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Abstract 

The increasing diversity in packet-processing applications together with the rapid increase in channel bandwidth has brought about greater 

complexity in communication protocols. Also influenced by these factors is the computational load for packet-processing engines, 

demanding high performance microprocessor designs as an indispensable solution. This paper reports on extensive simulation experiments 

carried out for exploring the performance of instruction-level parallel Very Long Instruction Word (VLIW) processors executing packet-

processing applications. On the grounds of the experimental results, a design space exploration has been used to derive an efficient 

application-specific VLIW processor architecture based on the VEX instruction set architecture. The VEX simulator toolset has been used 

for design space exploration, and a number of networking applications have been chosen to serve in guiding the architectural exploration. 

The optimization measures achieve up to 60% improvement in performance for the most representative packet-processing applications. 

Keywords Design Space Exploration, VLIW Architecture, Packet-processing Applications. 

 

1. Introduction  

As packet processing applications become more 

complex, the computational demand on packet processing 

engines keeps increasing. High performance network 

processors must employ the same performance 

improvement methods used in general purpose 

microprocessors, such as Instruction level parallelism (ILP) 

exploitation. The very long instruction word (VLIW) 

architectures are useful to accelerate the processing speed, 

and are used in many high-performance computing 

platforms, either in the uni-processors or as processing 

cores in chip multiprocessors. The routing switch processor 

of Agere PayloadPlus ‎[1] draws on programmable VLIW 

compute-engines to process protocol data units. The Cisco 

Toaster2 ‎[2] processing engine is a VLIW core with two 

four-stage instruction pipelines. C-5e network processor ‎[3] 

combines 17 programmable RISC cores for packet and cell 

forwarding along with 32 VLIW engines, referred to as 

serial data processors, for processing data streams. Imagine 

‎[4] is a processor designed to support media processing 

applications and contains eight VLIW clusters controlled 

by a microcontroller. Tensilica ‎[5] along with Improv 

Systems are considered pioneers in the field of configurable 

processors. While Improv Systems is based on the VLIW 

approach in companion with a tightly controlled toolset, 

Tensilica’s current and prior products work on the basis of 

the RISC model, essentially enabling customers to have 

their own customized processor. Tensilica, however, has 

adopted the flexible-length instruction extension (FLIX) as 

its new VLIW architecture.  

These VLIW architectures achieve a better performance 

by exploiting the instruction-level parallelism existing in a 

program to execute multiple instructions concurrently. The 

maximum number of executed instructions depends on the 

dependencies among the instructions and the available 

functional units. The concurrent execution of multiple 

instructions in parallel boosts up the number of instructions 

per cycle which is a key metric for improving the 

processor’s performance. The design space exploration 

(DSE) of VLIW architecture is associated with different 

conflicting criteria such as the chip’s area, speed, power 

consumption or on-chip memory requirements. The output 

is a set of different architectures associated with different 

trade-offs. While significant research has been conducted 

on the analysis of VLIW’s performance in general 

processing domain ‎[6-10], very few works have been 

directed to more specialized domains such as network 

processors.  
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This paper proposes a design space exploration for an 

embedded VLIW processor which obtains a performance-

efficient architecture meeting the requirements of common 

network applications including both data- and control-plane 

packet-processing tasks. In this work, the VLIW 

configuration parameters are varied to find an optimal 

configuration for some popular network benchmarks. The 

focus of this paper is on packet-processing applications 

which differ from scientific computing applications that 

have traditionally been the focus of parallelism prediction 

and extraction. Network processors are mostly 

characterized as systems having dynamic workloads, 

requiring irregular data patterns, in need of switching 

between varieties of different tasks, and featuring less 

complex control behaviour. This work introduces a DSE to 

find out the best VLIW architecture using the VEX system 

‎[11]. Section II begins with a brief description of the VLIW 

architectures. We then go on to describe the VEX system; 

in particular, the instruction set architecture (ISA), the VEX 

compiler and the simulation environment. Section III 

elaborates on our DSE methodology, giving details on its 

architecture and parameter space definition, and specifying 

the values used for each iteration of the exploration in the 

proposed DSE scheme. In Sections IV and V, some packet-

processing applications are introduced and analyzed. 

