
Journal of Optimization in Industrial Engineering, Vol.11, Issue 2, Summer and Autumn 2018, 107-117

DOI: 10.22094/joie.2017.500.12

107

EMCSO: An Elitist Multi-Objective Cat Swarm Optimization

Meysam Orouskhania, Mohammad Teshnehlabb,*, Mohammad Ali Nekouib
a

Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
b

Industrial Control Center of Excellence, Electrical Engineering Department, K. N. Toosi University of Technology, Tehran, Iran
Received 11 July 2015; Revised 15 october 2016; Accepted 20 November 2017

Abstract
This paper introduces a novel multi-objective evolutionary algorithm based on cat swarm optimization algorithm (EMCSO) and its
application to solve a multi-objective knapsack problem. The multi-objective optimizers try to find the closest solutions to true Pareto front
(POF) where it will be achieved by finding the less-crowded non-dominated solutions. The proposed method applies cat swarm
optimization (CSO), a swarm-based algorithm with ability of exploration and exploitation, to produce offspring solutions and uses the non-
dominated sorting method to find the solutions as close as to POF and crowding distance technique to obtain a uniform distribution among
the non-dominated solutions. Also, the algorithm is allowed to keep the elites of population in reproduction process and use an opposition-
based learning method for population initialization to enhance the convergence speed. The proposed algorithm is tested on standard test
functions (zitzler’ functions: ZDT) and its performance is compared with traditional algorithms and is analyzed based on performance
measures of generational distance (GD), inverted GD, spread, and spacing. The simulation results indicate that the proposed method gets
the quite satisfactory results in comparison with other optimization algorithms for functions of ZDT1 and ZDT2. Moreover, the proposed
algorithm is applied to solve multi-objective knapsack problem.

Keywords: Multi-objective cat swarm optimization; Non-dominated sorting; Crowding distance; Opposition-based learning.

1. Introduction

Optimization includes finding the best values of some
objective function given a defined domain or a set of
constraints, including a variety of different types of
objective functions and different types of domains. If the
quantity to be optimized is expressed using only one
objective, the problem is then referred to as a single-
objective problem, while many real-world problems require
the simultaneous optimization of a number of objective
functions which may be in conflict with one another; these
problems are called multi-objective optimization problems
(MOOP) whose main aim is to find a set of solutions.
There are many optimization algorithms for solving
MOOPs. Some of these algorithms, such as classical
algorithms, can only find one point as the best solution,
while others, such as population-based evolutionary
algorithms, find a set of solutions and keep and store the
best one. Evolutionary algorithms are desirable to solve
multi-objective optimization problems because they deal
simultaneously with a set of possible solutions which
allows finding an entire set of optimal solutions in a single
run of the algorithm, instead of having to perform a series
of separate runs as in the case of the classical algorithms.
Most of optimization algorithms are derived from meta-
heuristic concepts that are a higher-level procedure or
heuristic designed to find, generate, or select a heuristic that
may provide a sufficiently good solution for an
optimization problem (Rahmanian, Ghaderi, &

Mehrabad.M, 2012) (Mirzazadeh, Shirdel, & Masoumi,
2011) (Mehdizadeh & Kivi, 2014).
Swarm intelligence algorithms, as one of the main
algorithms of metaheuristics, imitates the creature’s swarm
behavior on finding food or mating and are able to share
obtained information between particles of the population.
This paper applies Cat swarm optimization that imitates the
behavior of cats in seeking and tracing mode. This paper
proposes a multi-objective version of cat swarm
optimization where an opposition-based learning method
for population initialization is applied into algorithm to
increase the convergence speed. Also, in order to
investigate the performance of the algorithm, simulations
are done on ZDT test functions and analyzed based on
multi-objective optimization performance measures. Also,
due to the important role of multi-objective optimization in
practical optimization problems of industrial engineering
such as allocation of customers to distribution centers
(Bagherinejad & Dehghani, 2016), digital convergent
product network (Hassanzadeha, Mahdavib, & Mahdavi-
Amiric, 2014), workflow task scheduling in utility grids
(Kahejvand, Hossein, & Zandieh, 2014), and flexible flow-
shop scheduling problems (Naderi & Sadeghi, 2012), this
paper applies the proposed algorithm to solve multi-
objective knapsack problem.
The rest of the article is organized as follows: in Section 2,
multi-objective optimization, Pure Cat swarm optimization,
and knapsack problem are introduced; in Section 3, the
proposed algorithm for solving multi-objective problems is
expressed. In Section 4, simulation results for standard test

*Corresponding author Email address: teshnehlab@eetd.kntu.ac.ir

Meysam Orouskhani et al./EMCSO: An Elitist Multi-Objective…

108

functions based on four performance metrics are indicated.
Finally, a conclusion is drawn in the last section.

2. Background Information

2.1. Multi-objective optimization

 (1)

2.1.1 Definitions

Domination: A decision vector, x1, dominates a decision
vector, x2 (denoted by x1 ≺ x2), if and only if x1 is not
worse than x2 in all objectives:

And, x1 is strictly better than x2 in at least one objective:

Similarly, an objective vector, f1, dominates another
objective vector, f2, if f1 is not worse than f2 in all objective
values, and f1 is better than f2 in at least one of the objective
values. Objective vector dominance is denoted by f1

 ≺ f2.
Solution x1 is better than solution x2 if x1

 ≺ x2 which
happens when f1

 ≺ f2.

Pareto-optimal: A decision vector, is Pareto-
optimal if there does not exist a decision vector,

that dominates it. That is,

Objective vector, is Pareto-optimal if x is Pareto
optimal (Deb, 2002).

Fig. 1. Variable space and objective space

(Coello, et al, 2007)

Pareto-optimal set: The set of all Pareto-optimal decision
vectors form the Pareto-optimal set, P*, that is:

The Pareto-optimal set, therefore, contains the set of
solutions, or balanced trade-offs, for the MOP. The
corresponding objective vectors are referred to as the
Pareto-optimal front.

Pareto-optimal front: Given objective vector, f(x), and
Pareto-optimal solution set, P*, the Pareto-optimal
front is defined as follows:

The Pareto front, therefore, contains all the objective
vectors corresponding to decision vectors that are not
dominated by any other decision vector (Engelbrecht.,
(2002).).

