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Abstract 
This paper introduces a novel multi-objective evolutionary algorithm based on cat swarm optimization algorithm (EMCSO) and its 
application to solve a multi-objective knapsack problem. The multi-objective optimizers try to find the closest solutions to true Pareto front 
(POF) where it will be achieved by finding the less-crowded non-dominated solutions. The proposed method applies cat swarm 
optimization (CSO), a swarm-based algorithm with ability of exploration and exploitation, to produce offspring solutions and uses the non-
dominated sorting method to find the solutions as close as to POF and crowding distance technique to obtain a uniform distribution among 
the non-dominated solutions. Also, the algorithm is allowed to keep the elites of population in reproduction process and use an opposition-
based learning method for population initialization to enhance the convergence speed. The proposed algorithm is tested on standard test 
functions (zitzler’ functions: ZDT) and its performance is compared with traditional algorithms and is analyzed based on performance 
measures of generational distance (GD), inverted GD, spread, and spacing. The simulation results indicate that the proposed method gets 
the quite satisfactory results in comparison with other optimization algorithms for functions of ZDT1 and ZDT2. Moreover, the proposed 
algorithm is applied to solve multi-objective knapsack problem. 

Keywords: Multi-objective cat swarm optimization; Non-dominated sorting; Crowding distance; Opposition-based learning. 

1. Introduction 

Optimization includes finding the best values of some 
objective function given a defined domain or a set of 
constraints, including a variety of different types of 
objective functions and different types of domains. If the 
quantity to be optimized is expressed using only one 
objective, the problem is then referred to as a single-
objective problem, while many real-world problems require 
the simultaneous optimization of a number of objective 
functions which may be in conflict with one another; these 
problems are called multi-objective optimization problems 
(MOOP) whose main aim is to find a set of solutions. 
There are many optimization algorithms for solving 
MOOPs. Some of these algorithms, such as classical 
algorithms, can only find one point as the best solution, 
while others, such as population-based evolutionary 
algorithms, find a set of solutions and keep and store the 
best one. Evolutionary algorithms are desirable to solve 
multi-objective optimization problems because they deal 
simultaneously with a set of possible solutions which 
allows finding an entire set of optimal solutions in a single 
run of the algorithm, instead of having to perform a series 
of separate runs as in the case of the classical algorithms. 
Most of optimization algorithms are derived from meta-
heuristic concepts that are a higher-level procedure or 
heuristic designed to find, generate, or select a heuristic that 
may provide a sufficiently good solution for an 
optimization problem (Rahmanian, Ghaderi, & 

Mehrabad.M, 2012) (Mirzazadeh, Shirdel, & Masoumi, 
2011) (Mehdizadeh & Kivi, 2014). 
Swarm intelligence algorithms, as one of the main 
algorithms of metaheuristics, imitates the creature’s swarm 
behavior on finding food or mating and are able to share 
obtained information between particles of the population. 
This paper applies Cat swarm optimization that imitates the 
behavior of cats in seeking and tracing mode. This paper 
proposes a multi-objective version of cat swarm 
optimization where an opposition-based learning method 
for population initialization is applied into algorithm to 
increase the convergence speed. Also, in order to 
investigate the performance of the algorithm, simulations 
are done on ZDT test functions and analyzed based on 
multi-objective optimization performance measures. Also, 
due to the important role of multi-objective optimization in 
practical optimization problems of industrial engineering 
such as allocation of customers to distribution centers 
(Bagherinejad & Dehghani, 2016), digital convergent 
product network (Hassanzadeha, Mahdavib, & Mahdavi-
Amiric, 2014), workflow task scheduling in utility grids 
(Kahejvand, Hossein, & Zandieh, 2014), and flexible flow-
shop scheduling problems (Naderi & Sadeghi, 2012), this 
paper applies the proposed algorithm to solve multi-
objective knapsack problem.  
The rest of the article is organized as follows: in Section 2, 
multi-objective optimization, Pure Cat swarm optimization, 
and knapsack problem are introduced; in Section 3, the 
proposed algorithm for solving multi-objective problems is 
expressed. In Section 4, simulation results for standard test 
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functions based on four performance metrics are indicated. 
Finally, a conclusion is drawn in the last section. 

