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Abstract 

In this paper, we aim to overcome three major shortcomings of the FDH (Free Disposal Hull) directional distance function through 
developing two new, named Linear and Fractional CDFDH, complete FDH measures of efficiency. To accomplish this, we integrate the 
concepts of similarity and FDH directional distance function. We prove that the proposed measures are translation invariant and unit 
invariant. In addition, we present effective enumeration algorithms to compute them. Our proposed measures have several practical 
advantages such as: (a) providing closest Pareto-efficient observed targets (b) incorporating the decision maker’s preference information 
into efficiency analysis and (c) being flexible in computer programming. We illustrate the newly developed approach with a real world data 
set. 
Keywords: DEA, FDH, Efficiency, Closest Target, FDH Directional Distance Function.

1. Introduction 

Data envelopment analysis (DEA), originally developed 
by Charnes et al. (1978) and later extended by Banker et al. 
(1984), is a non-parametric linear programming-based 
method to evaluate the relative efficiency of a set of 
homogeneous decision making units (DMUs). The relative 
comparison in DEA is made with reference to a production 
possibility set (PPS) constructed from the set of observed 
DMUs by assuming several postulates. One of the assumed 
postulates in constructing the conventional DEA PPSs is the 
convexity assumption. Therefore, in evaluating a given 
inefficient DMU by the conventional DEA models, the 
obtained projection point may be a virtual activity (i.e., be an 
unobserved DMU). However, in most practical applications, 
virtual activities may have not actual existence. In such 
cases, the production technology does not satisfy the 
convexity assumption and, therefore, assuming it is 
meaningless. By relaxing the convexity assumption, Deprins 
et al. (1984) proposed an extension of the conventional 
technologies, called Free Disposal Hull (FDH) non-convex 
technology. One approach for computing the value of FDH 
measures is using the common mixed integer linear 
programming (MILP) techniques. However, solving an 
MILP is not efficient, from computational point of view. 
Thus, Tulkens (1993) presented effective enumeration 
algorithms, based on vector dominance reasoning, to  

 

 
 
 
 

compute the traditional input and output efficiency measures 
developed by Farrell (1957). Up to now, many papers in 
DEA literature have been published studying the FDH 
approach from both application and theoretical perspectives. 
Some articles relating to the application of the FDH models 
are Ruiz-Torres and Lopez (2004), Ching-Kuo (2007), Amin 
and Hosseini Shirvani (2009), Witte et al. (2010), Halkos and 
Tzeremes (2010), Blancard et al. (2011) and Alimardani et 
al. (2012). The theoretical aspect of the FDH approach has 
been also explored in Kerstens and Vanden Eeckaut (1999), 
Thrall (1999), Cherchye et al.(2000), Agrell and Tind (2001), 
Cherchye et al. (2001), Leleu (2006, 2009), Keshvari and 
Dehghan Hardoroudi (2008) and Alirezaee and Khanjani 
Shiraz (2010). Among the previous researchers, Cherchye et 
al. (2001) using the directional distance function, recently 
introduced by Chambers et al. (1996; 1998), developed the 
FDH directional distance function (we call it DFDH) to 
estimate the FDH technical inefficiency. They, further, by 
extending the Tulkens’s (1993) algorithms presented an 
enumeration algorithm for computing the FDH inefficiency 
of DMUs. As we point out in this paper, the DFDH suffers 
from a number of major shortcomings including 
(i) Not providing an efficiency score for the DMU under 

evaluation. 
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(ii) Dealing only with proportionate improvements in 
data and, thus, not taking account the non-zero slacks as 
sources of inefficiency. 

As well as the efficiency score, as a practical outcome, 
the most powerful piece of the obtained information by a 
DEA analysis is the set of Pareto-efficient projection points 
for the DMU under evaluation. The coordinates of a 
projection point can be interpreted as the “target” levels of 
operation of inputs and outputs. The obtained targets give an 
indication of how improving the assessed DMU perform 
efficiently. Therefore, the more the assessed DMU is close to 
the targets, the less it needs practical effort to be efficient. In 
fact, this idea is the foundation of the concept of “similarity” 
specified in the DEA literature (Silva et al., 2003; Aparicio et 
al., 2007). This is justification of finding nearest targets. To 
find closest observed targets in relation to the FDH 
technology, Silva et al. (2003) proposed an approach using 
the BRZW efficiency measure (Brockett et al., 1997). The 
targets determined by the DFDH are not necessarily the 
closest observed targets whereas this property is in contrast 
with the concept of “similarity” specified in the literature. 
Therefore, the third shortcoming of the DFDH is 

(iii) Not providing closest observed target. 
The purpose of this paper is to overcome all the above-

mentioned shortcomings of the DFDH. To this purpose, at 
first we formulate two complete, named Linear and 
Fractional FDFDH, FDH models. Although these models 
take the non-zero slacks into account, the targets determined 
by them have the maximum distance from the DMU under 
assessment. Thus, modifying the presented models, we 
develop two new, named Linear and Fractional CDFDH, 
models that provide closest observed Pareto-efficient targets 
as well as efficiency scores. To determine the optimal 
solutions of the Linear and Fractional FDFDH / CDFDH 
models, we present efficient enumeration algorithms. The 
presented measures are complete, translation invariant and 
unit invariant. Our proposed models, as well as theoretical 
properties, have several practical advantages such as: (a) 
providing closest Pareto-efficient observed targets (b) taking 
the decision maker’s preference information into efficiency 
analysis and target setting and (c) being flexible in computer 
programming. 