2.1.2 Classification of Multi-Objective Algorithms

(Deb, 2002) and (Coello, et al, 2007) introduced two main
classifications of multi-objective optimization algorithms.
Deb categorized the multi-objective optimizers to classical
and evolutionary algorithms including elitist and non-elitist
multi-objective evolutionary algorithms. Classical
algorithms, such as weighted sum method (Zadeh, 1963)
and goal programming (Charnes, 1997), can only find one
point as the best solution, while an evolutionary algorithm
is able to deal with population of points and keeps the best
solutions. Elitist algorithms apply elite-preserving operator
to give opportunity to elites of population to be directly
carried over to the next generation, while non-elitist
algorithms do not.
The second classification is based on Coello study. Here,
MOO algorithms are categorized to aggregative functions,
population-based and Pareto-based. Algorithms in the first
category use the techniques of combination or summation
of objective functions to transform a MOP to a single-
objective problem. Weighted sum method is one the
common algorithm in this group. Population-based
algorithms, such as Vector Evaluated Genetic Algorithm
(Scheffer, 1985) without using domination concept in
selection process, apply an evolutionary algorithm to make

Let ܵ ك ܴೣ

space and t
constraints, th
space. Let ݔ
decision vec
defined
݂ሺݔሻ ൌ ሺ ଵ݂ሺ
objective ve
evaluations; O
search space,
Figure (1) sho
multi-objectiv

ೣ and ك ܨ ܵ
the feasible
he feasible s

ൌ ሺݔଵ, ,ଶݔ …
ctor. A sing

as ݂ ܴ
,ሻݔ ଶ݂ሺݔሻ, … , ݂
ector contai
O is referred
, S, is also re
ows these two
ve optimizatio

ܵ denote ݊௫-
space, respe

pace is the s
… , ೣሻݔ א ܵ, b

le-objective
ܴೣ ՜

݂ሺݔሻሻ א ܱ
ining nk o

d to as the ob
eferred to as
o spaces. Equa
on for minimiz

dimensional
ectively. Wit
same as the
be referred to
function ݂ሺ

ܴ.
ك ܱ ܴ b
objective fu
bjective space
the decision s
ation (1) defin
zation problem

search
th no
search
o as a
ሺݔሻ is

Let
be an
unction
e. The
space.

nes the
m:

݂ ݁ݖ݅݉݅݊݅ܯ

݃ ݐ ݐ݆ܾܿ݁ݑܵ

݄ሺݔሻ ൌ 0

ݔ א ሾݔ, ݔ

݂ሺݔሻ
݃݉ሺݔሻ 0

 ݊ ൌ 1,2, … , ݊

௫ሿೣ

 ݉ ൌ 1,2, … , ݊݃

݊

݃

Here, ݃ an
equality cons
boundary con
optimization
all כݔ א .ܨ
redefined for
the presence
in one obje
objective and
trade-offs. Su
cannot impro
more of the o
as non-domin
MOOP, is to p
a single solut
non-dominate
corresponding
referred to as

nd ݄ are r
straints, while
nstraints. Solu

problem ar
The meaning
MOO. In term
of conflicting

ective may c
d the task is to
uch a balanc
ove any objec
other objective
nated solution
produce a set
tion. This set
ed set, or
g objective v
the Pareto fro

respectively t
ݔ א ሾݔ, ݔ

utions כݔ to
e in the fe

g of an “opt
ms of MOO, t
g objectives, w
cause deterio

o find solution
ce is achieved
ctive without

es. These solu
ns. The objecti

of good comp
of solutions i
the Pareto-

vectors in o
ont (Engelbrec

the inequality
௫ሿݔ represen

the multi-obj
easible space
timum” has
the main prob
where improv
oration in an
ns that balance
d when a so
t degrading o
tions are refer
ive, when solv
promises, inst
is referred to
-optimal set.
bjective spac
cht., (2002).).

y and
nts the
jective

e, i.e.,
to be

blem is
vement
nother
e these
olution
one or
rred to
ving a
tead of
as the

The
ce are

݅. ݁., ݇݇݇ ൌ 1, … , ݊ : ݂ሺݔଵሻ ݂ሺݔଶሻ

݅. ݁., ݇ ൌ 1, … , ݊ : ݂ሺݔଵሻ ൏ ݂ሺݔଶሻ

כݔ א ,ܨ

 ݇ ݂ሺݔሻ

ሻ ൏ ݂ሺכݔሻ

് ݔ ݔ

כ
כݔ א ܨܨܨ

,ሻݔሺכ݂

כܲܲܲ ൌ ሼכݔ א ܨ א ݔ | ܨ ݔݔݔ ط ሽכݔ

כܨܲܲܲ ൌ ሼ݂ ൌ ሺሺ݂݂݂ଵሺכݔሻ, ሺ ଶ݂ሺכݔሻ, … , ൫ ݂ሺכݔሻ൯ | כݔݔݔ א ܲ ሽ

כܨܲ ك ܱܱܱ

Journal of Optimization in Industrial Engineering, Vol.11, Issue 2, Summer and Autumn 2018, 107- 117

109

offspring solutions. Pareto-based algorithms not only use
evolutionary process in making offspring, but also apply
domination concept to selection process. In this paper,
multi-objective algorithms are classified in three classes:
classical, evolutionary, and swam-based algorithms.
 Classical Methods
Due to the structure of the classical methods, only one
Pareto-optimal solution can be expected to be found in one
simulation run. Although these algorithms are easy in
implementation, they require some problem knowledge
such as suitable weights. Weighted Sum Method (WSM) is
one of the easiest algorithms in this category. This
algorithm combines a set of objectives with a single
objective by pre-multiplying each objective with a user-
supplied weight. It is clear that weights are the
representative of the importance ratio of each objective. A
MOOP can be converted to a single optimization problem
as follows:

 (2)

where wm is the weight of the m-th objective function.
How to select the relative weight for each objective is the
most important issue in this method. Also, setting an
appropriate weight vector depends on the scaling of each
objective function and may take different orders of
magnitude. Therefore, it is mandatory to prepare normal
objectives.

Evolutionary Algorithms
Evolutionary algorithms mimic natural principles to
constitute search and optimization procedures. Fitness
assignment, selection, and reproduction are three main parts
of these algorithms (Weise, 2009). Genetic algorithm is the
most interesting algorithm in optimization problems
(Goldberg, 1989). This algorithm uses crossover and
mutation operators to generate new population for next
iteration. Selection is an important part of an evolutionary
algorithm and can be done by many techniques such as
tournament, random or deterministic methods. Many
single-optimization algorithms are modified to be used in
multi-objective optimization problems, such as genetic
algorithm and differential evolution (Storn & Price, 1997).
Scheffer (1985) proposed the first multi-objective
algorithm based on genetic algorithm called ‘Vector
Evaluated Genetic Algorithm’. This algorithm divides the
population at every generation into M (number of
objectives) equal subpopulations randomly and each of the
M objective functions is used to evaluate some members in
population.
Multi-objective genetic algorithm (MOGA) (Fleming &
Fonseca, 1993) assigns a rank to each individual based on
the number of individuals dominating it. This algorithm
uses a fitness sharing technique to distinguish between
solutions, and then fitness of the solutions in the same niche
will be reduced.
Elitist non-dominated sorting genetic algorithm (NSGA2)
is one of the most powerful algorithms proposed by Deb
that uses a non-dominated sorting method for choosing

points close to optimal solutions and applies the crowding
distance technique in order to achieve a uniform
distribution among the obtained Pareto front (Deb, 2002).
 Swarm-based Algorithms
Swarm intelligence algorithms are inspired by swarm life
of creatures and simulate the behavior of animals in finding
food and mating. These algorithms are based on population
and try to solve the problems by using cognitive and social
knowledge. Particles in swarm have a role the same as
individuals in population and not only act like them, but
also are able to share information between together to
obtain knowledge. Particle swarm optimization (Kennedy &
Eberhart, 1995)- (Shi & Eberhart, 1998), ant colony
optimization (Dorigo & Gambardella, 1997)- (Chu &
Roddick, 2004), and bee colony optimization (karaboga,
2005) are the examples of swarm intelligence.
Multi-objective particle swarm optimization (Coello, 2004)
uses an external archive to store non-dominated solutions
and randomly selects a particle in a cell with fewer
members as a leader of other particles, and MOCSO
(Pradhan & Panda, 2012) was developed by using cat
swarm optimization algorithm where the Pareto ranking
scheme is incorporated and the non-dominated solutions
obtained by the cats are stored in the external archive.
These are the two samples of multi-objective optimizers.