2. Background Information 

2.1. Multi-objective optimization  

                     (1) 

2.1.1 Definitions 

Domination: A decision vector, x1, dominates a decision 
vector, x2 (denoted by x1 ≺ x2), if and only if x1 is not 
worse than x2 in all objectives: 

And, x1 is strictly better than x2 in at least one objective: 

Similarly, an objective vector, f1, dominates another 
objective vector, f2, if f1 is not worse than f2 in all objective 
values, and f1 is better than f2 in at least one of the objective 
values. Objective vector dominance is denoted by f1

 ≺ f2. 
Solution x1 is better than solution x2 if x1

 ≺ x2 which 
happens when f1

 ≺ f2.  

Pareto-optimal: A decision vector, is Pareto-
optimal if there does not exist a decision vector, 

that dominates it. That is,  

Objective vector,  is Pareto-optimal if x is Pareto 
optimal (Deb, 2002). 

Fig. 1. Variable space and objective space  

(Coello, et al, 2007) 

Pareto-optimal set: The set of all Pareto-optimal decision 
vectors form the Pareto-optimal set, P*, that is: 

The Pareto-optimal set, therefore, contains the set of 
solutions, or balanced trade-offs, for the MOP. The 
corresponding objective vectors are referred to as the 
Pareto-optimal front. 

Pareto-optimal front: Given objective vector, f(x), and 
Pareto-optimal solution set, P*, the Pareto-optimal 
front  is defined as follows: 

The Pareto front, therefore, contains all the objective 
vectors corresponding to decision vectors that are not 
dominated by any other decision vector (Engelbrecht., 
(2002).). 

2.1.2 Classification of Multi-Objective Algorithms 

(Deb, 2002) and (Coello, et al, 2007) introduced two main 
classifications of multi-objective optimization algorithms. 
Deb categorized the multi-objective optimizers to classical 
and evolutionary algorithms including elitist and non-elitist 
multi-objective evolutionary algorithms. Classical 
algorithms, such as weighted sum method (Zadeh, 1963) 
and goal programming (Charnes, 1997), can only find one 
point as the best solution, while an evolutionary algorithm 
is able to deal with population of points and keeps the best 
solutions.  Elitist algorithms apply elite-preserving operator 
to give opportunity to elites of population to be directly 
carried over to the next generation, while non-elitist 
algorithms do not.  
The second classification is based on Coello study. Here, 
MOO algorithms are categorized to aggregative functions, 
population-based and Pareto-based. Algorithms in the first 
category use the techniques of combination or summation 
of objective functions to transform a MOP to a single-
objective problem. Weighted sum method is one the 
common algorithm in this group. Population-based 
algorithms, such as Vector Evaluated Genetic Algorithm 
(Scheffer, 1985) without using domination concept in 
selection process, apply an evolutionary algorithm to make 
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offspring solutions. Pareto-based algorithms not only use 
evolutionary process in making offspring, but also apply 
domination concept to selection process. In this paper, 
multi-objective algorithms are classified in three classes: 
classical, evolutionary, and swam-based algorithms. 
 Classical Methods 
Due to the structure of the classical methods, only one 
Pareto-optimal solution can be expected to be found in one 
simulation run. Although these algorithms are easy in 
implementation, they require some problem knowledge 
such as suitable weights. Weighted Sum Method (WSM) is 
one of the easiest algorithms in this category. This 
algorithm combines a set of objectives with a single 
objective by pre-multiplying each objective with a user-
supplied weight. It is clear that weights are the 
representative of the importance ratio of each objective. A 
MOOP can be converted to a single optimization problem 
as follows: 

                   (2) 

where wm is the weight of the m-th objective function. 
How to select the relative weight for each objective is the 
most important issue in this method. Also, setting an 
appropriate weight vector depends on the scaling of each 
objective function and may take different orders of 
magnitude. Therefore, it is mandatory to prepare normal 
objectives. 