The remainder of this paper unfolds as follows. The next 
section briefly describes the directional distance function and 
the DFDH. In Section 3, we discuss about the shortcomings 
of the DFDH and formulate the Linear and Fractional 
FDFDH / CDFDH models. In addition, we discuss the 
properties and advantages of the proposed models. Section 4 
provides two enumeration algorithms for determining the 
optimal solutions of our models. Section 5, using an 
illustrative together with an application example, sketches 
the proposed models and their properties, and compares them 
with the FDH directional distance function. Finally, 
conclusions are given in the last section. 

2. Background 

First, we introduce the necessary notations and define 
basic concepts used in this article. Throughout this paper, we 
deal with n observed DMUs, DMUj (j = 1, … , n), with m 
inputs (i = 1,… ,m) and s outputs (r = 1,… , s). The input 
and output vectors of DMUj, respectively are denoted by 
x୨ = ൫xଵ୨, … , x୫୨൯


 and y୨ = ൫yଵ୨, … , yୱ୨൯


 where x୨ ≥ 0, 

x୨ ≠ 0, y୨ ≥ 0 and y ≠ 0. Further, we consider DMUo as 
the DMU under evaluation. 

2.1 FDH Production Possibility Set 

One of the first steps in DEA, after identifying inputs and 
outputs and gathering corresponding data, is choosing an 
appropriate technology, i.e., determining the PPS. The 
PPS, T, is the set of all feasible input-output vectors is 
given by the following production technology: 
		ܶ = ,ݔ)}  (1)                                 						.{ݕ	can produce	ݔ|(ݕ
Under the preliminary assumptions of inclusion of 
observed DMUs, variable returns to scale (VRS), strong 
(free) disposability of inputs and outputs the unique non-
empty FDH technology, generated from n observed 
DMUs, DMU = ൫ݔ , ݆ ,൯ݕ = 1, … , ݊, is deduced as 
follows: 

			 ிܶு = ቊ(ݔ, (ݕ ∈ ℝஹ
ା௦ ቤ

ݔ ≥ ∑ ݔߣ
ୀଵ , ݕ ≤ ∑ ݕߣ

ୀଵ
∑ ߣ
ୀଵ = ߣ,1 ∈ {0,1},∀݆					

ቋ    (2) 

The non-convex Free Disposal Hull (FDH) technology, 
Tୈୌ, is one of the popular PPSs in DEA. The primary 
motivation in developing this technology is that linear 
combinations of the observed DMUs may be 
meaninglessness, in practical application. To remove these 
combinations, Deprins et al. (1984) developed the FDH 
technology, relaxing the convexity assumption. In is worth 
noting that, relaxing the convexity makes the FDH 
technology as tight as possible. 

2.2 The Directional Distance Function 

The directional distance function, recently introduced by 
Chambers et al. (1996, 1998), generalizes the traditional 
Shephard distance functions (Shephard, 1970), and is well 
suited to the task of providing a measure of technical 
efficiency in the full input-output space. This distance 
function projects a given input-output vector, (x, y), radially 
from itself to the frontier of PPS, T, in a pre-assigned 
direction vector g = (−gି, gା) = (−ℝ୫

ା ) × ℝୱ
ା, and is 

defined as: 

ሬሬ⃗ܦ			 ,ݔ)் ି݃−;ݕ , ݃ା) = ݔ)|ߚ}ݔܽܯ − ,ି݃ߚ ݕ + (ା݃ߚ ∈ ܶ}     (3) 

Given the technology and the direction vector, the 
directional distance function measures the maximum 
simultaneous expansion of outputs and contraction of 
inputs, along a path previously determined by the given 
direction vector. It is important to note that 
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ሬሬ⃗ܦ ,ݔ)் ,ି݃−;ݕ ݃ା) provides a complete characterization 
of the technology, i.e. 

ሬሬ⃗ܦ			 ,ݔ)் ,ି݃−;ݕ ݃ା) ≥ 0	 ,ݔ)	⟺ (ݕ ∈ ܶ                        (4) 

2.3 The FDH Directional Distance Function 

By formulating the directional distance function 
relative to (2), we have the mathematical formulation of 
the DFDH (Cherchye et al., 2001) as 

∗ߚ =     									ߚ				ݔܽܯ

.ݏ ݔߣ			.ݐ



ୀଵ

+ s୧ି = x୧୭ − βg୧ି,							݅ = 1, … ,݉, 

ߣݕ



ୀଵ

− s୰ା = y୰୭ + βg୰ା,						ݎ = 1,… ,  ,ݏ

	∑ ߣ
ୀଵ = 1,				                                                       (5) 

ߣ											 ∈ {0,1},																																								j = 1, … , n, 
											s୧ି ≥ 0, s୰ା ≥ 0,									i = 1,… ,m, r = 1,… , s. 

