considered a MAL. Other examples of this 
type of assembly system are cargo ship and airplane final 
assembly   

Even though MALs are very common in real world 
assembly line production systems, only a small number of 
research papers have considered MALBPs. Dimitriadis 
(2006) introduced the MALBP and presented a heuristic 
assembly line balancing procedure to solve the problem. 
Cevikcan et al. (2009) developed a mathematical 
programming model to create assembly physical multi-
manned stations in mixed model assembly lines. They 
also presented a scheduling-based heuristic to solve the 
problem. Chang and Chang (2010) proposed a mixed-
model assembly line balancing problem with multi-

manned workstations and developed a mathematical 
model for the mixed-model assembly line balancing 
problem with simultaneous production (MALBPS) to 
obtain the optimal number of workstations. They 
presented a coding system, Four-Position Code (FPC), to 
re-code the tasks in order to tackle with this issue, and 
they also provided a computerized coding program 
written in C++ to generate those FPCs. Fattahi et al. 
(2011) developed a mathematical programming model for 
MALBP. They also proposed an ant colony meta-heuristic 
approach to solve the problem. 

In the literature of MAL usually the objective is to 
minimize the number of workers for a given cycle time or 
minimizing the idle time (Cevikcan et al. 2009; Chang 
and Chang 2010; Fattahi et al. 2011). However due to the 
high competition in the current production environment, 
reducing the production costs and increasing utilization of 
available resources are very important issues for 
manufacturing managers. Therefore developing a model 
to directly minimize the production costs is of significant 
interest. In this paper the MAL configuration is 
considered with a cost-oriented approach. Generally final 
assembly is a labour-intensive production (Amen 2006). 
In the cost-oriented approach the objective is to minimize 
the total cost per product unit (Amen 1997; Amen 2000a; 
Rosenberg and Ziegler 1992; Steffen 1997). Therefore the 
significant cost drivers should be analyzed.  

At first the labour costs are considered. The payment 
of a worker is dependent on the “job values” determined 
by the well-known work measurement systems (Amen 
2000a). In an assembly line there are tasks with different 
levels of difficulty and job values assigned to a worker. 
For each task i it is possible to consider a wage rate 
݇௧௪ , ݅ ∈ ܷܯൣ	ܫ ܷܶൗ ൧ (TU time unit, PU production unit, 
MU monetary unit) which is related directly to its job 
value. The wage rate of an operator working in a station 
along with other operators on the same work-piece, is 
determined by the most difficult task assigned to him (or 
her) i.e. the task with the highest job value. Therefore, the 
wage rate of worker l in station j is: ݇

௦௪ = max൛݇௧௪|݅ ∈
௦ܫ ൟ , ݆ = 1,2… ,ܬ ݈ = ܷܯൣ	ܥܯ…1,2 ܷܶൗ ൧ where ܫ௦  is the 
set of tasks assigned to worker l in station j and MC is the 
maximum feasible concentration of workers in each 
station. It is important to note that the wage rates are paid 
for the total cycle time and not only for the sum of 
duration of tasks performed by the worker. 

Furthermore, costs of capital should be considered. 
Examples of this kind of costs are machinery and material 
handling system e.g. conveyor. It is assumed that the costs 
of capital are directly dependent on the length of the line 
i.e. number of stations. The machinery needed to perform 
the operations can be a special machinery to perform a 
special task or a universal machinery. The number of 
special machinery can be assumed to be fixed and 
independent of assignment of tasks to the workers in the 
stations. In addition, it is assumed that all of the stations 
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need identical universal machines. Therefore the costs of 
capital for all stations are the same. 

Other costs such as costs of material are assumed to be 
independent of the length of the line or assignment of 
tasks to stations (Steffen 1977). Therefore the total costs 
per product unit k [MU/PU]	can be formulated as	݇ =
∑ ∑ ܥ × ݇

௦௪
∈∈ +݉ × ݇௦ where ݇௦ [MU/PU] is the 

total cost of capital. 
Reviewing the literature of cost-oriented assembly line 

balancing, Rosenberg and Ziegler (1992) assumed that the 
operation of a station k causes a wage rate wk per time 
unit equal to the maximum wage rate of all tasks that are 
assigned to that station. The objective is to minimize the 
aggregate wage rate over all stations, while the number of 
stations is variable. They described and evaluated priority 
rule-based heuristics, where some of the rules are 
available for SALBP-1. Amen (2000a) extended the 
problem by considering the costs of capital e.g. cost of 
machinery or transportation system. Amen (1997) 
proposed a branch and bound algorithm to solve the 
problem which applies a station-oriented construction 
method and laser search strategy. Amen (2000b) and 
Amen (2001) developed station-oriented priority rule 
based procedures with cost-oriented dynamic priority 
rules and compared them to existing ones using a large set 
of problem instances which is generated randomly. The 
new rule named “best change of idle cost” had a better 
performance than all other rules. For the same problem, 
Amen (2006) concentrated on general model formulations 
that can be solved by standard optimization tools and 
introduced several improvements to existent models. 
These models are designed for either general branch-and-
bound techniques with LP-relaxation or general implicit 
enumeration techniques. They also discussed the solution 
difficulty of the problem and showed that the “maximally-
loaded-station-rule” has to be replaced by the “two-
stations-rule”; which causes an enormous increase in 
solution difficulty compared to the time-oriented version. 
Malakooti and Kumar (1996), Malakooti (1991) and 
Malakooti (1994) considered a multi-objective ALBP 
with objectives that are based on cost and capacity. 