 

Evolutionary Algorithms 
Evolutionary algorithms mimic natural principles to 
constitute search and optimization procedures. Fitness 
assignment, selection, and reproduction are three main parts 
of these algorithms (Weise, 2009). Genetic algorithm is the 
most interesting algorithm in optimization problems 
(Goldberg, 1989). This algorithm uses crossover and 
mutation operators to generate new population for next 
iteration. Selection is an important part of an evolutionary 
algorithm and can be done by many techniques such as 
tournament, random or deterministic methods. Many 
single-optimization algorithms are modified to be used in 
multi-objective optimization problems, such as genetic 
algorithm and differential evolution (Storn & Price, 1997).  
Scheffer (1985) proposed the first multi-objective 
algorithm based on genetic algorithm called ‘Vector 
Evaluated Genetic Algorithm’. This algorithm divides the 
population at every generation into M (number of 
objectives) equal subpopulations randomly and each of the 
M objective functions is used to evaluate some members in 
population.     
Multi-objective genetic algorithm (MOGA) (Fleming & 
Fonseca, 1993) assigns a rank to each individual based on 
the number of individuals dominating it. This algorithm 
uses a fitness sharing technique to distinguish between 
solutions, and then fitness of the solutions in the same niche 
will be reduced. 
Elitist non-dominated sorting genetic algorithm (NSGA2) 
is one of the most powerful algorithms proposed by Deb 
that uses a non-dominated sorting method for choosing 

points close to optimal solutions and applies the crowding 
distance technique in order to achieve a uniform 
distribution among the obtained Pareto front (Deb, 2002).    
 Swarm-based Algorithms 
Swarm intelligence algorithms are inspired by swarm life 
of creatures and simulate the behavior of animals in finding 
food and mating. These algorithms are based on population 
and try to solve the problems by using cognitive and social 
knowledge. Particles in swarm have a role the same as 
individuals in population and not only act like them, but 
also are able to share information between together to 
obtain knowledge. Particle swarm optimization (Kennedy & 
Eberhart, 1995)- (Shi & Eberhart, 1998), ant colony 
optimization (Dorigo & Gambardella, 1997)- (Chu & 
Roddick, 2004), and bee colony optimization (karaboga, 
2005) are the examples of swarm intelligence.  
Multi-objective particle swarm optimization (Coello, 2004) 
uses an external archive to store non-dominated solutions 
and randomly selects a particle in a cell with fewer 
members as a leader of other particles, and MOCSO 
(Pradhan & Panda, 2012) was developed by using cat 
swarm optimization algorithm where the Pareto ranking 
scheme is incorporated and the non-dominated solutions 
obtained by the cats are stored in the external archive. 
These are the two samples of multi-objective optimizers.  

2.2. Multi-objective knapsack  problem 

Suppose that we have a set of items whose values and 
weights are known and a bag with a limited capacity. To 
fill out the bag with the items in a way that their total value 
is the highest possible without exceeding the bag’s capacity 
is known as the knapsack problem.  

In a single knapsack problem, there is a fitness function as 
goal and a constraint to limit the solutions to the problem as 
follows: 

where w,v,m,x are weight, value, permitted value, and 
selected value of the i-th item, respectively, and W is the 
total acceptable weight.  This problem is known as a single-
constrained problem and can be easily changed to a multi-
objective minimum problem by investigating the constraint 
as a new function.  So, the multi-objective knapsack 
problem is defined as follows: 

Many real-life problems can be formulated such as the 
knapsack problem or one of its variants; for example, 
loading problems, project selection problems, capital 
budgeting problems, and cutting stock problems. Moreover, 
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it can be found as a sub-problem in several models, such as 
the partition and design of electronic circuits and the choice 
of a flight crew. There are several approaches that can be 
used to solve this kind of problems. These approaches are 
classified as exact methods (Luila, 2008) and approximated 
methods or meta-heuristics (Ghosh, 2004). The solutions 
obtained by the exact methods are exact solutions, while 
those obtained by the metaheuristics are approximate 
solutions. Due to the lack of computational resources and 
the problem sizes, the exact methods have limited 
application, i.e., they become ineffective, in particular in 
instances of great dimension. While heuristic methods, 
though they do not provide exact solutions, have been used 
as reliable alternatives, they have proven themselves as 
being efficient when dealing with big-sized instances, since 
they achieve “good” approximate solutions while using 
reasonable computational resources; that is what would be 
practically impossible to achieve through the exact 
methods.  