The above model is a mixed integer linear programming 
(MILP) problem in which the variables λ୨, j = 1, … , n, are 
binary variables. In this model, since ∑ λ୨୬

୨ୀଵ = 1 and 
λ୨ ∈ {0,1} for j = 1,… , n, only one of the binary variables λ୨ 
(j = 1,… , n) will be unit valued, while all the other 
variables will be 0 in the optimal solution. Therefore, in the 
model (5) the reference point is chosen among the existing 
DMUs instead of their combinations. In other words, the 
FDH model (5) compares the under assessment DMU with 
an observed unit. 

The model (5) can be solved via the common MILP 
techniques. However, Cherchye et al. (2001) proposed an 
enumeration algorithm to compute the optimal solution for 
(5). Their algorithm is based on an alternative equivalent 
characterization of the FDH technology that is provided 
using monotone hulls of the observed DMUs. The monotone 
hull of DMUj is defined as follows: 

(݆)ܯ		 = ൛(ݔ, ݔห(ݕ ≥ ݔ , ݕ ≤                                     (6)		ൟݕ

From this definition, the FDH technology can be 
approximated as: 

		 ிܶு = ⋃ (݆)ܯ
ୀଵ 			                                                      (7) 

Based on this approximation, the model (5) is rewritten as 

∗ߚ	 = Maxୀଵ,…, ቊMaxቊߚ ቤ
ݔ ≤ ݔ − ି݃ߚ , ݅ = 1,… ,݉
ݕ ≥ ݕ + ,ା݃ߚ ݎ = 1,… ,  ቋቋ  (8)ݏ

Since we have suppose that ݃ି > 0 and ݃ା > 0, so 
according to Cherchye et al.’s (2001) enumeration 
algorithm the optimal objective of (5) can be computed as 

∗ߚ	 = Max
ୀଵ,…,

൛ߚൟ 

ߚ	 = Minୀଵ,…,,
ୀଵ,…,௦			

൜ ଵ

ష ൫ݔ − ,൯ݔ

ଵ
ೝశ
൫ݕ − ൯ൠݕ , ∀݆ (9) 

3. Complete Directional FDH Measures of Efficiency 

As mentioned in the introductory section, the DFDH, 
(5), suffers from some serious shortcomings. In this 
section, we thoroughly discuss about these shortcomings 
and attempt to remedy them, by proposing new solution 
approaches. 

Shortcoming 1 of the DFDH: In the model (5), β∗, in 
general, cannot be interpreted as an efficiency index for any 
arbitrary direction vector. A way of avoiding this 
shortcoming is imposing one of the following primary 
conditions on the direction vector g 

Maxୀଵ,…, ൜
௫

షൠ ≤ 1                                                      (10) 

Max
ୀଵ,…,

ቊ
ݔ − ݔ
݃ି

ቋ ≤ 1, ݔ = Max
ୀଵ,…,

൛ݔൟ ,  ݔ

= Minୀଵ,…,൛ݔൟ	                                                         (11)     

which assures that ߚ∗ ≤ 1 and, thereby, 1 −  can be ∗ߚ
interpreted as an efficiency index. For example, each of 
the following direction vectors satisfies the condition 
(10): 

݃ି = ݔ , ݃ା = ݕ , ݅ = 1,… ,݉, ݎ = 1, … ,  (12)               ݏ

ቊ
݃ି = ݔ = Maxୀଵ,…,൛ݔൟ , ∀	݅,
݃ା = ݕ = Maxୀଵ,…,൛ݕൟ , ݎ	∀

	                               (13) 

In addition, the following direction vector satisfies the 
condition (11): 

ቊ
݃ି = ݔ − ݔ = Maxୀଵ,…,൛ݔൟ − Minୀଵ,…,൛ݔൟ , ∀	݅,
݃ା = ݕ − ݕ = Maxୀଵ,…,൛ݕൟ − Minୀଵ,…,൛ݕൟ , ݎ	∀

    

(14) 

3.1 Complete Furthest-Target Based Directional FDH 
Measures of Efficiency 

Shortcomings 2 of the DFDH: The model (5) radially 
(proportionately) projects the given DMU onto the frontier of 
Tୈୌ. Thus, the DFDH fails to take account the non-zero 
input and output slacks as sources of inefficiency that makes 
the projected point not to be necessarily Pareto-efficient. To 
create a visual representation, consider the FDH technology 
depicted in Fig 1. This technology is constructed by the 
Pareto-efficient, A, B, C, D, and inefficient, E and F, DMUs 
for the simplest case of single input and single output. As 
evident in the figure, maximum proportional decrease in 
input and increase in output of the inefficient unit F in the 
direction of g is achieved on M(C). By these improvements, 
the unit F is projected onto the boundary unobserved point 
F , and the efficient unit C is determined as the reference 
DMU to the unit F. However, the value of sି is not 
contributed in evaluation of the unit F.  