In this paper a cost-oriented approach is used to model 
the MAL which to the best of our knowledge hasn’t been 
considered in the literature so far. Then different 
heuristics and a GA are proposed to solve the problem 
instances of large and medium size. The parameters and 
operators of the GA are selected using DOE method. The 
rest of this paper is organized as follows: in Section 1 the 
proposed model is described and a mathematical 
formulation is developed to solve the problem. Seven 
heuristic algorithms and a GA are proposed to solve the 
problem in Sections 2 and 3 respectively. Computational 
results are presented in Section 4. Finally the main 
conclusions of the paper and suggestions for future 
research are presented in Section 5. 

2. Proposed Model and Mathematical Formulation 

In this paper the paced assembly line with multi-
manned workstations is considered which is very common 
in real world assembly lines but a small number of 
research papers have considered this type of assembly 
line. The work-piece stays at each station for a certain 
amount of time called cycle time. In each station there are 
several workers performing different tasks on the same 
work-piece. Each worker starts the tasks assigned to him 
(or her) as soon as it is technically possible. The main 
objective in this type of assembly line is to reduce the 
length of line while maintaining the effectiveness of the 
line. This type of multiple workers working on the same 
work-piece at the same time requires the work-piece to be 
of large size e.g. vehicle final assembly. Traditionally in 
simple assembly lines all of the tasks assigned to a worker 
can be performed continuously if the precedence relations 
are observed. But in multi-manned lines some tasks which 
are assigned to a worker may be delayed by the tasks 
assigned to other workers in the same workstation which 
is called unavoidable delay.  

The objective is to minimize the total cost per 
production unit and the decisions involved in cost-
oriented MALBP include the followings: (1) first how 
many workers should be assigned to each station then (2) 
which tasks to be performed by which worker. The 
notations used in the mathematical model is presented in  

 
Table 1 
Notations used in the mathematical model 
i, h task 
j station 
l worker 
I Set of tasks 
L Set of workers 
J Set of workstations 

*
i iP ( P )

 

Set	of	direct	(all)	predecessors	of	task	݅ 

*
i iF ( F )

 

Set	of	direct	(all)	successors	of	task	݅ 

C Cycle time (ܷܶ ⁄ ܷܲ) 
m Number of stations 
M A big positive number 
MC Maximum concentration of workers in a station 
N Number of tasks 

t
id

 
Duration of task i when there are k workers in the station 
(TU) 

sck
 

Cost of capital per station (ܷܯ ⁄ ܷܲ) 
sw
jlk

 
Wage rate of worker l in station j. (ܷܯ ⁄ ܷܶ) 

tw
ik

 Wage rate of task i. (ܷܯ ⁄ ܷܶ) 

ݔ ∈ {0,1} Equals	1	if	task	݅	is	assigned	to	worker	݈	in	station	݆. 

ݕ ∈ {0,1} 
Equals	to	1	if	task	i	and	h	is	assigned	to	the	same	worker
and	task	݅	is	performed	earlier	than	task	ℎ. 

sti Start	time	of	task	݅ 
The problem under consideration is formulated as 
follows:
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sc sw
Njl jl

j J l L l L j J
Min J×x k k C

   

   
     

   
    (1) 

1ijl
j J l L

x
 

  i I   (2) 

hjl ijl
j J l L j J l L

J×x J×x
   

   
ii I, h P    (3) 

t
i ist d C   i I,j J    (4) 

1 1 t
i h hjl hjl h

l L l L
st st M x M x d

 

             
   

 
 

ii I , h P , j J     (5) 

1 1

1
h i hjl ijl

t
ih i

st st M ( x ) M ( x )

M ( y ) d  

       

    * *
i i

i I,j J , l L
h { r|r I-(P F ) i<r}
   

   
 

(6) 

1 1i h hjl ijl

t
ih h

st st M ( x ) M ( x )

M ( y ) d  

      

    * *
i i

i I,j J , l L
h { r|r I-(P F ) i<r}
   

   
 (7) 

1ij ,l ijl
i I i I

x N x
 

  
 

j J,l L    (8) 

tw sw
i ijl jlk x k   i I , j J,l L     (9) 

0ist    i I   (10) 

0sw
jlk   

j J,l L    (11) 

ݔ ∈ {0,1} i I,j J,l L     (12) 

ݕ ∈ {0,1} * *
i i

i I
h { r | r I ( P F ) i<r}
 

    
 (13) 

In this formulation, equation (1) indicates the 
objective function should to be minimized which is the 
total cost per production unit. The first term presents the 
cost of capital which equals to the number of stations 
multiplied by kୱୡ (cost of capital per station). It is 
assumed that the task N is successor of all of the tasks in 
the precedence graph; if that’s not the case a fictitious 
task with zero duration and wage rate must be considered. 
Therefore task N is always assigned to the last station. 
The second term in equation (1) presents the costs of 
labour which is the sum of wage rates of all workers in all 
stations multiplied by cycle time. Constraint (2) implies 
that each task i must be assigned to exactly one worker in 
one station. Constraint (3) ensures that precedence 
relations are observed. Equation (4) implies that all tasks 
must be finished before the cycle time. Equation (5) 
indicates that if task h is a direct predecessor of task i and 
they both assigned to the same station then starting time 
of task i must be greater than or equal to the finish time of 
task h. Constraint pair (6) and (7) is disjunctive for large 
enough values of M. This means that only one of them is 
active at the same time. Only when tasks i and h don’t 
have any precedence relation and are both assigned to the 
same worker in the same station they become active. If 
yih=0 equation (6) becomes redundant and equation (7) 