2.3. Pure cat swarm optimization 

Cat swarm optimization (CSO) is an optimization algorithm 
in the field of swarm intelligence. The CSO algorithm 
models the behavior of cats into two modes: ‘Seeking 
mode’ and ‘Tracing mode’. Swarm is made of initial 
population composed of particles to search in the solution 
space. For example, we can simulate birds, ants, and bees 
and create Particle swarm optimization, Ant colony 
optimization, and Bee colony optimization, respectively. 
Here, in CSO, we use cats as particles for solving the 
problems (Chu, et al, 2006). In CSO, every cat has its own 
position composed of D dimensions, velocities for each 
dimension, a fitness value, which represents the 
accommodation of the cat to the fitness function, and a flag 
to identify whether the cat is in seeking mode or tracing 
mode. The final solution would be the best position of one 
of the cats. The CSO keeps the best solution until it reaches 
the end of the iterations (Santosa & Ningrum, 2009). 
Although CSO is introduced for solving single 
optimization, but recently is used in many applications such 
as clustering (Yongguo et al., 2012) and system 
identification (Orouskhani et al., 2013)-(Panda et al., 2011). 
Cat swarm optimization algorithm has two modes in order 
to solve the problems described below. 

2.3.1. Seeking mode 

For modeling the behavior of cats in resting time and being 
alert, we use the seeking mode. This mode is a time for 
thinking and deciding about next move. This mode has four 
main parameters which are mentioned as follows: seeking 
memory pool (SMP), seeking range of the selected 
dimension (SRD), counts of dimension to change (CDC), 
and self-position consideration (SPC). The process of 
seeking mode is described as follows: 

Step1: Make j copies of the present position of catk, where             
j = SMP. If the value of SPC is true, let j = (SMP-1), then 
retain the present position as one of the candidates. 

Step2: For each copy, according to CDC, randomly plus or 
minus SRD percent the present values and replace the old 
ones. 

Step3: Calculate fitness values (FS) of all candidate points. 

Step4:  If all FS are not exactly equal, calculate the 
selecting probability of each candidate point by equation 
(6); otherwise, set all the selecting probabilities of each 
candidate point to ‘1’. 

Step5: Randomly pick a point to move to from the 
candidate points and replace the position of cat

If the goal of the fitness function is to find the minimum 
solution, FSb = FSmax; otherwise, FSb = FSmin. 

2.3.2. Tracing Mode 

Tracing mode is the second mode of algorithm. In this 
mode, cats desire to trace targets and foods. The process of 
tracing mode can be described as follows: 

Step1: Update the velocities for every dimension according 
to equation (7). 

Step2: Check if the velocities are in the range of maximum 
velocity. In case the new velocity is over-range, it is set 
equal to the limit. 

                    (7)

Step 3: Update the position of catk according to Eq (8). 

                              (8)

Xk,d is the position of catk , Xbest,d is the position of the cat, 
who has the best fitness value, c1 is an acceleration 
coefficient for extending the velocity of the cat to move in 
the solution space and is usually equal to 2.05, and r1 is a 
random value uniformly generated in the range of [0,1]. 

2.3.3. Core Description of CSO 

In order to combine the two modes into the algorithm, a 
mixture ratio (MR) is defined. This parameter decides how 
many cats will move into seeking and tracing. CSO is 
summarized below: (Orouskhani et al., 2011). 
First, ‘N’ cats are created, and then positions, velocities, 
and flags of each cat should be initialized. (*) Fitness value 
of each cat will be evaluated according to the fitness 
function, and the best cat is stored into memory. In the next 
step, according to cat’s flag, each cat will move to the 
seeking mode or tracing mode processes. After finishing 
the related process, re-pick the number of cats and set them 
into seeking mode or tracing mode according to MR 
parameter. At the end, check the termination condition; if 
satisfied, terminate the program, and otherwise go to (*). 