Relative to the radial DEA models, the non-radial ones 
have higher discriminatory power in evaluating DMUs. In 
addition, as noted by Silva et al. (2003), “the non-convex 
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nature of the FDH efficient frontier usually results in higher 
slack values than those obtained in convex technologies….” 
Therefore, developing complete efficiency measures for the 
FDH technology is particularly important. In considering 

this, we introduce the Linear and Fractional complete 
furthest-target based directional FDH, named the Linear and 
Fractional FDFDH, models as follows: 

 
 

                       Linear FDFDH 
 

߬ = 		ݔܽܯ
1
݉
ߚି


ୀଵ

+
1
ݏ
ߚା
௦

ୀଵ

 

.ݏ									 ݔߣ			.ݐ



ୀଵ

= x୧୭ − β୧ିg୧ି,							݅ = 1, … ,݉, 

																			ߣݕ



ୀଵ

= y୰୭ + β୰ାg୰ା,						ݎ = 1,… ,  ,ݏ

																			ߣ



ୀଵ

= 1, 

ߣ																			 ∈ {0,1},																																			j = 1,… , n, 
																			β୧ି ≥ 0, β୰ା ≥ 0,				i = 1, … ,m, r = 1, … , s. 

(15) 

                       Fractional FDFDH 

ிߩ = 				݊݅ܯ
1 − 1

݉∑ ିߚ
ୀଵ

1 + 1
ݏ ∑ ା௦ߚ

ୀଵ

 

.ݏ												 ݔߣ			.ݐ



ୀଵ

= x୧୭ − β୧ିg୧ି,							݅ = 1,… ,݉, 

																						ߣݕ



ୀଵ

= y୰୭ + β୰ାg୰ା,						ݎ = 1, … ,  ,ݏ

																						ߣ



ୀଵ

= 1, 

ߣ																						 ∈ {0,1},																																			j = 1, … , n, 
																						β୧ି ≥ 0, β୰ା ≥ 0,			i = 1, … ,m, r = 1, … , s 

(16) 
 

Here, the vector g represents the pre-assigned direction 
vector, which satisfies in (10) or (11). The variables, β୧ି 
(i = 1, … ,m) and β୰ା (r = 1,… , s) represent the individual 
rates of contraction and expansion in the ith input and the rth 
output of DMUo in the direction of g; also, the objective 
functions of (15) and (16) seek to jointly maximize the 
values of them.  

 
Fig 1. FDH Directional distance function 

Corresponding to the models (15) and (16), we introduce 
two efficiency indexes ߩி and ߩ. The latter index is 
defined as follows: 

ߩ	 ∶= ቂ1 − ଵ

∑ ି∗ߚ
ୀଵ ቃ × ቂ1 + ଵ

௦
∑ ା∗௦ߚ
ୀଵ ቃ

ିଵ
		           (17) 

Where ൫ߣ∗, ,∗ିߚ ,∗ାߚ ݅ = 1, … ,݉, ݎ = 1,… , ,ݏ ݆ =
1, … , ݊൯ is an optimal solution of (15). From the relations 
(10) and (11), it can be easily verified that the introduced 

indexes satisfy the property of efficiency requirement i.e., 
0 ≤ ிߩ ≤ 1 and	0 ≤ ߩ ≤ 1. That is, they are well 
defined as the efficiency measures. 
Definition1. DMUo is F-efficient (L-efficient) if and only 
if ߩி = ߩ) 	1 = 1). 
This condition is equivalent to ߚି∗ = ∗ାߚ = 0, ݅ =
1, … ,݉, ݎ = 1,… ,  in each optimal solution for the ,ݏ
model (15) and model (16). 

3.2. Complete Closest-Target Based Directional FDH 
Measures of Efficiency 

Shortcoming 3 of the DFDH: A serious drawback of the 
DFDH is that its identified target is not necessarily the 
closest target from the DMU under evaluation. However, 
from a practical viewpoint, finding closest Pareto-efficient 
targets for an inefficient DMU is of major importance. 
Because the obtained targets give an indication of how 
improving the inefficient DMU to perform efficiently; thus, 
the more the targets are close to a DMU, the less DMU needs 
practical effort to be efficient. 

As mentioned in the preceding subsection, the obtained 
targets from the Linear and Fractional FDFDH are the 
furthest ones. Therefore, these models do not remove the 
above-mentioned shortcoming. In considering this, to avoid 
this shortcoming, we modify them and introduce the Linear 
and Fractional complete closest-target based directional 
FDH, named the Linear and Fractional CDFDH, models as 
follows:

 
 

Fg

F 

x

y

A
B

C

D

E

 M C

s 
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                        Linear CDFDH 
 

߬ = 			݊݅ܯ
1
݉
ߚି


ୀଵ

+
1
ݏ
ߚା
௦

ୀଵ

 

.ݏ											 ݔߣ			.ݐ
∈ா

= x୧୭ − β୧ିg୧ି,										݅ = 1,… ,݉, 

																						ߣݕ
∈ா

= y୰୭ + β୰ାg୰ା,										ݎ = 1,… ,  ,ݏ

																						ߣ
∈ா

= 1, 

ߣ																						 ∈ {0,1},																																				j = 1,… , n, 
																						β୧ି ≥ 0, β୰ା ≥ 0,				i = 1,… ,m, r = 1,… , s. 