implies that	st୧ ≥ st୦ + d୦୲  implying that task i must be 
scheduled after task h. On the other hand if yih=1 
equation (7) becomes redundant and equation (6) implies 
that	st୦ ≥ st୧ + d୧୲ indicating that task h must be 
scheduled after task i. Constraint (8) indicates that in each 
station, workers are used in an increasing order of their 
indexes. Equation (9) implies that among all tasks 
assigned to worker l in station j the maximum wage rate is 
set to be the wage rate of the worker. Equations (10) and 
(11) ensure that start times and wage rates are non-
negative. Equations (12) and (13) indicate that xijl and yih 
are binary variables. 

3. Heuristic Algorithms Developed 

Since the traditional cost oriented assembly line 
balancing problem is NP-hard (Amen 2000a; Rosenberg 
and Ziegler 1992) and the problem considered here is a 
generalization of it, the problem considered in this paper 
is also NP-hard. In other words by setting L=1 and 

0sck  , the problem under consideration is reduced to 
the well-known cost oriented assembly line balancing 
problem which is NP-hard, therefore the considered 
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problem is also NP-hard. Therefore it is justified to 
develop heuristic algorithms to obtain good solutions in a 
computational time short enough to be applied in 
industrial real instances. 
In this paper seven priority rule based heuristic algorithms 
are presented to solve the problem under consideration. 
These rules are as follows: 

 Max_D: maximum task duration (Tonge 1965). 
 Max_R: maximum ranked positional weight 

which is ݉ܽݎ}ݔ|݅ ∈  where {ܫ

ݎ = ቊ
݀௧ +∑ ݎ 	, ܨ	݂݅ ≠ ∅∈ி
݀௧ ܨ	݂݅																						 ≠ ∅

  (Hahn 1972; 

Helgeson and Birnie 1961). 
 Max_F: maximum number of immediate 

followers in the precedence graph (Tonge 1965). 
 Max_Kt: maximum cost rate (Rosenberg and 

Ziegler 1992). 
 Min_Kt: minimum cost rate (Steffen 1977). 
 Min_Kts: minimal absolute difference to the 

workers current cost rate i.e. 
݉݅݊൛|݇௧ − ݇

௦௪|ห݅ ∈  ൟ. This rule is aܫ
modification of the rule proposed by Steffen 
(1977). 

 Min_Ki: best change of idle cost i.e. 
݉݅݊{∆݇|݅ ∈  where ;{ܫ

∆݇ = ቊ
−݀௧݇௧ ,																														݂݅	݇௧ ≤ ݇

௦௪

൫݇௧ − ݇
௦௪൯ܥ − ݀௧݇௧ ,			݂݅	݇௧ > ݇

௦௪  . 

This rule is a modification of the rule proposed 
by Amen (2000b). 

The first five rules are static; this means that the 
priority of tasks doesn’t change throughout building a 
solution. All of the static rules use a main procedure to 
assign tasks to workers in each station. This procedure is 
as follows: 

Step 1: Set the current station Sc=1, and available 
tasks Avail_task= {1, 2… N}. Available tasks are the 
tasks that haven’t been assigned to any worker in any 
station.  

Step 2: Set the number of workers in the station Wn=1 
and number of Tc=0. 

Step 3: Among tasks of Avail_task, ones that are 
assignable to station Sc, select the task with the highest 
priority, according to one of the priority rules which will 
be presented later in this section. Assign it to the worker 
that starts the task earlier ties are broken in favor of the 
worker that is not idle i.e. assigning the task to the worker 
does not lead to unavoidable idle times. The final tie 
breaker is the index of the worker and the worker with 
lower index has more priority than the one with higher 
index. Delete the task from Avail_task then set Tc=Tc+1. 
If the selected worker is empty then set Wn=Wn+1. 

Repeat this step until there is no task assignable to station 
Sc. Then go to step 4. A task is assignable to a station if it 
has no predecessor in Avail_task and assigning it to the 
station doesn’t violate the cycle time constraint. 
Step 4: A station Wn number of workers is completed. If 
Avail_task is empty end the procedure, otherwise set 
Sc=Sc+1 and go to step 2. 

The last two rules are dynamic and the priority of 
tasks may change throughout building a solution. These 
rules are also dependent on the worker to whom the task 
is assigned. Therefore another procedure is needed to 
build a solution with these rules. This procedure is as 
follows: 
 Step 1: Set the current station Sc=1, and available tasks 
Avail_task= {1, 2… N}. Available tasks are the tasks that 
haven’t been assigned to any worker in any station.  

Step 2: Set the number of workers in the station Wn=1 and 
number of Tc=0. 

Step 3: Among tasks of Avail_task, ones that are 
assignable to station Sc, select the task with the highest 
priority. This involves selecting a pair (݅, ݈) of task i and 
worker l which has the highest priority. Ties are broken in 
favor of the pairs that don’t create idle times; second level 
ties are broken in favor of lower worker indexes. Finally 
the third level ties are broken in favor of lower task 
indexes. Delete the task from Avail_task then set 
Tc=Tc+1. If the selected worker is empty then set 
Wn=Wn+1. Repeat this step until there is no task 
assignable to station Sc. Then go to step 4. A task is 
assignable to a station if it has no predecessor in 
Avail_task and assigning it to the station doesn’t violate 
the cycle time constraint. 