3 .EMCSO: The Proposed Algorithm  

Although there exists a multi-objective CSO, but no 
strategy is used for diversity issue that makes the algorithm 
unable to distinguish between solutions with the same rank 

iൌ
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FSmax െ FSmin
                                         ሺ6ሻ
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and diversity among them to be ignored. Also, this 
algorithm did not apply to standard test functions while 
using standard benchmarks to compare different algorithms 
is obligatory. In order to solve MOOPs and find the Pareto 
optimal front, pure CSO needs some changes on seeking 
and tracing modes to satisfy the quality and diversity of 
solutions. Moreover, opposition-based learning method is 
applied to algorithm to speed up the convergence rate.  

 Changes on Seeking Mode 

First, according to values of SRD, CDC, and SMP, 
positions of all cats in this mode are updated. In this mode, 
cats have two additional parameters: rank and crowding 
distance. Rank is the number of loss in competition process 
and crowding distance is used to demonstrate the density. 
So, a competition based on domination is performed among 
the cats; for each cat, the number of cats dominating it is 
assigned as rank. Then, cats are sorted: less rank, higher 
priority. Calculating the crowding distance metric for each 
cat is the second important task in this mode. Higher 
crowding distance value indicates that cat may be located in 
less density. Crowding distance calculation is shown in 
figure (2). For example, for an optimization problem with 
two objectives, the value of crowding distance for cati is 
calculated as follows: 

                (9) 

Fig. 2. The crowding distance calculation (Deb, 2002) 

The last step in this mode is to select the best cats. Here, 
algorithm sorts the solutions (consisting of parents and 
offspring: cats and their copies) based on non-dominated 
solutions (solutions with less rank) and higher crowding 
distance. It is necessary to indicate that the main selection 
operator is rank of each cat, and crowding distance is the 
second criterion and should be applied for cats with the 
same rank. 

 Changes on Tracing Mode  

Here, cats try to move towards food to find it. So, this mode 
is called moving mode, and due to using the position of the 
best cat in velocity equation, the most important issue is 
how to select the leader (the best cat). In this algorithm, ten 
percent of the best cats are stored in an external archive and 
the leader of all cats is randomly selected from the archive.  

 Elitism in algorithm 

Some of the multi-objective optimization algorithms use an 
elite-preserving operator to favor the elites of a population 
by giving them an opportunity to be directly carried over to 
the next generation. Here, EMCSO allows the elites of 
population (ten percent of population size) in each epoch to 
participate and compete in selection process to generate the 
next population. 

 Using opposition-based learning (OBL) 

Generally speaking, cat swarm optimization starts with 
initial population and tries to improve them towards some 
optimal solutions. In the absence of a priori information 
about the solutions, random guesses are usually used. The 
computation time, among others, is related to the distance 
of these initial guesses from the optimal solution. We can 
improve our chance of starting with a closer (fitter) solution 
by simultaneously checking the opposite solution. By doing 
this, guess or opposite guess can be chosen as an initial 
solution.  
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Fig. 3. Flowchart of EMCSO 

4 . Experiments and Simulation Results 

This section investigates the benchmarks, performance 
measures, and simulations of the ZDT functions. 

4.1
 
.Multi-objective optimization problems 

4.1.1. Benchmarks 

ZDT3: This function has a Pareto-optimal front 
disconnected consisting of several noncontiguous convex 
parts where n = 30 and . The true POF is 

and is shown in Figure 6. 
(Deb, 2002) 
                                                       

(12)

Fig. 4. The true POF of ZDT1 (Coello et al, 2007) 

Fig. 5. The true POF of ZDT2 (Coello et al, 2007) 
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Fig. 6. The true POF of ZDT3 (Coello et al, 2007) 

4.1.2. Performance measure 

There are many performance metrics to quantify the 
performance of optimization algorithms in MOOPs. The 
main aim of a Multi-objective algorithm is to find the 
Pareto front closed to true Pareto front. There are two types 
of performance metrics:  metrics evaluating closeness to the 
Pareto-optimal front and metrics evaluating diversity 
among non-dominated solutions. The first metric computes 
a measure of the closeness of set Q of N solutions from a 
known set of the Pareto-optimal set P*; the second metric 
finds the diversity among the obtained non-dominated 
solutions. This paper uses generational distance and 
inverted GD to evaluate the performance of the algorithm 
for closeness and spacing and spread to measure the 
diversity of solutions along the obtained Pareto front.  