(18) 

                     Fractional CDFDH 

ிߩ = 				ݔܽܯ
1 − 1

݉∑ ିߚ
ୀଵ

1 + 1
ݏ ∑ ା௦ߚ

ୀଵ

 

.ݏ												 ݔߣ			.ݐ
∈ா

= x୧୭ − β୧ିg୧ି,										݅ = 1, … ,݉, 

																							ߣݕ
∈ா

= y୰୭ + β୰ାg୰ା,										ݎ = 1, … ,  ,ݏ

																							ߣ
∈ா

= 1, 

ߣ																							 ∈ {0,1},																																					j = 1,… , n, 
																					β୧ି ≥ 0, β୰ା ≥ 0,				i = 1,… ,m, r = 1,… , s. 

(19) 
 

In the above models, E is the set of all F-efficient (L-
efficient) DMUs. The guiding idea of formulating the models 
(18) and (19), to determine the closest targets, is minimizing 
the distance of the given inefficient DMUo from all the F-
efficient (L-efficient) DMUs dominating DMUo. 
Corresponding to the models (18) and (19), we introduce two 
new efficiency indices, ρେ and ρେ, where the former is 
defined as follows: 

ߩ	 ∶= ቂ1 − ଵ

∑ ି∗ߚ
ୀଵ ቃ × ቂ1 + ଵ

௦
∑ ା∗௦ߚ
ୀଵ ቃ

ିଵ
             (20) 

Similar to ߩி and ߩ, the indexes ߩி and ߩ  satisfy the 
property of efficiency requirement and can be interpreted as 
efficiency measures. Relative to these measures, we define 
the “efficiency” as follows: 
Definition 1. DMUo is said to be FC-efficient (LC-
efficient) if and only if ߩி = ߩ) 1 = 1). 
The following relationships are held among the proposed 
models: 

(R1). DMUo is F-efficient if and only if it is L-
efficient, i.e., ߩி = 1 if and only if ߩ = 1. 

(R2). DMUo is FC-efficient if and only if it is LC-
efficient, i.e., ߩி = 1  if and only if ߩ = 1. 

(R3). DMUo is Pareto-efficient if and only if 
ிߩ = 1 if and only if ߩி = 1  . 

(R4). ߩி ≤ ߩ ,ߩ ≤ ிߩ  and ߩி ≤  .ிߩ

3.3 Properties of the Linear and Fractional DFDH / 
CDFDH Models 

In this section, we study the properties of the proposed 
models. 
P1. Completeness (Cooper et al., 1999) 

Our proposed measures are “complete”, in the sense 
that they are non-oriented and take account all the non-zero 
slacks as sources of inefficiency. 
P2. Straightforward interpretation 

Each of the efficiency indexes ߩ ,  ி canߩ  andߩ ,ிߩ
be interpreted as the product of two separate components of 

the input efficiency, ߠூ = 1 − ଵ

∑ ି∗ߚ
ୀଵ , and the output 

efficiency, ߠை = ቂ1 + ଵ
௦
∑ ା∗௦ߚ
ୀଵ ቃ

ିଵ
. This interpretation 

gives a better explanation of the efficiency of the under 
assessment DMU. 
P3. Translation invariance (Ali and Seiford, 1990; Lovell 

and Pastor, 1995; Pastor, 1996; Cooper et al., 1999) 
The property of translation invariance assures that 

translating the original input and output data has no 
influence on the optimal solutions. By choosing the 
direction vector (14), the models (15), (16), (18) and (19) 
will be translation invariant. 

To demonstrate this, suppose that x୧୨ = x୧୨ + v୧ (i =
1, … ,m) and y୰୨ = y୰୨ + u୰ (r = 1, … , s), respectively 
indicate the translated ith input and rth output of DMUj. 
Obviously, the original direction (14) will not be changed for 
the translated data. Therefore, from the constraint ∑ λ୨୨ = 1, 
it follows that our models are translation invariant. 

This property makes our models free from the primary 
positivity assumption on the data whereby they are able to 
appropriately deal with negative data. In this case, by adding 
suitable constants to the affected input or output rows we can 
transform them to positive valued data and use the 
transformed data in our models. 
P4. Units invariance (Cooper et al., 1999; Lovell and 

Pastor, 1995) 
By choosing a direction vector such that g୧ି and g୰ା 

respectively have the same units of measurement as the ith 
input and the rth output, the models (15), (16), (18) and (19) 
will be unit invariant. Since, g୧ି and the ith input have the 
same units of measurement, when we rescale the ith input by 
the scalar α > 0, the ith component of the direction vector is 
converted to αg୧ି, accordingly. Observe that, by multiplying 
the constraint ∑ λ୨൫αx୧୨൯୨ = αx୧୭ − β୧ି(αg୧ି) by ଵ


, the same 

constraint of the original model is obtained. For example, the 
vectors (12) and (13) satisfy this property. 