Experimental results are presented in Section VI, and 

finally Section VII concludes the paper. 

2. Architecture Model and Simulation Environment  

2.1. The Concept of VLIW Architecture  

Some high performance processors exploit the 

instruction-level parallelism to meet the performance 

demands of embedded applications. The very long 

instruction word or VLIW is an ILP approach to helping 

processor designers exploit the high levels of ILP by 

executing multiple concurrent operations in the form of a 

long instruction word. In VLIW architecture, the creation 

of an instruction word of simultaneously-issued operations 

is completely done at compile time. In fact,  the VLIW 

architecture owes much of its efficiency and high speed to 

the fact that it makes no run-time decisions concerning the 

instruction issue and scheduling. In other words, in VLIW 

architecture, the dynamic runtime ILP extraction of 

SuperScalars is shifted to the compile time, allowing for 

more flexibility. The code optimizations introduced by the 

compiler try to maximize the ILP to exploit the VLIW’s 

parallelism. The inter-dependence of the compiler and the 

VLIW architecture makes the design space exploration 

more difficult compared to exploration in other 

architectures. 

In a VLIW machine, the data path consists of multiple 

functional units which can be independently controlled 

through dedicated fields in the instruction word. The 

distinctive feature of the VLIW architectures is that its long 

instructions are in fact the machine instructions. There is no 

additional layer of interpretation for expanding the machine 

instructions into micro-instructions. While complex 

resource or field conflicts often exist between functionally 

independent operations in a horizontal micro-code engine, a 

VLIW machine generally has an orthogonal instruction set 

and a higher degree of parallelism. 

2.2. The VEX System: A VLIW Example  

VEX ‎[11] models a parametric platform for designing 

embedded processors based on the VLIW architecture and 

allows for variation in a common set of applications and 

system resources such as issue width, number of functional 

units and registers, and processor’s instructions set. The 

VEX development system, referred to as the VEX 

toolchain ‎[12], includes the set of tools that allows C 

programs compiled for a VEX target to be simulated on a 

host workstation. The VEX toolchain is mainly intended 

for architecture exploration, application development, and 

benchmarking. It includes a very fast architectural 

simulator that uses a form of binary translation to convert 

the VEX assembly language files to native binaries running 

on the host workstation. The translator annotates the 

binaries to collect execution statistics and includes a cache 

simulator to collect D-cache and I-cache data. Figure 1 

shows the overall structure of the VEX toolchain. The Vex 

system can be characterized in terms of the following three 

components. 

 

 

Fig.1. Structure of the VEX toolchain ‎[11]. 

2.2.1. The VEX Instruction Set Architecture: VEX ISA 

The VEX architecture is a 32-bit clustered VLIW that is 

parametric and customizable to application-specific 

domains. The VEX ISA is based on the ISA of the HP/ST 

Lx family of VLIW embedded cores ‎[13]. Its scaling 
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property allows for changing the number of clusters, 

execution units, registers, and latencies while its 

customizability enables adding special-purpose instructions 

to the base instruction set. The basic structure of each 

cluster has been specified in ‎[11]. VEX includes a complete 

experience of all architecture latencies and resource 

constraints: Parallel execution units including multiple 

ALUs and multipliers, parallel memory pipelines, a large 

visible register set, and an efficient branch architecture. The 

basic unit of execution in VEX is an operation, which is 

similar to the notion of instruction in typical RISC 

processors. Syllable is the encoded operation, and a 

collection of syllables issued in a single package and 

executed in VLIW architecture as an atomic unit is called 

an instruction word. 