Fig. 7. The true POF of ZDT4 (Coello et al, 2007) 

Fig. 8. The true POF of ZDT6 (Coello et al, 2007) 

Generational distance (GD): This measure finds an 
average distance of the solutions of Q from P* as follows: 
(Veldhuizen, 1999) 

                                (15) 

For p=2, parameter di is the Euclidean distance between 
solutions i in Q and the nearest member of P*.  

Inverted GD (IGD): This measure is inverted of GD and 
finds an average distance P* from solutions of Q as follows: 
(Veldhuizen, 1999) 

                                            (16) 

where di is the Euclidean distance between the non-
dominated individual of Q and the nearest individual of P*. 

Spacing: This metric is used to measure the distribution of 
the obtained Pareto optimal front. If the value is zero, the 
obtained Pareto optimal front is uniform distribution in the 
object space. Spacing of the POF is calculated as follows: 
(Schott, 1995) 

             (17) 

where d is the average value of di, and K is the number of 
object function.  

Spread: This measures the diversity of solutions in 
obtained POF and can be obtained as follows: (Deb, 2002) 

                                             (18) 

where di can be any distance measure between neighboring 
solutions, and  is the mean value of these distance 
measures. Parameter dm

e is the distance between the 
extreme solutions of P* and Q corresponding to m-th 
objective function. Distances for calculating the spread 
metric is showed in figure (9). 

Fig. 9. Distances from the extreme solutions (Deb, 2002) 
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measures of generational distance, inverted generational 
distance, spread, and spacing are indicated in Tables 1-4, 
respectively. It is notable that the best value in each 
benchmark is indicated in bold. Table 1 shows the results 
based on GD measure, and indicates that the proposed 
algorithm has the value of 0.00087 and 0.00035 for 
functions of ZDT1 and ZDT2 and gets the best 
performance for these two benchmarks while its rank for 
ZDT3-5 is forth, third, and second, respectively. Simulation 
results based on measure of IGD are indicated in Table 2 
where the proposed method gets the best performance for 
ZDT1 and ZDT2 again. Results of calculating the diversity 
of the algorithms are shown in Tables 3 and 4. These tables 
indicates that the proposed algorithm does not have a good 
performance for measure of spread, while it achieves the 
best performance based on spacing metric for all functions 
with regard to other algorithms. Also, approximated POFs 
of ZDT functions by the proposed algorithm are shown in 
Figure 11. It is remarkable that the results shown in Tables 
1-4 are obtained from (Hu & Yen, 2013)- (Ali et al., 2012)- 
(Abdi et al., 2012)- (Abbasian & Nezamabadipour, 2012). 
Moreover, in order to compare the proposed multi-
objective CSO with former MOCSO, a comparison is done 
based on three performance metrics for a test function 
which is introduced in (Xue & Sanderson, 2003), and the 
results are indicated in Table 5. Obtained results show that 
the proposed algorithm has the best performance for the 
measures of GD and Spacing.  

4.2 . Multi-objective knapsack simulation 

In this section, the proposed algorithm is applied to solve 
the multi-objective knapsack problem. Here, the 
characteristics of the knapsack are as follows: it has 10 
items between

Figure 10 shows the POF of multi-objective knapsack 
problem when the goal is to maximize the selected value, 
while the weight is needed to minimize. It shows that for 
the maximum acceptable weight (1800), the maximum 
selected value is 4521, while the maximum value (10000) 
is selected when the weight reaches 6013. 