2.2. Multi-objective knapsack problem

Suppose that we have a set of items whose values and
weights are known and a bag with a limited capacity. To
fill out the bag with the items in a way that their total value
is the highest possible without exceeding the bag’s capacity
is known as the knapsack problem.

In a single knapsack problem, there is a fitness function as
goal and a constraint to limit the solutions to the problem as
follows:

where w,v,m,x are weight, value, permitted value, and
selected value of the i-th item, respectively, and W is the
total acceptable weight. This problem is known as a single-
constrained problem and can be easily changed to a multi-
objective minimum problem by investigating the constraint
as a new function. So, the multi-objective knapsack
problem is defined as follows:

Many real-life problems can be formulated such as the
knapsack problem or one of its variants; for example,
loading problems, project selection problems, capital
budgeting problems, and cutting stock problems. Moreover,

ሻݔሺܨ ݁ݖ݅݉݅݊݅ܯ ൌ ∑ ݓ ݂ሺݔሻெ
ୀଵ

ሻݔሺ݃ ݐ ݐ݆ܾܿ݁ݑܵ 0 ݆ ൌ 1,2, … . , ܬ

݄ሺݔሻ ൌ 0 ݇ ൌ 1,2, … . , ܭ

ݔ
ሺሻ ݔ ݔ

ሺ௨ሻ

ݔܽܯ ൞
 ݔݒ , 0 ݔ ݉

 :ݐܵ ݔݓ ܹ
 ሺ3ሻ

݊݅ܯ ൞
 ሺ݉ݒ െ , ሻݔ 0 ݔ ݉

 ݔݓ
 ሺ4ሻ

Or, it can be defined as follows:

݊݅ܯ

ە
۔

ۓ ሺ݉ݒ െ , ሻݔ 0 ݔ ݉

max ቆ
∑ ݔݓ

ݓ
െ 1,0ቇ

 ሺ5ሻ

Meysam Orouskhani et al./EMCSO: An Elitist Multi-Objective…

110

it can be found as a sub-problem in several models, such as
the partition and design of electronic circuits and the choice
of a flight crew. There are several approaches that can be
used to solve this kind of problems. These approaches are
classified as exact methods (Luila, 2008) and approximated
methods or meta-heuristics (Ghosh, 2004). The solutions
obtained by the exact methods are exact solutions, while
those obtained by the metaheuristics are approximate
solutions. Due to the lack of computational resources and
the problem sizes, the exact methods have limited
application, i.e., they become ineffective, in particular in
instances of great dimension. While heuristic methods,
though they do not provide exact solutions, have been used
as reliable alternatives, they have proven themselves as
being efficient when dealing with big-sized instances, since
they achieve “good” approximate solutions while using
reasonable computational resources; that is what would be
practically impossible to achieve through the exact
methods.

2.3. Pure cat swarm optimization

Cat swarm optimization (CSO) is an optimization algorithm
in the field of swarm intelligence. The CSO algorithm
models the behavior of cats into two modes: ‘Seeking
mode’ and ‘Tracing mode’. Swarm is made of initial
population composed of particles to search in the solution
space. For example, we can simulate birds, ants, and bees
and create Particle swarm optimization, Ant colony
optimization, and Bee colony optimization, respectively.
Here, in CSO, we use cats as particles for solving the
problems (Chu, et al, 2006). In CSO, every cat has its own
position composed of D dimensions, velocities for each
dimension, a fitness value, which represents the
accommodation of the cat to the fitness function, and a flag
to identify whether the cat is in seeking mode or tracing
mode. The final solution would be the best position of one
of the cats. The CSO keeps the best solution until it reaches
the end of the iterations (Santosa & Ningrum, 2009).
Although CSO is introduced for solving single
optimization, but recently is used in many applications such
as clustering (Yongguo et al., 2012) and system
identification (Orouskhani et al., 2013)-(Panda et al., 2011).
Cat swarm optimization algorithm has two modes in order
to solve the problems described below.

2.3.1. Seeking mode

For modeling the behavior of cats in resting time and being
alert, we use the seeking mode. This mode is a time for
thinking and deciding about next move. This mode has four
main parameters which are mentioned as follows: seeking
memory pool (SMP), seeking range of the selected
dimension (SRD), counts of dimension to change (CDC),
and self-position consideration (SPC). The process of
seeking mode is described as follows:

Step1: Make j copies of the present position of catk, where
j = SMP. If the value of SPC is true, let j = (SMP-1), then
retain the present position as one of the candidates.

Step2: For each copy, according to CDC, randomly plus or
minus SRD percent the present values and replace the old
ones.

Step3: Calculate fitness values (FS) of all candidate points.

Step4: If all FS are not exactly equal, calculate the
selecting probability of each candidate point by equation
(6); otherwise, set all the selecting probabilities of each
candidate point to ‘1’.

Step5: Randomly pick a point to move to from the
candidate points and replace the position of cat

If the goal of the fitness function is to find the minimum
solution, FSb = FSmax; otherwise, FSb = FSmin.

2.3.2. Tracing Mode

Tracing mode is the second mode of algorithm. In this
mode, cats desire to trace targets and foods. The process of
tracing mode can be described as follows:

Step1: Update the velocities for every dimension according
to equation (7).

Step2: Check if the velocities are in the range of maximum
velocity. In case the new velocity is over-range, it is set
equal to the limit.

 (7)

Step 3: Update the position of catk according to Eq (8).

 (8)

Xk,d is the position of catk , Xbest,d is the position of the cat,
who has the best fitness value, c1 is an acceleration
coefficient for extending the velocity of the cat to move in
the solution space and is usually equal to 2.05, and r1 is a
random value uniformly generated in the range of [0,1].