The default VEX cluster contains two register files, four 

integer ALUs, two 16 × 32-bit multiplication units, and a 

data cache port as shown in Figure 2. Up to four operations 

per instruction can be issued in each cluster. The register 

set consists of 64 general-purpose registers (GRs) that are 

32-bits wide, and there are eight 1-bit branch registers 

(BRs). In addition, the default VEX cluster also contains a 

control or branch unit. Without changing the instruction set, 

the cluster could be significantly altered with no impact on 

the software. Also, the functionality of the cluster could be 

expanded with additional special-purpose instructions. The 

default VEX clusters contain memory, integer, and branch 

functional units. The memory units perform operations 

such as load, store, and prefetch. Each memory unit is 

associated with an access to the memory system. The 

integer units execute the common set of integer operations 

on registers or immediate operands; viz. compare, shift, and 

select. The branch units execute control operations based 

on the conditions stored in the branch registers, such as 

conditional branches, unconditional jumps, direct and 

indirect calls, and returns. Given the restriction that only 

four syllables may be used to encode the operations for 

each cluster, at most four operations may be issued in a 

single instruction. 

 

2.2.2. The VEX C Compiler 

The VEX C compiler is at the core of the VEX 

toolchain, and is derived from the Lx/ST200 C compiler, 

which is, in turn, derived from the Multiflow C compiler. 

This compiler draws on trace scheduling, and is a robust 

ISO/C89 compiler. A very flexible parametric machine 

model determines the target architecture. VEX permits 

architecture space exploration by changing the number of 

clusters, execution units, the issue width, and the operation 

latencies without recompiling the compiler. In the VLIW 

architecture, the compiler plays an important role in 

scheduling multiple concurrent operations and in exploiting 

the maximum amount of ILP. 

2.2.3. The VEX Simulation system 

The VEX simulator is a functional simulator that is 

based on the notion of the so-called compiled simulation 

technology. The compiled simulator (CS) converts the 

VEX binary to the host computer’s binary by first 

converting VEX to C and then producing the host 

executable by invoking the host’s C compiler. In addition 

to the standard semantics of the instructions, CS introduces 

a profiler to count the execution cycles and other 

interesting statistics and also performs a simple cache 

simulation. CS operates on each of the individual VEX 

assembly language files and translates these files back to C. 

The CS-generated C files are then compiled with the host 

platform’s C compiler and linked with the support libraries 

that deal with the instrumentation. The simulation system 

also comes with a fairly complete set of POSIX-like libc 

and libm libraries based on the GNU newlib libraries. 

3. Experimental Setup 

With the VEX simulation environment, the source code 

of each algorithm has its own MAKEFILE which is 

modified to use the VEX compiling tools. In the VEX 

compiler, several types of architectural customizations are 

possible; for instance, one may augment the VEX ISA with 

custom instructions for functions which are 

computationally intensive. It is also possible to consider 

different processor and memory architectures in which the 

customizations are supplied at the compile time. In this 

experiment, we have used the memory customizations 

which are defined in a cfg file. For the parameters not 

defined within the custom memory architecture, the default 

CS configuration file (i.e. vex.cfg) is used. Before running 

the VEX compiler, since there is no default value for the 

machine configuration, it must be defined within an mm 

file. 

For design space exploration, we have changed the value 

of different parameters when generating the machine 

configuration files. Our intention is to experiment with the  

VEX architectural characteristics whilst running on 

different architectures and to obtain the best 

cost/performance trade-off for our application of interest. 

Table 1 shows the ranges of parameter values possible to be 

 

Fig.2. Structure of the default VEX cluster. The default cluster includes 4 

integer units, 2 multipliers, a load-store unit, and a control unit ‎[11]. 
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varied for the design space. Details on the definition and 

description of each parameter are given in ‎[11].  

4.  Domain-Specific Applications and Optimization 

Strategy 

According to the IETF (Internet Engineering Task 

Force), the operations of network applications can be 

functionally categorized into data-plane and control-plane 

functions ‎[14]. There are a large variety of NP applications 

that contain a wide range of different data-plane and 

control-plane processing tasks. To properly evaluate 

network-specific processing tasks, it is necessary to specify 

a workload that is typical of this context. Commbench ‎[15]‎ 

is composed of eight data-plane programs that are 

categorized into four packet-header processing and four 

packet-payload processing tasks. Within a similar line of 

work, NetBench‎ ‎[16] contains nine applications that are 

representative of commercial applications for network 

processors featuring both small low-level code fragments 

as well as large application-level programs. Both 

CommBench and NetBench present data-plane applications. 