Fig. 10. Simulation of multi-objective knapsack problem:  
Maximum value VS Minimum weight

                            Table 1  
                            Comparison between the proposed algorithm and traditional methods by measure of GD  (1st row: Mean, second row: Std) 

Functions NSGA2 SPEA PAES MODE ADEA DEMO MDEA MOBBO/DE EMCSO 

ZDT1 
0.0334 0.0017 0.0820 0.0058 0.0027 0.0011 0.0009 0.0021 0.00084 

0.0047 1E-6 0.0086 0 0.0003 0.0001 5E-6 0.0001 5.23E-9 

ZDT2 
0.0723 0.0013 0.1262 0.0055 0.0022 0.0007 0.0006 0.00083 0.00055 

0.0316 0 0.0368 0 0.0002 0.0000 0 0.00005 2.36E-9 

ZDT3 
0.1145 0.0475 0.0238 0.0215 0.0027 0.0012 0.0011 0.0105 0.00282 

0.0049 4.2E-5 4.7E-5 1E-5 0 0.0001 9.1E-5 0.0015 1.11E-7 

ZDT4 
0.5130 7.3402 0.8548 0.6389 0.1001 0.0410 0.0489 0.3653 0.22977 

0.1184 6.5725 0.5272 0.5002 0.4462 0.0639 0.5363 0.2566 0.09601 

ZDT6 
0.2965 0.2211 0.0854 0.0262 0.0006 0.0006 0.0004 0.0034 0.00059 

0.0131 0.0004 0.0066 0.0008 6E-5 2E-5 5.5E-5 0.0022 3.64E-9 

                    Table 2 
 Comparison between the proposed algorithm and traditional methods by measure of IGD (1st row: Mean, second row: Std) 

Functions 
pA 

MPSO 

Ag 

MPSO 

Cd 

MPSO 

Cluster 

MPSO 

Pd 

MPSO 
NSGA2 SPEA2 MOED/D EMCSO 

ZDT1 
4.013E-3 1.18E-1 4.24E-3 1.25E-2 5.57E-1 5.05E-1 4.14E-3 4.03E-3 8.17E-4 

6.28E-5 8.03E-2 2.58E-4 1.78E-3 1.95E-1 7.36E-2 1.77E-8 5.58E-5 3.11E-10 

ZDT2 
4.09E0-3 1.07E-2 4.28E-3 1.78E-2 6.87E-2 7.57E-1 4.10E-3 3.84E-3 1.88E-3 

4.81E-5 7.47E-3 1.13E-4 5.09E-3 4.38E-2 1.43E-1 2.65E-8 4.34E-5 1.21E-8 

ZDT3 
3.323E-3 3.60E-1 3.06E-3 1.04E-1 3.05E-1 3.57E-1 3.16E-3 8.42E-3 2.49E-2 

9.95E-5 9.84E-2 7.13E-5 7.05E-2 1.003E-1 3.95E-2 0 7.01E-3 6.77E-8 

ZDT4 
7.97E-3 5.79 5.91 3.98 4.03 2.52E+1 2.49E+1 4.86E-3 0.21451 

1.470E-3 2.98 4.51 2.61 1.65 7.214 7.25E-5 8.41E-4 0.0650 

ZDT6 
3.406E03 4.68E-1 2.98E-3 4.39E-1 2.46 1.65 5.32E-3 3.99E-3 9.55E-3 

2.287E-4 7.67E-1 1.54E-4 2.36E-2 8.16E-1 9.80E-1 2.65E-8 6.01E-5 6.70E-10 

 ሾ0,20ሿ, 10 ൏ ݓݓݓ ൏ 20,  ܹ௫ ൌ 1800, 20 ൏൏൏ ݒ ൏
00, ܽ݊݀ 10 ൏ ݉ ൏ 20 .
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                      Table 3 
   Comparison between the proposed algorithm and traditional methods by measure of Spread (1st row: Mean, second row: Std) 
Functions NSGA2 SPEA PAES PDEA ADEA MDEA MODEA MOBBO/DE EMCSO 