2.3.3. Core Description of CSO

In order to combine the two modes into the algorithm, a
mixture ratio (MR) is defined. This parameter decides how
many cats will move into seeking and tracing. CSO is
summarized below: (Orouskhani et al., 2011).
First, ‘N’ cats are created, and then positions, velocities,
and flags of each cat should be initialized. (*) Fitness value
of each cat will be evaluated according to the fitness
function, and the best cat is stored into memory. In the next
step, according to cat’s flag, each cat will move to the
seeking mode or tracing mode processes. After finishing
the related process, re-pick the number of cats and set them
into seeking mode or tracing mode according to MR
parameter. At the end, check the termination condition; if
satisfied, terminate the program, and otherwise go to (*).

3 .EMCSO: The Proposed Algorithm

Although there exists a multi-objective CSO, but no
strategy is used for diversity issue that makes the algorithm
unable to distinguish between solutions with the same rank

iൌ
|FSi െ FSb|

FSmax െ FSmin
 ሺ6ሻ

k.

 V୩,ୢ ൌ V୩,ୢ rrrଵcଵ ൫Xୠୣୱ୲,ୢ െ XXX୩,ୢ൯

 X୩,ୢ ൌ X୩,ୢ V୩,ୢ

Journal of Optimization in Industrial Engineering, Vol.11, Issue 2, Summer and Autumn 2018, 107- 117

111

and diversity among them to be ignored. Also, this
algorithm did not apply to standard test functions while
using standard benchmarks to compare different algorithms
is obligatory. In order to solve MOOPs and find the Pareto
optimal front, pure CSO needs some changes on seeking
and tracing modes to satisfy the quality and diversity of
solutions. Moreover, opposition-based learning method is
applied to algorithm to speed up the convergence rate.

 Changes on Seeking Mode

First, according to values of SRD, CDC, and SMP,
positions of all cats in this mode are updated. In this mode,
cats have two additional parameters: rank and crowding
distance. Rank is the number of loss in competition process
and crowding distance is used to demonstrate the density.
So, a competition based on domination is performed among
the cats; for each cat, the number of cats dominating it is
assigned as rank. Then, cats are sorted: less rank, higher
priority. Calculating the crowding distance metric for each
cat is the second important task in this mode. Higher
crowding distance value indicates that cat may be located in
less density. Crowding distance calculation is shown in
figure (2). For example, for an optimization problem with
two objectives, the value of crowding distance for cati is
calculated as follows:

 (9)

Fig. 2. The crowding distance calculation (Deb, 2002)

The last step in this mode is to select the best cats. Here,
algorithm sorts the solutions (consisting of parents and
offspring: cats and their copies) based on non-dominated
solutions (solutions with less rank) and higher crowding
distance. It is necessary to indicate that the main selection
operator is rank of each cat, and crowding distance is the
second criterion and should be applied for cats with the
same rank.

 Changes on Tracing Mode

Here, cats try to move towards food to find it. So, this mode
is called moving mode, and due to using the position of the
best cat in velocity equation, the most important issue is
how to select the leader (the best cat). In this algorithm, ten
percent of the best cats are stored in an external archive and
the leader of all cats is randomly selected from the archive.

 Elitism in algorithm

Some of the multi-objective optimization algorithms use an
elite-preserving operator to favor the elites of a population
by giving them an opportunity to be directly carried over to
the next generation. Here, EMCSO allows the elites of
population (ten percent of population size) in each epoch to
participate and compete in selection process to generate the
next population.

 Using opposition-based learning (OBL)

Generally speaking, cat swarm optimization starts with
initial population and tries to improve them towards some
optimal solutions. In the absence of a priori information
about the solutions, random guesses are usually used. The
computation time, among others, is related to the distance
of these initial guesses from the optimal solution. We can
improve our chance of starting with a closer (fitter) solution
by simultaneously checking the opposite solution. By doing
this, guess or opposite guess can be chosen as an initial
solution.

Definitions:

݀
ଵ ൌ

หభ
శభିభ

షభห

భ
ೌೣିభ

 , ݀
ଶ ൌ

หమ
శభି

మ
ೌೣି

మ
షభห

మ

Opposite Num
opposite num

ݔු ൌ ܽ ܾ െ ݔ

Opposite Poi
dimensional
ሾܽ, ܾሿ ݅ א ሼ

Opposite poi
by its compon

Now, by em
opposition-ba

Opposition-B
a point in D-d
function whic
According to

if
ሺුݔଵ, ,ଶݔු … , ݔු

൫ܨ ෘܲ൯ ሺܨ
otherwise, w
opposite poin
continue wit
population in
to enhance th
the flowchart

mber: Let ݔ
mber ුݔ is defin

nt: Let ܲ ൌ ሺ
space, wh

ሼ1,2, … , .ሽܦ

nt ෘܲ ൌ ሺුݔଵ, ݔු
nents: ුݔ ൌ ܽ

mploying the
ased optimizat

Based Optimiza
dimensional sp
ch is used to
o the definiti
ሻ is the oppo

ሺܲሻ, then poi
e continue w
nt are evalua
th the fitter
nitialization se
he speed of th

of the propos

א ሾܽ, ܾሿ be a
ed as follows:

ሺݔଵ, ,ଶݔ … , ሻݔ
here: ݔଵ, ,ଶݔ …

,ଶݔු … , ሻ isݔු
 ܾ െ .ݔ

opposite po
tion can be de

ation: Let ܲ ൌ
pace. Assume
measure the

ion of the op
site of ܲ ൌ ሺݔ
int ܲ can be

with ܲ. Hence
ated simultan

one. So, O
ection of the p
e convergenc

sed algorithm.

a real number
:

ሻ be a point in
… , ݔ א ܴ, an

completely d

oint definition
efined as follow

ൌ ሺݔଵ, ,ଶݔ … , ݔ
e that ‘F’ is a f
candidate’s f
pposite point
,ଵݔ ,ଶݔ … , .ሻݔ
 replaced wi

e, the point a
eously in ord

OBL is appli
proposed algo
e. Figure (3)

r. The

n a D-
nd ݔ א

defined

n, the
ws.

 ሻ beݔ
fitness
fitness.
t, ෘܲ ൌ
 Now,
ith ෘܲ ;
and its
der to
ied in
orithm
shows

Croowding distancce for cat୧ ൌ d୧୧
ଵ d୧

ଶ

Meysam Orouskhani et al./EMCSO: An Elitist Multi-Objective…

112

Fig. 3. Flowchart of EMCSO

4 . Experiments and Simulation Results

This section investigates the benchmarks, performance
measures, and simulations of the ZDT functions.

4.1

.Multi-objective optimization problems

4.1.1. Benchmarks

ZDT3: This function has a Pareto-optimal front
disconnected consisting of several noncontiguous convex
parts where n = 30 and . The true POF is

and is shown in Figure 6.
(Deb, 2002)

(12)

Fig. 4. The true POF of ZDT1 (Coello et al, 2007)

Fig. 5. The true POF of ZDT2 (Coello et al, 2007)

Z
w
an

Z
w

ଵ݂

ZDT1: This p
where n = 30 a
nd is shown in

ZDT2: This pr
where n = 30

ଵ݂
ଶand is show

݂

problem has
and ݔ א ሾ0,1ሿ
n Figure 4. (D

 ଵ݂ሺݔ

ଶ݂ሺݔ, ݃ሻ ൌ ݃ሺݔ

݃ሺݔሻ ൌ 1

roblem has a n
0 and ݔ א ሾ0,

wn in Figure 5.