Step 4: A station Wn number of workers is completed. 
If Avail_task is empty end the procedure, otherwise set 
Sc=Sc+1 and go to step 2. 

Therefore five static and two dynamic rules are 
presented in this section to solve the problem. In the next 
section a genetic algorithm is proposed. 

4. Proposed GA  

Genetic algorithm is a strong meta-heuristic used in 
many combinatorial optimization problems. Many 
researches have successfully used genetic algorithm to 
solve generalized assembly line balancing problem among 
who we can mention (Akpinar and Bayhan 2011; Yolmeh 
and Kianfar 2012). In a GA every individual (or 
chromosome) is encoded by a structure that represents its 
properties, a population of individuals are produced and 
then each individual in the populations is evaluated and a 
fitness value is assigned to it. This value represents 
quality of the individual i.e. the higher fitness value, the 
better solution. Afterwards on the basis of a selection 
method, a set of individuals are selected as parents for 
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crossover and mutation to produce a new population. This 
process, which is called generation, is iterated until 
stopping criteria are met. The elements of the proposed 
GA are described in the following sections. 

4.1. Solution encoding  and initial population 

In the proposed GA, an individual is represented by a 
permutation of tasks that shows the relative priority 
among tasks. In other words the leftmost task in the 
permutation has the highest priority and the rightmost task 
has the lowest priority. Fig. 1 shows an example of this 
representation. As it can be seen from this figure task 5 
has the highest priority among all tasks, task 6 has the 
second high priority and task 7 has the least priority. It is 
important to note that since the chromosomes only 
determine the priority of tasks, observing the precedence 
constraints is not necessary. In other words the order in 
which the tasks appear in the chromosome is not 
necessarily the order in which they are assigned to the 
workers in the stations. 

 

Fig. 1 an example of solution representation 

To evaluate an individual, using the first procedure 
described in Section 2, a solution is created and the 
corresponding cost is computed. In simple Gas, initial 
population is generated randomly, but in improved Gas, 
the result of some heuristic or meta-heuristics is added to 
the initial population. Generally, adding the results of 
other heuristic or meta-heuristics, genetic algorithms 
could obtain better solutions in a shorter time and with 
better convergence speed. Two alternatives are considered 
for the initial population: (1) the whole population is 
generated randomly, (2) all of the priority rule based 
heuristics proposed in Section 2 is added to the initial 
population. 

4.2. Selection mechanism and replacement 

In this paper, the Roulette wheel method  is used for 
selection procedure(Sivanandam and Deepa 2008). 
Applying crossover and mutation operators may result in 
losing the best known solution so far. To avoid this issue, 
a percentage of best solutions in the current population are 
directly transferred to the next population, this process is 
called replacement. By applying replacement procedure, 
the best solutions of the new population will not be worse 
than that of previous populations. In this paper, 10 percent 
of the best individuals in the current population are 
directly transferred to the next population. 

4.3. Crossover  

Crossover takes two parents and combines their 
characteristics to produce an offspring.  Therefore the 
resulting child will inherit its characteristics from the 
parents. Crossover operator is applied to the mating pool 
with the hope of creating a better child. In the proposed 
GA, three types of crossover methods are considered. The 
first considered operator is called “OX or ordered 
crossover”; the second and third ones are proposed by 
Ruiz et al. (2005) and are called “similar job order 
crossover” or SJOX and “similar block order crossover” 
or SBOX, respectively. These crossover operators were 
used in the flow shop and single machine scheduling 
problems (Bahalke et al. 2010; Ruiz et al. 2005).  

4.4. Mutation 

After crossover process, the chromosomes are 
subjected to mutation. Mutation prevents the algorithm to 
be trapped in a local optimum. Mutation plays an 
important role in searching the whole search space by 
introducing unexplored areas. Mutation is considered as a 
background operator to maintain diversity in the 
population. In this paper three well-known types of 
mutation operators are used: 

 Scramble mutation: two positions are selected 
randomly and the tasks between these positions 
are rebuilt randomly.  

 Swap mutation: two tasks are selected randomly 
and swap their positions. 

 Shift mutation: a randomly selected task is 
relocated to a randomly selected position and the 
tasks between these two positions move along. 

1.1. Restart scheme 

In GA after some iteration, the population diversity 
may be sufficiently low to converge to a local optimum. 
To avoid this drawback a process which is called restart 
scheme is used. This method has been used  for flow shop 
and single machine scheduling problems(Bahalke et al. 
2010; Ruiz et al. 2005; Ruiz et al. 2006; Vallada and Ruiz 
2010) . In this process if the best known solution so far 
has not improved for Gr consecutive generations, the 
whole population is reproduced. The restart scheme 
applied in this paper works as follows: 

1) Set	ݐ݊ݑܥ = 0. 
2) In each iteration I store the minimum cost: ݐݏܥ  
3) If ݐݏܥ = ݐ݊ݑܥ ିଵ thenݐݏܥ = ݐ݊ݑܥ + 1  else 

set count=0. 
4) If ݐ݊ݑܥ >   :  do the followingsܩ
 Sort the population in ascending order of cost. 
 Skip the first 20% of the population. 
 50% of the population is produced by doing 

scramble mutation on the first 20% best 
chromosomes. 
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 The remaining 30% of the population is generated 
randomly. 