This property indicates that we can rescale each input 
or output with an arbitrary scalar, without any affection on 
the optimal solutions of our models. 
P5. Alternative optima invariance (Cooper et al., 1999) 
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The efficiency indices ߩி and ߩி are invariant to 
alternative optima. However, the indices ߩ and ߩ fail to 
satisfy this property. 
P6. Taking account the DM’s preference information 

In some practical cases, the DM may do not equally 
prefer the efficient DMUs. In such a case, the DM needs to 
take account the priorities. According to the preference 
orders of inputs and outputs given by the DM, we can 
flexibly modify the vector g. Indeed, the values of the 
modified direction vector, g′,’s components describe the 
relative importance of inputs and outputs. Let the non-zero 
weights, w୧, i = 1,… ,m, and v୰, r = 1,… , s, respectively 
are associated with the priorities given by the DM to the 
inputs and outputs such that the larger the w୧	(v୰), the more 
important the ith input (rth output) is. After incorporating 
these weights in our models, coefficients of the variables β୧ି 
and β୰ା, in the objective function will be w୧ and v୰, 
respectively. Therefore, the components of the modified 
direction vector, g′, should be g୧ିᇱ = ξ୧g୧ି and g୰ା

ᇱ = ψ୰g୰ା, 
where ξ୧ =

ଵ
୵

 and ψ୰ =
ଵ
୴౨

. This implies that if an input 
(output) has a greater importance, it should be attached a 
greater weight or equivalently a small direction’s component. 
By considering (10), we must have ξ୧ ≥ 1, i = 1,… ,m, 
equivalently w୧ 	≤ 1, i = 1,… ,m1. We will clearly 
exemplify this property by an illustrative example in the next 
section. 
P7. Flexibility in computer programming 

A practical advantage of our models is that by writing 
a computer code for one of them, changing just the 
direction vector’s inputs in this program is enough to 
achieve new scores and targets associated with a new 
direction vector. This capability of our models greatly 
helps the DM to make a more accurate evaluation, by 
considering several direction vectors, when he cannot rely 
on an assessment depending only on a specific direction 
vector. In this case, by running the program for the 
direction vectors given by the DM, for example, the 
average of the obtained scores can be proposed to the DM 
as a final score for a given DMUo. 

4. Enumeration 

The models (15) and (18) are MILP problems while the 
models (16) and (19) are mixed integer non-linear 
programming problems. Nonetheless, each of the models 
(16) and (19) can be easily converted into a MILP problem 
using a transformation technique, similar to the “Charnes-
Cooper transformation” (Charnes and Cooper, 1962), with 
assurance that the optimal value of the converted model will 
also be optimal for the original model. These MILP problems 
can be solved using the common MILP techniques. 
However, computing the optimal solutions of them by 

                                                        
1 If the given weights do not satisfy in these conditions, the normalized 

(dividing by Maxୀଵ,…,{ݓ}) form of them will satisfy in these 
conditions. 

enumeration algorithms is superior to solving them via MILP 
solvers, from the computational point of view. Here, we 
present new enumeration algorithms for estimating the 
proposed efficiency measures. 

Consider a given DMUo. DMUo is weakly dominated 
by DMUj if and only ݔ ≤ ݕ  andݔ ≥   with strictݕ
inequality holding in at least one input or output 
component. Let ܹ be the set of all DMUs, which weakly 
dominate DMUo. The sets ܹ , ݆ = 1,… , ݊, and 
accordingly the set of all L-efficient DMUs, ܧ, can be 
readily characterized by comparing the values of inputs 
and outputs of the DMUs. Let ܧ = ܹ ∩   is theܧ ,.i.e ܧ
set of all efficient DMUs, which weakly dominate DMUo. 
Obviously, DMUo is L-efficient if and only if ܧ = ∅. If 
ܧ ≠ ∅., then, to determine the furthest and closest 
observed targets for DMUo we operate as follows. 

To find the optimal solutions of the models (15) and 
(16), for any ݆ ∈  : we defineܧ

ߪ	 = ݔܽܯ

⎩
⎪
⎨

⎪
⎧
1
݉ߚି



ୀଵ

+
1
ାߚݏ

௦

ୀଵ
ተተ
β୧ି =

1
g୧ି
൫x୧୭ − x୧୨൯, ∀i,

β୰ା =
1
g୰ା

൫y୰୨ − y୰୭൯,∀r
⎭
⎪
⎬

⎪
⎫
	

	= ଵ

∑ ଵ


ష ൫x୧୭ − x୧୨൯

ୀଵ + ଵ
௦
∑ ଵ

౨శ
൫y୰୨ − y୰୭൯௦

ୀଵ       (21) 