NpBench ‎‎[17]‎, on the other hand, targets both control-plane 

and data-plane workloads. Ramaswamy and Wolf et. al. 

‎[18] have presented a tool, called PacketBench, which 

provides a framework for implementing network-

processing applications and extracting workload 

characteristics. The Embedded Microprocessor 

Benchmarking Consortium (EEMBC) ‎[19] has also 

developed a networking benchmark suite to reflect the 

performance of client and server systems (TCPmark), and 

functions mostly carried out in infrastructure equipment 

(IPmark).  

With the representative benchmark applications for IPv4 

protocol header- and payload-processing at hand, we have 

performed a simulation-based design space exploration for 

packet-processing applications based on the VEX 

architecture. The selected applications are IPv4-radix and 

IPv4-trie as RFC1812-compliant look-up and forwarding 

algorithms ‎[20], a packet-classification algorithm called 

Flow-Class ‎[18], internet protocol security (IPSec) ‎[21] and 

the message-digest algorithm 5 (MD5) as payload-

processing applications. The measurements carried out with 

reference to these network applications reveal the 

performance challenges of different programs. The 

presented measurements also account for dynamics, in that 

the frequency of a measured event is weighed by the 

number of times the event occurs during execution of the 

application. 

Each pipeline stage of our simulation model is 

parameterized by the width of the stage and the sizes of the 

specialized memory structures within the stage. All these 

parameters must be tuned in a way to maximize the 

processor performance for the selected applications. In this 

paper, a heuristic optimization scheme has been used for 

design space exploration. The heuristic is intended to vary a 

broad range of processor parameters to obtain an optimum 

processor configuration in terms of performance.  

5. The Analysis of Packet-Processing Applications 

A common approach to lower the application execution 

time is reducing the number of clock cycles per instruction 

or instead increasing the number of instructions per clock 

(IPC). The instruction-level parallelism (ILP) techniques 

try to increase the IPC. The utilization of this technique 

requires a detailed analysis of the application 

characteristics for making a proper architectural decision. 

The superscalar and VLIW processors exploit concurrent 

functional units and execute as many instructions as 

possible in parallel. Therefore, an architecture designer 

needs to know the optimum number of parallel functional 

units promising the best cost/performance trade-off. This 

metric depends strictly on the consequent logic or 

arithmetic instructions that would be executed on the 

concurrent functional units. The most frequent chains of 

consequent logic or arithmetic instructions in our 

applications are summarized in Figure 3. As can be seen in 

the figure, the most frequent chains of logic/arithmetic 

sequences in header-processing applications (i.e IPV4-

radix, IPV4-trie, and Flow-class) are one or two 

instructions. However, the payload-processing applications 

(i.e IPSec and MD5) are more computationally intensive 

Table 1 

The ranges of parameter values for the machine architecture configuration 

file.  

Parameter Values 

Issue width 1-32 

MemLoad 1-32 

MemStore 1-32 

ALU 1-32 

Multiply 1-32 

General Registers 4-64 

Branch register 2-8 

 

 

 

Fig. 3. The occurrence of consequent logic/arithmetic instruction chains 

according to the length of the logic/arithmetic chain. 
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and have sequences of one, two, and three instructions. 

Therefore a superscalar or VLIW processor can exploit 

concurrent functional units and improve the ILP of the 

selected applications. What we have investigated here will 

be further elaborated in our discussion on experimental 

results. 

6. Results and Discussion 

We have exhaustively evaluated many VLIW 

configurations and explored the architecture design space 

for obtaining the optimum performance using 

representative packet-processing applications. The 

performance has been calculated in terms of the dynamic 

execution cycles of each application. An important 

parameter to explore is the size of the register file. Large 

register files provide enough registers for the compiler, 

such that the register allocation algorithm can use as many 

registers as required and generate a more optimum code. 