4.5. Selecting the parameters and operators of GA 

In this section the parameters and operators of the GA 
are selected using the design of experiments (DOE) 
method. DOE is a structured method that determines the 
relationship between the factors that affect output of a 
process. In order to calibrate the algorithm, a full factorial 
design is chosen i.e. all possible combinations of the 
following factors are tested: 

 Initial population (Init_pop): 2 levels (using the 
results of other heuristic or not). 

 Population size (Pool_size): 3 levels (20, 40 And 
60). 

 Crossover operator (Cross_type): 3 levels (OX, 
SJOX and SBOX). 

 Mutation operator (Mut_type): 3 levels 
(scramble, swap and shift). 

 Mutation probability (Mut_prob): 3 levels (0.05, 
0.1 and 0.15). 

 Gr in the restart scheme (Gr): 3 levels (5, 10 and 
M). 

All of the above mentioned factors result in 2 × 3 ×
3 × 3 × 3 × 3 = 486	different combinations and thus 486 
different genetic algorithms. The following procedure is 
applied to produce problem instances. First, the 
precedence network (i.e., precedence graph) with the 
desired network density (i.e. order strength) is produced 
using a problem generator (Gehrlein 1986). Only the 
precedence graphs with network densities that fall within 
the target range of	±0.05 are selected and processing 
times and wage rates of the workers are randomly 
generated for each task using a discrete uniform 
distribution with minimum and maximum values of 5 and 
30, respectively. Cycle time is randomly selected from 
one of the values 30, 45 and 60. Finally the maximum 
concentration of workers is randomly selected between 
values 3, 4 and 5. To produce a problem set following 
three levels of N (number of tasks) and OS (order 
strength) are considered. 

 N: 10, 30 and 50. 
 OS: 0.25, 0.5 and 0.75. 

For each level of N and OS two instances are 
generated. Therefore a total of 18 (3 × 3 × 2)	instances 
are generated. The stopping criterion for the GA is set to a 
CPU time limit of 200 × ܰ	milliseconds. The algorithm is 
coded in C language and runs on a personal computer 
with Intel Pentium dual processor 2.2 GHz and 2 GB of 
RAM. The response variable for this experiment is 
calculated as follows: 

(ܦܴ)	݊݅ݐܽ݅ݒ݁݀	݁ݒ݅ݐ݈ܴܽ݁ =
ℎ݉௦ݐ݅ݎ݈݃ܣ − ܤܮ

ܤܮ 				(14) 

Where ݐ݅ݎ݈݃ܣℎ݉௦ is the solution obtained by a 
given algorithm on a given instance, LB is the lower 
bound for the instance. To calculate a lower bound on the 
total costs, lower bounds on the costs of capital and the 
costs of labor are needed. At first the lower bound for the 
costs of capital is explained. To calculate a lower bound 
on the costs of capital a lower bound on the number of 
stations is needed. It is assumed that the first task in the 
precedence graph is predecessor of all other tasks. 
Similarly it is assumed that the last task in the graph is 
successor of all of the other tasks. If there is no such 
tasks, fictitious tasks is to be considered. To obtain a 
lower bound on the number of stations, the longest path, 
also called critical path, from the first task to the last task 
is considered. The length of this path is a lower bound on 
the time needed to produce one commodity, lessening or 
increasing the number of workers in each station does not 
change this value. Thus, the formulation for lower bound 
is: 

௦௧௧ܤܮ = ቜ
∑ ௧	∈௧ݐ

ܥ
ቝ																																					(15) 

Therefore a lower bound on the costs of capital is 
obtained using the following formulation: 
௦௧	௧ܤܮ = ௦௧௧ܤܮ × ݇௦																																					(16) 

To obtain a lower bound on the costs of labor at first a 
lower bound on the number of workers is calculated using 
the formulation: [16]. 

௪ܤܮ = ቜ
∑ ∈ூݐ

ܥ
ቝ																																																									(17) 

Therefore at least ܤܮ௪ workers are needed. The 
lower bound on the costs of labor can be computed using 
the following formulation: 
௦௧	ܤܮ = ܥ  (18)																																																	ܴܹܯ×

In this formulation ܴܹܯ	is the sum of ܤܮ௪ 
smallest wage rate values. Therefore the lower bound on 
the costs of production is computed using the following 
formula: 
ܤܮ = ௦௧	௧ܤܮ + ௦௧	ܤܮ 																																			(19) 

The experiment was analyzed by means of a 
multifactor ANOVA technique. For results of ANOVA to 
be valid three hypotheses should be checked: normality, 
homoskedasticity and independence of residuals. The 
resultant residuals from the experimental data were 
analyzed and all three hypotheses were valid. Table 1 
shows the results of ANOVA for this experiment, all 
interactions of more than two factors have been ignored as 
their F value was too small. 

 In ANOVA if the p-value is less than the considered 
significance level	ߙ, different levels of the corresponding 
factor have a significant effect on the response variable. 
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In this study the significance level ߙ is assumed to be 
0.05. Since p-values in the table are very small and close 
to zero, the analyses are made on the basis of F-ratio. F-
ratio is the ratio between the variance explained by a 
factor and unexplained variance, the greater this value the 
more effect of the factor on the response variable. The 
procedure of selecting operators and parameters for GA is 
as follows: starting from the greatest F-ratio for a factor or 
interaction, the preferred level is selected for the 
corresponding factor. Then the next factor with the 
maximum value of F-ratio is considered and the same 
process is applied, this procedure is repeated until suitable 
levels for all factors are selected. 