 ଵ݂ሺݔሻ

ଶ݂ሺݔ, ݃ሻ ൌ ݃ሺݔ

a convex Pa
. The true PO

Deb, 2002)

ሻݔ ൌ ଵݔ

ሻݔ ൈ ቌ1 െ ඨ
݂

݃ሺ

9

݊ െ 1
ൈ ݔ

ୀଶ

non-convex Pa
,1ሿ. The true
. (Deb, 2002)

ሻ ൌ ଵݔ

ሻݔ ൈ ൬1 െ ሺ ଵ݂

݃ሺݔ

areto-optimal
OF is ଶ݂ ൌ 1 െ

ଵ݂

ሺݔሻ
ቍ

ݔ

areto-optimal
POF is ଶ݂ ൌ

ሻ
ሻଶ൰

front
െ ඥ ଵ݂

(10)

front
ൌ 1 െ

 (11)

ݔ א ሾ0,1ሿ.

ଶ݂ ൌ 1 െ ඥ ଵ݂ଵଵ െ ଵ݂ ൈ sinሺ1110ߨ ଵ݂ሻ

ଶ݂ሺݔ, ݃ሻ ൌ

 ଵ݂ሺݔሻ

ൌ ݃ሺݔሻ ൈ ቌ1 െ

݃ሺݔሻ ൌ 1

ൌ ଵݔ

ඨ ଵ݂

݃ሺݔሻ
െ ଵ݂

݃ሺݔሻ

9

݊ െ 1
ൈ

ୀଶ

ሻ
ൈ sin ሺ10ߨ ଵ݂ሻ

ݔ

ሻቍ

ZDT4: This
fronts where
The true POF
(Deb, 2002)

݃ሺݔሻ ൌ 1

ZDT6: This f
due to the n
solutions are
POF; (ii) the
and most den
ݔ א ሾ0,1ሿ. Th
Figure 8. (De

݂

problem con
n = 10, ݔଵ

F is ଶ݂ ൌ 1 െ

 ଵ݂ሺݔ

ଶ݂ሺݔ, ݃ሻ ൌ ݃ሺ

1 10 ൈ ሺ݊ െ 1

function cause
non-uniformit

non-uniform
solutions are
nse away fro
he true POF i
b, 2002)

ଵ݂ሺݔሻ ൌ 1 െ ex

ଶ݂ሺݔ, ݃ሻ ൌ ݃ሺ

݃ሺݔሻ ൌ 1

ntains 219 lo
א ሾ0,1ሿ, and

െ ඥ ଵ݂ and is s

ሻݔ ൌ ଵݔ

ሺݔሻ ൈ ቌ1 െ ඨ
݃

1ሻ ݔ
ଶ െ

ୀଶ
es two difficu
ty of the sea

mly distributed
the least dens

om the POF,
is ଶ݂ ൌ 1 െ ݂

xp ሺെ4ݔଵሻ ൈ ݊݅ݏ

ሺݔሻ ൈ ൬1 െ ሺ ଵ݂

݃ሺ

9 ൈ ሾ
ሺ∑ ሻݔ

ୀଶ

9

ocal Pareto-op
d ݔଶ, . . , ݔ א ሾെ
shown in Fig

ଵ݂

݃ሺݔሻ
ቍ

10 ൈ cos ሺ4ߨ ଵ݂

ulties for algor
arch space: (
d along the
se close to the
where n = 1

ଵ݂
ଶ and is sho

݊ሺ6ݔߨଵሻ
ଵ݂

ሻݔ
ሻଶ൰

ሿ.ଶହ

ptimal
െ5,5ሿ.

gure 7.

 (13)

ଵሻ

rithms
(i) the
global
e POF

10 and
own in

 (14)

Journal of Optimization in Industrial Engineering, Vol.11, Issue 2, Summer and Autumn 2018, 107- 117

113

Fig. 6. The true POF of ZDT3 (Coello et al, 2007)

4.1.2. Performance measure

There are many performance metrics to quantify the
performance of optimization algorithms in MOOPs. The
main aim of a Multi-objective algorithm is to find the
Pareto front closed to true Pareto front. There are two types
of performance metrics: metrics evaluating closeness to the
Pareto-optimal front and metrics evaluating diversity
among non-dominated solutions. The first metric computes
a measure of the closeness of set Q of N solutions from a
known set of the Pareto-optimal set P*; the second metric
finds the diversity among the obtained non-dominated
solutions. This paper uses generational distance and
inverted GD to evaluate the performance of the algorithm
for closeness and spacing and spread to measure the
diversity of solutions along the obtained Pareto front.

Fig. 7. The true POF of ZDT4 (Coello et al, 2007)

Fig. 8. The true POF of ZDT6 (Coello et al, 2007)

Generational distance (GD): This measure finds an
average distance of the solutions of Q from P* as follows:
(Veldhuizen, 1999)

 (15)

For p=2, parameter di is the Euclidean distance between
solutions i in Q and the nearest member of P*.

Inverted GD (IGD): This measure is inverted of GD and
finds an average distance P* from solutions of Q as follows:
(Veldhuizen, 1999)

 (16)

where di is the Euclidean distance between the non-
dominated individual of Q and the nearest individual of P*.

Spacing: This metric is used to measure the distribution of
the obtained Pareto optimal front. If the value is zero, the
obtained Pareto optimal front is uniform distribution in the
object space. Spacing of the POF is calculated as follows:
(Schott, 1995)

 (17)

where d is the average value of di, and K is the number of
object function.

Spread: This measures the diversity of solutions in
obtained POF and can be obtained as follows: (Deb, 2002)

 (18)

where di can be any distance measure between neighboring
solutions, and is the mean value of these distance
measures. Parameter dm

e is the distance between the
extreme solutions of P* and Q corresponding to m-th
objective function. Distances for calculating the spread
metric is showed in figure (9).