On the other hand, when the size of the register file is 

small, the local and temporary variables should be placed in 

memory; consequently, in our load-store RISC architecture, 

extra instructions are required for reading variables from 

the memory to the register. Therefore, when the number of 

registers is relaxed, the final object code has fewer memory 

accesses, and hence, would be more optimized. However, 

large register files occupy a large fraction of the chip area 

and also have more power consumption. There is, thus, a 

trade-off between the chip area on the one hand and the 

achieved performance on the other, in terms of the size of 

the register file.  

We have calculated the execution cycles of IPV4-trie, 

Flow-Class, and IPSec for different sizes of the register file 

(or general registers in VEX terminology). As shown in 

Figure 4, the performance improvement almost levels off 

when the number of registers reaches 16, and the 

introduction of more registers only increases the area 

 

 

(a) Performance improvement 

 

 

(b) Object code compression. 

 

Fig. 4. Performance improvement and code compression of the selected applications for different numbers of general registers compared to the register 

file consisting of 5 registers: (a) Performance improvement, (b) code compression. 
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overhead with negligible payoff on performance.  

Other important parameters that considerably affect the 

performance are the issue width and the number of 

concurrent ALUs. Using the VEX re-targetable compilation 

and simulation environment, we have explored the effect of 

increasing the issue width and the number of ALU units on 

the performance improvement for the representative 

applications. 

The performance improvement results for different issue 

widths are demonstrated in Figure 5. As shown in the 

figure, the performance improvements almost level off for 

issue width = 4. When the issue width is increased to 

values greater than 4, the area overhead would increase 

significantly while the performance is improved negligibly. 

Therefore, the optimum value of the issue width can be 2 or 

4, based on the available area budget and the required 

performance improvement. 

According to the experimental results, other parameters 

such as the number of concurrent memory ports for load 

and stores as well as the number of branch registers have 

no significant impact on performance improvement. Figure 

6 and Table 2 demonstrate the effect of various parameters 

in 13 different configurations on performance 

improvement. As shown in the figure, the sixth 

configuration proves the most superior considering the 

area-aware performance improvement. Although there are 

 

 

Fig. 5. Performance improvement of the selected applications for different issue widths.  

 

 

Fig. 6. Performance improvement of the representative applications according to the Table 2. 
 

 Table 2 

 13 different processor configurations  

 Configuration 1 2 3 4 5 6 7 8 9 10 11 12 13 

Issue width 1 1 1 1 2 2 2 4 4 4 8 8 8 

ALU 4 4 4 4 4 4 4 4 4 4 8 8 8 

General registers 5 8 16 32 8 16 32 8 16 32 8 16 32 

Memory ports 1 1 1 1 1 1 1 1 1 1 1 1 1 

Branch registers 2 2 2 2 2 2 2 2 2 2 2 2 2 
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some configurations that lead to higher performance 

improvements, they impose considerable area overhead. 

On the grounds of the experimental results, we have 

proposed the optimum values for each parameter to bring 

about the best performance improvement relative to the 

imposed area overhead. The optimum parameter values are 

summarized in Table 3. 

 
Table 3 

Optimum configuration in terms of performance improvement with reference 

to the starting point. 

Parameter Optimum configuration 

Issue width 2 

MemLoad 1 

MemStore 1 

ALU 2 

General Registers 16 

Branch register 2 

8. Conclusion 

We have presented a high-level simulation-based design 

flow to explore the design space for the VLIW architecture. 

The adoption of the VEX re-targetable compilation and 

simulation framework  makes the design flow suitable for a 

wide variety of applications. We have used the VEX 

exploration framework for experimenting with domain-

specific tasks in packet-processing applications. In the light 

of the exploration results, we have proposed the optimum 

architecture based on both the estimated hardware cost and 

the achieved performance improvement. In our exploration, 

we have determined the optimum values for the issue 

width, the memory ports, the number of functional units, 

the number of branch registers, and the size of the general 

register file. With the help of these results, one can 

implement an efficient VLIW architecture for a given 

application domain. 
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