 As it can be seen in Table 2, the two problem 
dependent factors, N and OS, have the greatest values of 
F-ratio. This is expected, because as the size and order 
strength increases, difficulty of the instance increases and 
this leads to more deviation from the lower bound. The 
next value of F-ratio corresponds to crossover type 
(Cross_type), as it can be seen from the main effects plot 

in Fig. 2 the desired level for this factor is 3, which 
corresponds to the SBOX crossover. The third greatest 
value of F-ratio corresponds to population size and as it 
can be seen from the main effects plot in Fig. 2 the 
desired level for population size is 3 which corresponds to 
a population size of 60, applying this procedure to all 
factors, using the main effects plot presented in Fig. 2, 
and the interaction plot in Fig. 3, the following levels are 
obtained: 

 Initial population (Init_pop): using the results of 
other heuristic. 

 Population size (Pool_size): 60. 
 Crossover operator (Cross_type): SBOX. 
 Mutation operator (Mut_type): shift mutation. 
 Mutation probability (Mut_prob): 0.15. 
 Gr in the restart scheme (Gr): 10. 

 

Table 1 
 Results of ANOVA for the GA 

Source DF Seq SS Adj SS Adj MS F P 
N 2 44.2303 44.2303 22.1152 8104.37 0 

OS 2 7.073 7.073 3.5365 1295.99 0 
Cross_type 2 1.5717 1.5717 0.7859 287.98 0 
Mut_type 2 0.007 0.007 0.0035 1.29 0.275 
Pool_size 2 0.3274 0.3274 0.1637 60 0 
Mut_prob 2 0.0122 0.0122 0.0061 2.23 0.108 
Init_pop 1 0.0467 0.0467 0.0467 17.12 0 

Gr 2 0.0501 0.0501 0.0251 9.18 0 
Cross_type*Mut_type 4 0.0621 0.0621 0.0155 5.69 0 
Cross_type*Pool_size 4 0.0344 0.0344 0.0086 3.15 0.014 
Cross_type*Mut_prob 4 0.0032 0.0032 0.0008 0.29 0.883 
Cross_type*Init_pop 2 0.0028 0.0028 0.0014 0.52 0.595 

Cross_type*Gr 4 0.0016 0.0016 0.0004 0.15 0.965 
Mut_type*Pool_size 4 0.0526 0.0526 0.0132 4.82 0.001 
Mut_type*Mut_prob 4 0.0023 0.0023 0.0006 0.21 0.933 
Mut_type*Init_pop 2 0.0007 0.0007 0.0004 0.13 0.878 

Mut_type*Gr 4 0.002 0.002 0.0005 0.18 0.949 
Pool_size*Mut_prob 4 0.002 0.002 0.0005 0.18 0.947 
Pool_size*Init_pop 2 0.0013 0.0013 0.0007 0.24 0.784 

Pool_size*Gr 4 0.0073 0.0073 0.0018 0.67 0.615 
Mut_prob*Init_pop 2 0.0011 0.0011 0.0006 0.21 0.814 

Mut_prob*Gr 4 0.0011 0.0011 0.0003 0.1 0.981 
Init_pop*Gr 2 0.0033 0.0033 0.0016 0.6 0.551 
S=0.052238 R-Sq=97.35% R-Sq(Adj)=97.28% 
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Fig. 2. Main effects plot for the GA 
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Fig. 3. Interaction plot between Cross_type and Mut_type factors 

5. Computational Results 

In this section computational experiments are 
presented. All of the algorithms are coded in C language 
and runs on a personal computer with Intel Pentium dual 
processor 2.2 GHz and 2 GB of RAM. Parameters and 
operators of the GA are selected according to the results 
obtained in Section 3.6. The stopping criterion when 
testing algorithms with instance is set to a CPU time limit 
of 200 × ܰ milliseconds. 

In the first experiment the motivation is comparing the 
cost-oriented model with the traditional time-oriented 
model. Therefore an example is presented and solved with 
both time-oriented and cost-oriented approaches. The 
precedence graph and task times for this example are 
taken from the well-known instance of Mertens which is 
available at www.assembly-line-balancing.de. In the time 
oriented model at first the number of workers is 
minimized as the primary objective and then the number 
of stations is minimized as the secondary objective. The 
precedence graph of this example with duration and wage 
rate of tasks is shown in Fig. 4. The cycle time and 
maximum feasible worker concentration in each station 
for this instance is assumed to be 8 and 3 respectively. 
Also total cost of capital per station	(kୱୡ) is assumed to be 
equal to 5. 
Optimum solutions for cost-oriented and time-oriented 
versions of this problem are presented in Figures 5 and 6 
respectively. In these figures for each task, starting time 
and finishing time are shown alongside its bar. Shaded 
rectangles designate idle time at the end of the cycle time. 