Fig. 9. Distances from the extreme solutions (Deb, 2002)

4.1.3. Simulation results

Simulation results of the proposed algorithm on ZDT
functions and compared with traditional methods based on

ܦܩ ൌ
ሺ∑∑ ௗ

|ೂ|
సభ ሻభ/

|ொ|

ܦܩܫ ൌ
ሺሺ∑ ௗ

|ೂ|
సభ ሻభ/

|ொ|

݃݊݅ܿܽܵ ൌ ට

݀ ൌ min ൝

ୀଵ
ܽ, ܽ א ܳ,

ට
ଵ

|ொ|ିଵ
∑ ሺ ҧ݀ െ|ொ|

ୀଵ

 ห ݂ሺܽሻ െ ݂൫
ଵ
 ݅, ݆ ൌ 1,2, … ,

െ ݀ሻଶ

൫ ܽ൯หൡ,

|ܳ|

 ∆ ൌ
∑ಾ

సభ

∑

ௗ
ା ∑ |ௗି|ೂ|

సభభ

∑ ௗ
ା|ொ|ಾ

సభ ௗത

ିௗത|

Meysam Orouskhani et al./EMCSO: An Elitist Multi-Objective…

114

measures of generational distance, inverted generational
distance, spread, and spacing are indicated in Tables 1-4,
respectively. It is notable that the best value in each
benchmark is indicated in bold. Table 1 shows the results
based on GD measure, and indicates that the proposed
algorithm has the value of 0.00087 and 0.00035 for
functions of ZDT1 and ZDT2 and gets the best
performance for these two benchmarks while its rank for
ZDT3-5 is forth, third, and second, respectively. Simulation
results based on measure of IGD are indicated in Table 2
where the proposed method gets the best performance for
ZDT1 and ZDT2 again. Results of calculating the diversity
of the algorithms are shown in Tables 3 and 4. These tables
indicates that the proposed algorithm does not have a good
performance for measure of spread, while it achieves the
best performance based on spacing metric for all functions
with regard to other algorithms. Also, approximated POFs
of ZDT functions by the proposed algorithm are shown in
Figure 11. It is remarkable that the results shown in Tables
1-4 are obtained from (Hu & Yen, 2013)- (Ali et al., 2012)-
(Abdi et al., 2012)- (Abbasian & Nezamabadipour, 2012).
Moreover, in order to compare the proposed multi-
objective CSO with former MOCSO, a comparison is done
based on three performance metrics for a test function
which is introduced in (Xue & Sanderson, 2003), and the
results are indicated in Table 5. Obtained results show that
the proposed algorithm has the best performance for the
measures of GD and Spacing.

4.2 . Multi-objective knapsack simulation

In this section, the proposed algorithm is applied to solve
the multi-objective knapsack problem. Here, the
characteristics of the knapsack are as follows: it has 10
items between

Figure 10 shows the POF of multi-objective knapsack
problem when the goal is to maximize the selected value,
while the weight is needed to minimize. It shows that for
the maximum acceptable weight (1800), the maximum
selected value is 4521, while the maximum value (10000)
is selected when the weight reaches 6013.

Fig. 10. Simulation of multi-objective knapsack problem:
Maximum value VS Minimum weight

 Table 1
 Comparison between the proposed algorithm and traditional methods by measure of GD (1st row: Mean, second row: Std)

Functions NSGA2 SPEA PAES MODE ADEA DEMO MDEA MOBBO/DE EMCSO

ZDT1
0.0334 0.0017 0.0820 0.0058 0.0027 0.0011 0.0009 0.0021 0.00084

0.0047 1E-6 0.0086 0 0.0003 0.0001 5E-6 0.0001 5.23E-9

ZDT2
0.0723 0.0013 0.1262 0.0055 0.0022 0.0007 0.0006 0.00083 0.00055

0.0316 0 0.0368 0 0.0002 0.0000 0 0.00005 2.36E-9

ZDT3
0.1145 0.0475 0.0238 0.0215 0.0027 0.0012 0.0011 0.0105 0.00282

0.0049 4.2E-5 4.7E-5 1E-5 0 0.0001 9.1E-5 0.0015 1.11E-7

ZDT4
0.5130 7.3402 0.8548 0.6389 0.1001 0.0410 0.0489 0.3653 0.22977

0.1184 6.5725 0.5272 0.5002 0.4462 0.0639 0.5363 0.2566 0.09601

ZDT6
0.2965 0.2211 0.0854 0.0262 0.0006 0.0006 0.0004 0.0034 0.00059

0.0131 0.0004 0.0066 0.0008 6E-5 2E-5 5.5E-5 0.0022 3.64E-9

 Table 2
 Comparison between the proposed algorithm and traditional methods by measure of IGD (1st row: Mean, second row: Std)

Functions
pA

MPSO

Ag

MPSO

Cd

MPSO

Cluster

MPSO

Pd

MPSO
NSGA2 SPEA2 MOED/D EMCSO

ZDT1
4.013E-3 1.18E-1 4.24E-3 1.25E-2 5.57E-1 5.05E-1 4.14E-3 4.03E-3 8.17E-4

6.28E-5 8.03E-2 2.58E-4 1.78E-3 1.95E-1 7.36E-2 1.77E-8 5.58E-5 3.11E-10

ZDT2
4.09E0-3 1.07E-2 4.28E-3 1.78E-2 6.87E-2 7.57E-1 4.10E-3 3.84E-3 1.88E-3

4.81E-5 7.47E-3 1.13E-4 5.09E-3 4.38E-2 1.43E-1 2.65E-8 4.34E-5 1.21E-8

ZDT3
3.323E-3 3.60E-1 3.06E-3 1.04E-1 3.05E-1 3.57E-1 3.16E-3 8.42E-3 2.49E-2

9.95E-5 9.84E-2 7.13E-5 7.05E-2 1.003E-1 3.95E-2 0 7.01E-3 6.77E-8

ZDT4
7.97E-3 5.79 5.91 3.98 4.03 2.52E+1 2.49E+1 4.86E-3 0.21451

1.470E-3 2.98 4.51 2.61 1.65 7.214 7.25E-5 8.41E-4 0.0650

ZDT6
3.406E03 4.68E-1 2.98E-3 4.39E-1 2.46 1.65 5.32E-3 3.99E-3 9.55E-3

2.287E-4 7.67E-1 1.54E-4 2.36E-2 8.16E-1 9.80E-1 2.65E-8 6.01E-5 6.70E-10

 ሾ0,20ሿ, 10 ൏ ݓݓݓ ൏ 20, ܹ௫ ൌ 1800, 20 ൏൏൏ ݒ ൏
00, ܽ݊݀ 10 ൏ ݉ ൏ 20 .

Journal of Optimization in Industrial Engineering, Vol.11, Issue 2, Summer and Autumn 2018, 107- 117

115

 Table 3
 Comparison between the proposed algorithm and traditional methods by measure of Spread (1st row: Mean, second row: Std)
Functions NSGA2 SPEA PAES PDEA ADEA MDEA MODEA MOBBO/DE EMCSO

ZDT1
0.3903 0.7845 1.2297 0.2985 0.3828 0.2837 0.3332 0.58541 0.6142

0.0018 0.0044 0.0007 0.0007 0.0014 0.0029 0.0009 0.0401 0.0008

ZDT2
0.4307 0.7551 1.1659 0.3179 0.3457 0.4504 0.3219 0.57439 0.6063

0.0047 0.0045 0.0076 0.0013 0.0039 0.0042 0.0004 0.0686 0.0021

ZDT3
0.7385 0.6729 0.7899 0.6238 0.5257 0.2993 0.7303 0.75083 0.5631

0.0197 0.0035 0.0016 0.0002 0.0430 0.0233 0.0000 0.0551 0.00008

ZDT4
0.7026 0.7984 0.8704 0.84085 0.43630 0.40638 0.37268 0.68631 0.6085

0.0646 0.0146 0.1013 0.0357 0.1100 0.0623 0.0034 0.0563 0.0384

ZDT6
0.66802 0.84938 1.1530 0.47307 0.36110 0.30524 0.30259 0.75057 0.5500

0.0099 0.0027 0.0039 0.0217 0.0361 0.0194 0.00007 0.1083 0.0010

 Table 4
Comparison between the proposed algorithm and traditional methods by measure of Spacing (1st row: Mean)
Functions SPEA2 NSGA2 TVMOPSO MOGSA NF-MOGSA EMCSO