ிߪ	 = ݔܽܯ

⎩
⎪
⎨

⎪
⎧
1 − 1

݉∑ ିߚ
ୀଵ

1 ݏ1++ ∑ ା௦ߚ
ୀଵ

ተተ
β୧ି =

1
g୧ି
൫x୧୭ − x୧୨൯, ∀i,

β୰ା =
1
g୰ା
൫y୰୨ − y୰୭൯, ∀r

⎭
⎪
⎬

⎪
⎫

	

=
ଵି భ


∑ భ

ౝ
ష൫୶ି୶ౠ൯

సభ

ଵାభೞ∑
భ
ౝ౨శ
൫୷౨ౠି୷౨൯ೞ

ೝసభ
				                                              (22) 

After that, according to (7), we calculate the optimal 
objectives of the Linear and Fractional FDFDH models, 
(15) and (16), as follows: 
 
߬ = Max∈ா൛ߪ

 ൟ				                                                      (23) 
ிߩ = Min∈ா൛ߪ

ி ൟ                                                        (24) 
Now, let (ߚି∗, ,∗ାߚ ݅ = 1, … ,݉, ݎ = 1,… ,  be the 	(ݏ
optimal solution of (21) that is correspond to (23). Then, 
the efficiency score ߩ can be computed from (17). 

Similarly, the optimal objectives of the models (18) 
and (19) can be computed via the following relations: 

߬ = Min∈ா൛ߪ
 ൟ                                                        (25) 

ிߩ = Max∈ா൛ߪ
ி ൟ                                                        (26) 

The inputs and outputs levels of the L-efficient 
DMUs that satisfy in (23) or (24) / (25) or (26) indicate 
the furthest / closest observed efficient target levels for 
DMUo. 
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5. Real World Example 

Example1. To provide an application of the proposed 
approach, we discuss the efficiency assessment of 15 
university departments, denoted by D1, D2,…, D15, with 
three inputs and three outputs as follows:  

Table 2 shows the input-output data, taken from 
Soleimani-damaneh and Mostafaee (2009). 
Table 3 represents the efficiency scores, projection points, 
and reference points obtained from the DFDH, Fractional 
FDFDH, and Fractional CDFDH models where the 
direction vector (13) is used in them. 

 
Table 1 
Titles of inputs and outputs of Example 2 

Input1: Budget Output1 Average of the scores of the students, 
Input2: Area of cultural, educational, and research space Output2 Number of the students accepted for graduate studies (in the past two years), 
Input3: Number of books in the library Output3 Satisfaction of students, staff, and professors 

 
Table 2 
Data related to the application with real world data (Example 1) 

 I1 I2 I3 O1 O2 O3 
D1 26 20 10 15.5 8 26 
D2 20 15 7 17.2 5 25 
D3 22 10 9.5 14.3 8 23 
D4 15 12 8.4 14 5 20 
D5 30 22 10 12 3 20 
D6 35 15 11 16.3 4 22 
D7 35 25 12 12 2 18 
D8 34 24 12 12 2 19 
D9 20 16 9.5 14.3 10 28 
D10 22 17 10 13.5 8 26 
D11 24 19 8 15 9 29 
D12 18 20 12 16 8 23 
D13 28 20 10.1 14.2 6 20 
D14 30 12 9 14 5 20 
D15 25 15 10 17 3 29 

 
Table 3 
Data related to the application with real world data (Example 2) 

 DFDH Fractional FDFDH Fractional CDFDH 
 Score Proj. Ref. Score Proj. Ref. Score Proj. Ref. 

D1 1.0000 D1 D1 1.0000 D1 D1 1.0000 D1 D1 
D2 1.0000 D2 D2 1.0000 D2 D2 1.0000 D2 D2 
D3 1.0000 D3 D3 1.0000 D3 D3 1.0000 D3 D3 
D4 1.0000 D4 D4 1.0000 D4 D4 1.0000 D4 D4 
D5 0.8276 P5 D2 0.5919 D9 D9 0.7175 D1 D1 
D6 1.0000 D6 D2 0.6874 D2 D2 0.6874 D2 D2 
D7 0.7586 P7 D2 0.4565 D2 D2 0.5825 D1 D1 
D8 0.7931 P8 D2 0.4787 D2 D2 0.6044 D1 D1 
D9 1.0000 D9 D9 1.0000 D9 D9 1.0000 D9 D9 
D10 0.9600 P10 D9 0.8630 D9 D9 0.8630 D9 D9 
D11 1.0000 D11 D11 1.0000 D11 D11 1.0000 D11 D11 
D12 1.0000 D12 D12 1.0000 D12 D12 1.0000 D12 D12 
D13 0.9600 P13 D11 0.6957 D9 D9 0.8427 D1 D1 
D14 1.0000 D14 D4 0.8405 D4 D4 0.8405 D4 D4 
D15 1.0000 D15 D15 1.0000 D15 D15 1.0000 D15 D15 

 

 
Fig. 2. Comparison of departments’ efficiencies 
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Comparing the results obtained by the DFDH, Fractional 
DFDH and Fractional CDFDH models, we make the 
following observations: 
 The number of the efficient departments determined 

by the DFDH is more than that determined by the 
Fractional DFDH and CDFDH models. 