 

Fig. 4. example of a problem instance 

Table 3 shows the cost calculations for the optimal 
solutions obtained by time-oriented and cost-oriented 
approaches. As seen from this table a total of 199 
monetary units are needed to produce one production unit 
are being used in the traditional line balancing model, 
while this number could be reduced to 183 with the 
proposed model. Thus, 16 monetary units are saved. 
Besides, the required number of workers and stations are 
calculated as 5 and 3 respectively. These numbers are the 
same with the ones obtained by the time-oriented model, 
which means that the solution is also optimal in terms of 
number of workers and stations. Consequently, the 
solution is the best in terms of the total cost, and while 
reaching this best, the best number of stations and 
workers are also achieved. 

In the second experiment the performance of the 
proposed algorithms is illustrated. To do so, each of the 
25 different precedence graphs available at 
www.assembly-line-balancing.de is used to generate an 
instance. For each task in each instance the wage rate of 
task i is assumed to be: k୧୲୵ = dାଵି୧୲  . The cycle time is 
generated randomly between maximum task time tmax 
and 2* tmax. The cost of capital for each station is 
assumed to be: 	kୱୡ = ୡమ

ଶ
. Each instance is solved by the 

proposed algorithms (the GA is run once for each 
instance) and the relative deviation is computed using 
equation (1) in Section 3.6. The results are presented in 
Fig. 7.  
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Fig. 5. The optimum solution for cost-oriented approach  

 

Fig. 6. The optimum solution for time-oriented approach 

 
Table 2  
Optimal solutions to the example 

Station Worker Time-oriented optimal 
solution  Cost-oriented optimal 

solution 
j l ܫ௦  ݇

௦௪  ܫ௦  ݇
௦௪ 

1 1 {1,2} 6  {1,2} 6 
2 1 {5} 4  {5} 4 
 2 {4,7} 3  {3,4} 5 
3 1 {6} 5  {6} 5 
 2 {3} 5  {7} 1 

 ݇
௦௪

∈∈

  23   21 

m  3   3 

݇ =ܥ × ݇
௦௪

∈∈

+ ݉× ݇௦  199   183 

 

 

Fig. 7 performance of the proposed heuristic methods 
As seen in Fig. 7 the two dynamic priority rules, 

Min_Kts and Min_Ki, have a better overall performance 
comparing to other priority rules. This highlights the 
importance of considering the current cost rate of the 
workers while building the solution. Furthermore, as 
expected, the GA performs significantly better than other 
algorithms. This provides the motivation to perform a 

final experiment to illustrate the performance of the 
proposed GA and provide a background to compare the 
results of the GA with other future algorithms. For this 
experiment another data set is generated using a selection 
of well-known instances for SALBP-1. In order to 
facilitate comparison of the proposed algorithm with other 
future algorithms, the wage rates for each task: ݇௧௪ =

0

0.5

1

1.5

2

2.5

3

3.5

4

٢ ١١ ٩ ٧۵ ٣٢ ٢٩ ۴۵ ۵٧ ٨۵ ٩ ٨٩۴ ١۴٢٩٧ ٨ 

Re
la

tiv
e 

de
vi

at
io

n 

Number of tasks 

Max_D

Max_R

Max_F

Max_Kt

Min_kt

Min_Kts

Min_Ki

GA

Abolfazl Kazemi et al./ A Cost-oriented Model for Multi-manned...

22



݀ேାଵି௧  and cost of capital for each station is set to 
be:	݇௦ = మ

ଶ
. For each instance the GA is run for 5 

iterations and the average cost and the computed lower 
bound for the instance are reported in Table 4. The 
optimum numbers of stations for Mertens, Bowman and 

JAESCHKE examples are obtained by solving the 
mathematical model using Lingo 11. For these instances 
the optimum solutions found by the GA are marked with a 
star. For other examples a lower bound is computed using 
equation (6) in Section 5.4.  

 
Table 3  
Results of the GA for a selection of well-known instances 

Author Tasks Cycle 
time 

Optimal 
number of 
stations for 

SALBP 

Optimal 
number of 

stations and 
workers (or a 

lower bound of 
it) 

Average 
Obtained 
number of 

stations and 
workers 

Average 
Space 

utilization 
(%) 

Optimal cost 
(or a lower 
bound of it) 

Average 
Obtained 

cost 
MC 

MERTENS 7 6 6 3,6 3,6 50.0 198 198.0* 4 
  7 5 3,5 3,5 60.0 220.5 220.5* 4 
  8 5 3,5 3,5 60.0 264 264.0* 4 
  10 3 3,3 3,3 100.0 300 300.0* 4 
  15 2 2,2 2,2 100.0 390 390.0* 3 

BOWMAN8 8 20 5 4,5 4,5 80.00 1820 1820* 4 
JAESCHKE 9 6 8 5,7 6,8 75.0 306 306.0* 4 

  7 7 6,7 6,7 85.7 371 371.0* 4 
  8 6 5,6 5,6 83.3 368 368.0* 4 
  10 4 3,5 3,5 60.0 360 360.0* 4 
  18 3 2,3 2,3 66.7 540 540.0* 4 

JACKSON 11 7 8 4,7 5,9 55.6 250 409.5 4 
  9 6 3,6 3,7 42.9 273 409.5 4 
  10 5 3,5 3,7 42.9 270 470.0 4 
  13 4 2,4 2,6 33.3 272 533.0 4 
  14 4 2,4 2,6 33.3 308 588.0 4 