ZDT1 
0.3903 0.7845 1.2297 0.2985 0.3828 0.2837 0.3332 0.58541 0.6142 

0.0018 0.0044 0.0007 0.0007 0.0014 0.0029 0.0009 0.0401 0.0008 

ZDT2 
0.4307 0.7551 1.1659 0.3179 0.3457 0.4504 0.3219 0.57439 0.6063 

0.0047 0.0045 0.0076 0.0013 0.0039 0.0042 0.0004 0.0686 0.0021 

ZDT3 
0.7385 0.6729 0.7899 0.6238 0.5257 0.2993 0.7303 0.75083 0.5631 

0.0197 0.0035 0.0016 0.0002 0.0430 0.0233 0.0000 0.0551 0.00008 

ZDT4 
0.7026 0.7984 0.8704 0.84085 0.43630 0.40638 0.37268 0.68631 0.6085 

0.0646 0.0146 0.1013 0.0357 0.1100 0.0623 0.0034 0.0563 0.0384 

ZDT6 
0.66802 0.84938 1.1530 0.47307 0.36110 0.30524 0.30259 0.75057 0.5500 

0.0099 0.0027 0.0039 0.0217 0.0361 0.0194 0.00007 0.1083 0.0010 

                                   Table 4 
Comparison between the proposed algorithm and traditional methods by measure of Spacing (1st row: Mean) 
Functions SPEA2 NSGA2 TVMOPSO MOGSA NF-MOGSA EMCSO 

ZDT1 0.0156 0.0007 0.0041 0.0076 0.0005 0.000115 

ZDT2 0.0167 0.0001 0.0026 0.0033 0.0007 0.000100 

ZDT3 0.0059 0.0002 0.0094 0.0136 0.0015 0.000129 

ZDT6 0.0132 0.0003 0.0023 0.0081 0.0007 0.0000994 

                           Table 5 
    Comparison of the proposed algorithm with traditional methods and former MOCSO for test function (1st row: Mean) 

Measure NSGA2 MOPSO MOCSO EMCSO 

GD 0.0265 0.001 0.0007692 0.00072284 

Spacing 0.009 0.0089 0.009 0.00011664 

Spread 0.6594 0.72 0.6077 0.6495 

------------------------------------------------------------------------------------------------------------------------------------------------------- 
* Algorithms indicated in Tables 1-5 are referred as: NSGA2 (Deb et al, 2002), SPEA (Zitzler, 1999), PAES (Knowles & Corne, 1999), MOBBO/DE (Abdi 
et al, 2012), DEMO (Robic & Filipi, 2005), TVMOPSO (Tripathi et al, 2007), MOGSA (Hassanzadeh, 2010), NF-MOGSA (Abbasian & Nezamabadipour, 
2012), MODE (Xue & Sanderson, 2003), ADEA (Qian & Li, 2008), MDEA (Ali et al, 2009), PAMPSO, AgMPSO, CdMPSO, ClusterMPSO, PdMPSO (Hu 
& Yen, 2013), SPEA2 (Zitzler et al, 2001), MOED/D (Zhang & Li, 2007), PDEA (Madavan, 2003), MODEA (Ali et al, 2012), MOPSO (Coello, 2004) 

Fig. 11. Obtained POF by the proposed algorithm. a: ZDT1, b: ZDT2, c:ZDT3, d:ZDT4, e:ZDT6 
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5. Conclusion 

This paper proposes a novel multi-objective optimization 
algorithm. The proposed algorithm uses cat swarm for 
making offspring solutions and applies the non-dominated 
sorting method and crowding distance technique to satisfy 
closeness to the true Pareto front and diversity of the 
solutions. Also, an elite-preserving operator is incorporated 
to keep the elites of population to participate in the next 
generation and an opposition search-based technique is 
applied to increase the rate of the convergence. The 
simulation is done on ZDT test functions and analyzed 
based on closeness and diversity-based performance 
measures. Moreover, the proposed method is applied to 
solve a multi-objective knapsack problem. Simulation 
results show that the proposed algorithm in comparison 
with traditional methods has better performance for 
functions of ZDT1 and ZDT2. Adapting the parameters of 
the proposed method in order to move from exploration to 
exploitation, global to local, and using the obtained 
knowledge of particles by expert systems, such as fuzzy 
approaches, can be investigated in future studies.  
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