 The departments D1, D2, D3, D4, D9, D11, D12, and 
D15 are characterized as both F-efficient and FC-
efficient units. (See Fig. 2) 

The departments D6 and D14 are determined efficient by 
the DFDH model and are projected on themselves. In 
addition, the obtained reference point for each of them 
is different from themselves. However, the Fractional 
FDFDH and CDFDH models determine these 
departments as inefficient units and recognize D14 
better than D6. This happen because the Fractional 
FDFDH/CDFDH models take the non-zero slacks into 
efficiency measurement, unlike the DFDH model. 
(See Fig. 2) 

 Between the inefficient departments, the department 
D10 is determined with the best performance, by the 
Fractional FDFDH and Fractional CDFDH models. 
Furthermore, the inefficient department D7 has the 
worst efficiency between all departments. (See Fig. 2) 

 In evaluating the inefficient departments D10 and D13 
by the DFDH model, they have identical performance 
and the corresponding efficiency score is equal to 
0.9600. However, in evaluating them by the Fractional 
FDFDH and CDFDH models, D10 performs better 
than D13. 

 The Fractional FDFDH model ranks the inefficient 
departments as D10, D14, D13, D6, D5, D8, and D7 
whereas the Fractional CDFDH model gives the 
different order D10, D13, D14, D5, D6, D8, and D7. 
The cause of this happening is that the Fractional 
FDFDH/ CDFDH models estimate the efficiency score 
with respect to the furthest/closest F-efficient units. 

 As we expect, the efficiency scores obtained from the 
Fractional CDFDH model are greater or equal than 
that obtained from the Fractional FDFDH model i.e., 
ிߩ ≤  ி. In addition, the efficiency scores obtainedߩ
from the Fractional FDFDH and CDFDH models are 
less or equal to than that obtained from the DFDH 
model i.e., ߩி ≤ 1− ிߩ  and ∗ߚ . ≤ 1 −  .See Fig) .∗ߚ
2) 

 In evaluating the inefficient departments D5, D6, D7, 
D8, D10, D13 and D14 by the Fractional FDFDH, the 
departments D9, D2, D2, D2, D9, D9 and D4 are the 
corresponding furthest observed targets. However, in 
evaluating them by the Fractional CDFDH, the 
departments D1, D2, D1, D1, D9, D1 and D4 are the 
corresponding closest observed targets. 

 The obtained furthest and closest targets for each of 
the inefficient departments D6, D10 and D14 are the 
same. However, the Fractional FDFDH and CDFDH 
models give different departments as the furthest and 
closest observed targets for the other inefficient 
departments. 

 In evaluating the departments D5, D7, D8, D10, and 
D13 by the Fractional FDFDH and the Fractional 
CDFDH models, the observed departments are 
determined as the corresponding furthest and closest 
projection points. However, the DFDH model gives 
the following unobserved units P5, P7, P8, P10, and 
P13 as the associated projection points: 

		P5 = (23.9655,17.6897,7.9310,14.9655,4.7241,25.0000),	
		P7 = (26.5517,18.9655,9.1034,16.1517,4.4138,25.0000),	
		P8 = (26.7586,18.8276,9.5172,15.5586,4.0690,25.0000),	
P10 = (20.6000,16.0000,9.5200,14.1880,8.4000,27.1600),	
P13 = (26.6000,19.0000,9.6200,14.8880,6.4000,21.1600),	
P14 = (30.0000,12.0000,9.0000,14.0000,5.0000,20.0000). 
In sum, the Fractional CDFDH model, as well as 
efficiency scores and DMUs classification, provide the 
closest observed efficient targets for the inefficient 
departments; thus, it is superior to the DFDH model in 
removing their deficiencies and drawbacks. 

6. Conclusion 

In this study, we have carefully examined the FDH 
directional distance function and pointed out its major 
shortcoming. Then, providing suitable remedies, we have 
tried to resolve them. First, by imposing a primary 
condition on the direction vector, we introduced an 
efficiency index associated to the DFDH. Next, extending 
the DFDH, we developed two furthest-target based 
directional, Linear and Fractional FDFDH, models. Then, 
modifying these models, we presented two closest-target 
based, named Linear and Fractional CDFDH, models. The 
Linear and Fractional CDFDH models successfully 
overcome all shortcomings of the DFDH and have several 
desirable theoretical and practical properties. These 
properties include: (1) complete efficiency requirement 
(2) straightforward interpretation (3) translations 
invariance (4) unit invariance (5) alternative optima 
invariance (6) incorporating the DM’s preference 
information and (7) flexibility in computer programming. 
In such practical applications, which the virtual activities 
have not actual existence, the Linear and Fractional 
CDFDH models are very useful due to comparing 
performance of the inefficient DMUs with the observed 
efficient DMUs. Furthermore, these models, by finding 
the closest observed targets for an inefficient DMU, 
provide an approach for how improving the inefficient 
DMU with the lowest effort to make it efficient. 
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