MANSOOR 11 48 4 2,4 3,5.5 54.5 3456 7776.0 4 
  62 3 2,3 2,4 50.0 4712 9362.0 4 
  94 2 1,2 1,3 33.3 4982 10152.0 4 

MITCHELL 21 14 8 6,8 6,10 60.0 854 1526.0 4 
  15 8 5,7 6,10 60.0 800 1680.0 4 
  21 5 4,5 4,8 50.0 1090 1890.0 4 
  26 5 3,5 3,6.5 46.2 1274 2223.0 4 
  35 3 3,3 3,4 75.0 1976 2957.5 3 

HESKIA 28 138 8 4,8 4,10.5 38.1 43056 104397.0 4 
  205 5 3,5 3,8 37.5 65906 139810.5 4 
  216 5 3,5 2,8 25.0 73008 129924.0 4 
  256 4 2,4 2,7 28.6 67840 153344.0 4 
  324 4 2,4 2,6 33.3 107892 193104.0 4 

SAWYER30 30 25 14 4,13 7,18 38.9 2973 7225.0 6 
  27 13 4,12 6.5,15 43.3 3076 7431.8 5 
  30 12 4,11 6,14 42.9 3330 7950.0 5 
  33 11 3,10 6,14 42.9 3051 8761.5 5 
  36 10 3,9 6,13 46.2 3240 9486.0 5 

KILBRID 45 56 10 3,10 3.5,14.5 24.1 7000 19852.0 6 
  57 10 3,10 3,14.5 20.7 7209 20491.5 6 
  62 9 3,9 3,13 23.1 7998 21328.0 5 
  69 8 2,8 2.5,11.5 21.7 6899 21786.8 5 
  79 7 2,7 2.5,11 22.7 8294 25023.3 5 

TONGE70 70 160 23 8,22 8,29.5 27.1 154400 403520.0 5 
  168 22 8,21 8,30 26.7 163296 422016.0 5 
  176 21 7,20 8,28 28.6 156816 439032.0 5 
  185 20 7,19 8,27.5 29.1 166404 455192.5 5 
  195 19 7,18 7,24.5 28.6 177934 439238.0 5 

ARC83 83 3786 21 11,20 12,25 48.0 115654728 205104500.0 4 
  3985 20 11,19 12,23 52.2 123792027 210840000.0 4 
  4206 19 10,18 10,21.5 46.5 124493394 206861500.0 4 
  4454 18 10,17 10,20.5 48.8 134782494 222246000.0 4 
  4732 17 9,16 8,20 40.0 135841524 216399000.0 4 

ARC111 111 5755 27 11,27 12,39.5 30.4 192576682 599806000.0 5 
  5785 27 11,26 12,39 30.8 193597912 600683000.0 5 
  6016 26 11,25 12.5,38 32.9 208219776 649234500.0 5 
  6267 25 10,24 12,36.5 32.9 205137706 659191000.0 5 
  6540 24 10,23 12,37.5 32.0 222209580 710823000.0 5 

total     293.5,759 45.95    
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As seen in this table, GA has reached the optimum 
solution for all instances of MERTENS, BOWMAN and 
JAESCHKE (the entire instance solved to optimality 
using lingo 11). Another observation is the significant 
decrease in the number of stations in comparison to 
SALBP-1, this result in better space utilization. Space 
utilization can be defined as the proportion of one station 
used by one worker and can be calculated by the 
following equation [16, 18]:  

݂ = 
௧௪

             (7) 

 In this equation f is the space utilization factor, m is 
the number of stations and tw is the number of workers. 
This factor ranges between 1 and	1/ݓݐ and is of special 
importance if there are space constraints in the production 
floor which may happen because of the building design or 
redesigning the line to produce a new product. 
The multi-manned system results in a shorter physical line 
length and improves the space utilization. Because in this 
system the same number of workers can be allocate to 
fewer stations comparing to the traditional approach. In 
Table 3, in many instances the space utilization factor has 
improved and for all examples the average space 
utilization factor is 45.95 percent. This means that the 
required space has reduced to 45.95 percent of its 
previous value for the traditional approach.  

6. Conclusions and Future Research 

MALs are a new type of lines in which there can be 
more than one worker in each station working on the 
same work-piece. This type of line is very common in 
manufacturing of large-sized products e.g. vehicle final 
assembly. MALs have several advantages over the 
traditional lines which include reducing the length of the 
line and better utilization of the tools and machinery in 
stations. On the other hand this type of lines results in 
reducing the work in process and throughput time which 
is of high priority for production managers. 

In the classical MALBP the objective is to minimize 
the manpower needed to manufacture one product unit. 
Apart from the manpower, other cost drivers like wage 
rates or machinery are neglected in this classical view of 
the problem. But due to the high competition in the 
current production environment, reducing the production 
costs and increasing utilization of available resources are 
very important issues for manufacturing managers.  

Although minimizing the costs of production is of 
major importance in practice, there has not been sufficient 
consideration in the literature of MAL. In this paper the 
MALBP was considered with the aim of minimizing the 
total costs of one production unit. For this aim a 
mathematical formulation was presented. Furthermore, in 
order to be able to solve the medium- and large-size 
scales of the problem, several heuristics and a GA were 
proposed. Several examples were solved to show the 

effectiveness of the proposed model and proposed 
algorithms. 

However, since the tasks are performed by human 
being, it is reasonable to assume task times be stochastic. 
Therefore the current research can be extended to the 
stochastic environments in MALs and incompletion costs 
can be additionally considered. Also developing other 
heuristic or meta-heuristics such as Tabu search or ant 
colony optimization to solve the introduced model are 
recommended for future research in this area. 
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