ZDT1 0.0156 0.0007 0.0041 0.0076 0.0005 0.000115

ZDT2 0.0167 0.0001 0.0026 0.0033 0.0007 0.000100

ZDT3 0.0059 0.0002 0.0094 0.0136 0.0015 0.000129

ZDT6 0.0132 0.0003 0.0023 0.0081 0.0007 0.0000994

 Table 5
 Comparison of the proposed algorithm with traditional methods and former MOCSO for test function (1st row: Mean)

Measure NSGA2 MOPSO MOCSO EMCSO

GD 0.0265 0.001 0.0007692 0.00072284

Spacing 0.009 0.0089 0.009 0.00011664

Spread 0.6594 0.72 0.6077 0.6495

* Algorithms indicated in Tables 1-5 are referred as: NSGA2 (Deb et al, 2002), SPEA (Zitzler, 1999), PAES (Knowles & Corne, 1999), MOBBO/DE (Abdi
et al, 2012), DEMO (Robic & Filipi, 2005), TVMOPSO (Tripathi et al, 2007), MOGSA (Hassanzadeh, 2010), NF-MOGSA (Abbasian & Nezamabadipour,
2012), MODE (Xue & Sanderson, 2003), ADEA (Qian & Li, 2008), MDEA (Ali et al, 2009), PAMPSO, AgMPSO, CdMPSO, ClusterMPSO, PdMPSO (Hu
& Yen, 2013), SPEA2 (Zitzler et al, 2001), MOED/D (Zhang & Li, 2007), PDEA (Madavan, 2003), MODEA (Ali et al, 2012), MOPSO (Coello, 2004)

Fig. 11. Obtained POF by the proposed algorithm. a: ZDT1, b: ZDT2, c:ZDT3, d:ZDT4, e:ZDT6

Meysam Orouskhani et al./EMCSO: An Elitist Multi-Objective…

116

5. Conclusion

This paper proposes a novel multi-objective optimization
algorithm. The proposed algorithm uses cat swarm for
making offspring solutions and applies the non-dominated
sorting method and crowding distance technique to satisfy
closeness to the true Pareto front and diversity of the
solutions. Also, an elite-preserving operator is incorporated
to keep the elites of population to participate in the next
generation and an opposition search-based technique is
applied to increase the rate of the convergence. The
simulation is done on ZDT test functions and analyzed
based on closeness and diversity-based performance
measures. Moreover, the proposed method is applied to
solve a multi-objective knapsack problem. Simulation
results show that the proposed algorithm in comparison
with traditional methods has better performance for
functions of ZDT1 and ZDT2. Adapting the parameters of
the proposed method in order to move from exploration to
exploitation, global to local, and using the obtained
knowledge of particles by expert systems, such as fuzzy
approaches, can be investigated in future studies.

References

Abbasian, M., & Nezamabadipour, H. (2012). Multi-
objective gravitational search algorithm using non-
dominated fronts. Journal of electrical engineering, Vol
41, No 1 (in Persian).

Abdi, S., Teshnehlab, M., Aliyari, M., & Golahmadi, H.
(2012). Designing a multi-objective optimization
algorithm with BBO/DE (in persian). Intelligent systems
in electrical engineering, No3.

Ali, M., Pant, M., & Abraham, A. (2009). A modified
differential evolution algorithm and its application to
engineering problems. In: Proceedings of International
Conference of Soft Computing and Pattern Recognition
(SoCPaR-2009), , (pp. pp.196–201).

Ali, M., Siarry, P., & Pant, M. (2012). An efficient
Differential Evolution based algorithm for solving
multi-objective optimization problems. European
Journal of Operational Research 217, 404–416.

Bagherinejad, J., & Dehghani, M. (2016). A Non-dominated
Sorting Ant Colony Optimization Algorithm Approach
to the Bi-objective Multi-vehicle Allocation of
Customers to Distribution Centers. Journal of
Optimization in Industrial Engineering, Volume 9, Issue
19, Page 61-74.

Charnes, A. (1997). Goal programming and multiple
objective optimization,. European journal of
operational research. 1, , 39–54.

Chu, S., & Roddick, J. (2004). Ant colony system with
communication strategies. Information Sciences 167,
63-76.

Chu, S., Tsai, P., & Pan, J. (2006). Cat Swarm Optimization.
LNAI 4099, 3 (1), Berlin Heidelberg: Springer-Verlag,
(pp. pp. 854–858).

Coello, A. C., Gary, B., & Veldhuisen, A. (2007).
Evolutionary Algorithms for Solving Multi-Objective
Problems.

Coello, C. (2004). Handling multi objectives with pso, .
Evolutionary Computation, IEEE Transactions on
(Volume:8 , Issue: 3).

Deb, K. (2002). A Fast and Elitist Multiobjective Genetic
Algorithm. IEEE Transactions On Evolutionary
Computation, Vol. 6, NO. 2.

Deb, K. (2002). MultiObjective optimization using
evolutionary algorithms. Wiely.

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A
Fast and Elitist Multiobjective Genetic Algorithm:
NSGA–II. IEEE Transactions on Evolutionary
Computation, 6(2), 182–197.

Dorigo, M., & Gambardella, L. (1997). Ant colony system: a
cooperative learning approach to the traveling salesman
problem. IEEE Trans. On Evolutionary Computation.
26 (1) , 53-66.

Engelbrecht., A. ((2002).). Computational Intelligence. John
Wiley & Sons Ltd.

Fleming, C., & Fonseca, P. (1993). Genetic Algorithms for
Multiobjective Optimization: Formulation, Discussion
and Generalization. Proceedings of the Fifth
International Conference on Genetic Algorithms, (pp.
416–42).

Ghosh, A. (2004). Evolutionary Algorithms for Multi-
Criterion Optimization: A Survey. International Journal
of Computing & Information Sciences, 2 (1), pp. 38-57.

Goldberg, D. (1989). Genetic Algorithms in Search,
Optimization and Machine Learning. Kluwer Academic
Publishers.

Hassanzadeh, H. (2010). A Multi-objective Gravitational
Search Algorithm. Computational Intelligence,
Communication Systems and Networks (CICSyN),
Second International Conference on, (pp. pages 7-12).

Hassanzadeha, R., Mahdavib, I., & Mahdavi-Amiric, N.
(2014). Ant Colony Optimization for Multi-objective
Digital Convergent. Journal of Optimization in
Industrial Engineering, Volume 7, Issue 16, Page 1-19.

Hu, W., & Yen, G. (2013). Adaptive Multiobjective Particle
Swarm Optimization Based on Parallel Cell Coordinate
System. IEEE Transactions on Evolutionary
Comutation.

Kahejvand, V., Hossein, P., & Zandieh, M. (2014). Multi-
objective and Scalable Heuristic Algorithm for
Workflow Task Scheduling in Utility Grids. Journal of
Optimization in Industrial Engineering, Volume 7, Issue
14, Page 27-36.

karaboga, D. (2005). An Idea Based on Honey Bee Swarm for
Numerical Optimization, Technical report, . Erciyes
University.

Kennedy, J., & Eberhart, R. (1995). Particle Swarm
Optimization. Proceedings of IEEE International
Conference on Neural Networks.

Knowles, J., & Corne, D. (1999). The Pareto archived
evolution strategy: A new baseline algorithm for
multiobjective optimization. in Proceedings of the 1999
Congress on Evolutionary Computation. Piscataway,
NJ: IEEE Press, (pp. pp. 98–105).

Luila, E. P. (2008). Problema da Mochila Multi-critério,
Aspectos Algorítmicos e Implementação Informática. .
Tese de Mestrado, Instituto Superior Técnico,
Universidade Técnica de Lisboa.

Madavan, N. (2003). Multi-objective optimization using a
Pareto differential evolution approach. Proceeding of
the Congress on Evolutionary Computation”, Vol.2,
(pp. pp.862-869).

Mehdizadeh, E., & Kivi, F. (2014). Three Metaheuristic
Algorithms for Solving the Multi-item Capacitated Lot-
sizing Problem with Product Returns and
Remanufacturing. Journal of optimization in industrial
engineering, Volume 7, Issue 16, Page 41-53.

Journal of Optimization in Industrial Engineering, Vol.11, Issue 2, Summer and Autumn 2018, 107- 117

117

Mirzazadeh, M., Shirdel, G., & Masoumi, B. (2011). A
Honey Bee Algorithm To Solve Quadratic Assignment
Problem. Journal of optimization in industrial
engineering, Volume 4, Issue 9, Page 27-36 .

Naderi, B., & Sadeghi, H. (2012). A Multi-objective
simulated annealing algorithm to solving flexible no-
wait flowshop scheduling problems with transportation
times. Journal of Optimization in Industrial
Engineering, Volume 5, Issue 11, Page 33-41.

Orouskhani, M., Mansouri, M., & Teshnehlab, M. (2011).
Average- Inertia weighted Cat swarm optimization.
LNCS, Berlin Heidelberg: Springer-Verlag, (pp. pp
321– 328).

Orouskhani, M., Mansouri, M., Orouskhani, Y., &
Teshnehlab, M. (2013). A hybrid method of modified
cat swarm optimizationand gradient descent algorithm
for training anfis. International Journal of
Computational Intelligence and Applications Volume
12, Issue 02,.

Panda, G., Pradhana, P., & Majhib, B. (2011). IIR system
identification using cat swarm optimization. Expert
Systems with Applications, Volume 38, Issue 10, Pages
12671–12683.

Pradhan, P., & Panda, G. (2012). Solving multiobjective
problems using cat swarm optimization. Expert Systems
with Applications, Volume 39, Issue 3, Pages 2956–
2964.

Qian, W., & Li, A. (2008). Adaptive differential evolution
algorithm for multiobjective optimization problems.
Applied Mathematics and Computation 201, 431–440.

Rahmanian, R., Ghaderi, A., & Mehrabad.M. (2012). A
Simulated Annealing Algorithm within the Variable
Neighbourhood Search Framework to Solve the
Capacitated Facility Location-Allocation. Journal of
Optimization in Industrial Engineering, Volume 5, Issue
10, Page 45-54.

Robic, T., & Filipi, B. (2005). DEMO: Differential Evolution
for Multiobjective Optimization. LNCS 3410, (pp. pp.
520–533).

Santosa, B., & Ningrum, M. (2009). Cat Swarm
Optimization for Clustering . International Conference
of Soft Computing and Pattern Recognition, (pp. pp 54-
59).

Scheffer, M. (1985). Multiple Objective Optimization with
Vector Evaluated Genetic Algorithms. Proceedings of
the 1st International Conference on Genetic Algorithms.

Schott, J. R. (1995). Fault tolerant design using single and
multi-criteria genetic algorithms. Master’s thesis.

Shi, Y., & Eberhart, R. (1998). A modified particle swarm
optimizer. Proceedings of IEEE International
Conference on Evolutionary Computation, (pp. pp. 69–
7).

Storn, R., & Price, K. (1997). Differential evolution - a
simple and efficient heuristic for global optimization
over continuous spaces. Journal of Global Optimization
11, 341–359.

Tizhoosh, H. (2005). Opposition-Based Learning.
Proceedings of the 2005 International Conference on
Computational Intelligence for Modelling, Control and
Automation.

Tripathi, P., Bandyopadhyay, S., & Pal, S. (2007). Multi-
Objective Particle Swarm Optimization with time
variant inertia and acceleration coefficients. Information
sciences 177, 5033-5049.

Veldhuizen, D. V. (1999). Multiobjective evolutionary
algorithms: Classifications, analyses, and new
innovations, PhD thesis.

Weise, T. (2009). Global Optimization Algorithms, Theory
and applications.

Xue, F., & Sanderson, A. (2003). Pareto-based multi-
objective differential evolution. Proceedings of the 2003
Congress on Evolutionary Computation, (pp. pp.420-
431).

Yongguo, L., Xindong, W., & Yidong, S. (2012). Cat swarm
optimization clustering (KSACSOC): A cat swarm
optimization clustering algorithm . Scientific Research
and Essays Vol. 7(49), pp. 4176-4185.

Zadeh, L. (1963). Optimality and Non-Scalar-Valued
Performance Criteria. IEEE Trans Autom Control 8, 59–
60.

Zhang, Q., & Li, H. (2007). MOEA/D: a multiobjective
evolutionary algorithm based on decomposition. IEEE
Trans. Evol. Comput., Vol. 11, no. 6, pp. 712-731.

Zitzler, E. (1999). Evolutionary algorithms for multiobjective
optimization: Methods and applications. Doctoral
dissertation ETH 13398, Swiss Federal Institute of
Technology (ETH).

Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2:
improving the strength pareto evolutionary algorithm.
Swiss Federal Institute of Technology (ETH), Zurich,
Switzerland, Technical report TIK- report 103.

This article can be cited: Orouskhani, M., Teshnehlab, M. & Nekoui, M.A. (2018). EMCSO:
An Elitist Multi-Objective Cat Swarm Optimization . journal of Optimization in Industrial
 Engineering. 11(2), 2018, 107-117.

URL: http://qjie.ir/article_538170.html
DOI: 10.22094/joie.2017.500.12

