
 Journal of Computer & Robotics 1 (2010) 137-143

137

Exploring the VLIW Architecture Space for Network Applications

Mostafa E. Salehi
*
, Ali Torabi, Abolfazl Salarian

Islamic Azad University, Qazvin Branch, Qazvin, Iran

Received 23 September 2009; revised 9 January 2010; accepted 22 January 2010

Abstract

The increasing diversity in packet-processing applications together with the rapid increase in channel bandwidth has brought about greater

complexity in communication protocols. Also influenced by these factors is the computational load for packet-processing engines,

demanding high performance microprocessor designs as an indispensable solution. This paper reports on extensive simulation experiments

carried out for exploring the performance of instruction-level parallel Very Long Instruction Word (VLIW) processors executing packet-

processing applications. On the grounds of the experimental results, a design space exploration has been used to derive an efficient

application-specific VLIW processor architecture based on the VEX instruction set architecture. The VEX simulator toolset has been used

for design space exploration, and a number of networking applications have been chosen to serve in guiding the architectural exploration.

The optimization measures achieve up to 60% improvement in performance for the most representative packet-processing applications.

Keywords Design Space Exploration, VLIW Architecture, Packet-processing Applications.

1. Introduction

As packet processing applications become more

complex, the computational demand on packet processing

engines keeps increasing. High performance network

processors must employ the same performance

improvement methods used in general purpose

microprocessors, such as Instruction level parallelism (ILP)

exploitation. The very long instruction word (VLIW)

architectures are useful to accelerate the processing speed,

and are used in many high-performance computing

platforms, either in the uni-processors or as processing

cores in chip multiprocessors. The routing switch processor

of Agere PayloadPlus ‎[1] draws on programmable VLIW

compute-engines to process protocol data units. The Cisco

Toaster2 ‎[2] processing engine is a VLIW core with two

four-stage instruction pipelines. C-5e network processor ‎[3]

combines 17 programmable RISC cores for packet and cell

forwarding along with 32 VLIW engines, referred to as

serial data processors, for processing data streams. Imagine

‎[4] is a processor designed to support media processing

applications and contains eight VLIW clusters controlled

by a microcontroller. Tensilica ‎[5] along with Improv

Systems are considered pioneers in the field of configurable

processors. While Improv Systems is based on the VLIW

approach in companion with a tightly controlled toolset,

Tensilica’s current and prior products work on the basis of

the RISC model, essentially enabling customers to have

their own customized processor. Tensilica, however, has

adopted the flexible-length instruction extension (FLIX) as

its new VLIW architecture.

These VLIW architectures achieve a better performance

by exploiting the instruction-level parallelism existing in a

program to execute multiple instructions concurrently. The

maximum number of executed instructions depends on the

dependencies among the instructions and the available

functional units. The concurrent execution of multiple

instructions in parallel boosts up the number of instructions

per cycle which is a key metric for improving the

processor’s performance. The design space exploration

(DSE) of VLIW architecture is associated with different

conflicting criteria such as the chip’s area, speed, power

consumption or on-chip memory requirements. The output

is a set of different architectures associated with different

trade-offs. While significant research has been conducted

on the analysis of VLIW’s performance in general

processing domain ‎[6-10], very few works have been

directed to more specialized domains such as network

processors.

 Corresponding Author. Email: m.e.salehi@qiau.ac.ir

M. E. Salehi et al./ Exploring VLIW Architecture Space for Network Applications

138

This paper proposes a design space exploration for an

embedded VLIW processor which obtains a performance-

efficient architecture meeting the requirements of common

network applications including both data- and control-plane

packet-processing tasks. In this work, the VLIW

configuration parameters are varied to find an optimal

configuration for some popular network benchmarks. The

focus of this paper is on packet-processing applications

which differ from scientific computing applications that

have traditionally been the focus of parallelism prediction

and extraction. Network processors are mostly

characterized as systems having dynamic workloads,

requiring irregular data patterns, in need of switching

between varieties of different tasks, and featuring less

complex control behaviour. This work introduces a DSE to

find out the best VLIW architecture using the VEX system

‎[11]. Section II begins with a brief description of the VLIW

architectures. We then go on to describe the VEX system;

in particular, the instruction set architecture (ISA), the VEX

compiler and the simulation environment. Section III

elaborates on our DSE methodology, giving details on its

architecture and parameter space definition, and specifying

the values used for each iteration of the exploration in the

proposed DSE scheme. In Sections IV and V, some packet-

processing applications are introduced and analyzed.

Experimental results are presented in Section VI, and

finally Section VII concludes the paper.

2. Architecture Model and Simulation Environment

2.1. The Concept of VLIW Architecture

Some high performance processors exploit the

instruction-level parallelism to meet the performance

demands of embedded applications. The very long

instruction word or VLIW is an ILP approach to helping

processor designers exploit the high levels of ILP by

executing multiple concurrent operations in the form of a

long instruction word. In VLIW architecture, the creation

of an instruction word of simultaneously-issued operations

is completely done at compile time. In fact, the VLIW

architecture owes much of its efficiency and high speed to

the fact that it makes no run-time decisions concerning the

instruction issue and scheduling. In other words, in VLIW

architecture, the dynamic runtime ILP extraction of

SuperScalars is shifted to the compile time, allowing for

more flexibility. The code optimizations introduced by the

compiler try to maximize the ILP to exploit the VLIW’s

parallelism. The inter-dependence of the compiler and the

VLIW architecture makes the design space exploration

more difficult compared to exploration in other

architectures.

In a VLIW machine, the data path consists of multiple

functional units which can be independently controlled

through dedicated fields in the instruction word. The

distinctive feature of the VLIW architectures is that its long

instructions are in fact the machine instructions. There is no

additional layer of interpretation for expanding the machine

instructions into micro-instructions. While complex

resource or field conflicts often exist between functionally

independent operations in a horizontal micro-code engine, a

VLIW machine generally has an orthogonal instruction set

and a higher degree of parallelism.

2.2. The VEX System: A VLIW Example

VEX ‎[11] models a parametric platform for designing

embedded processors based on the VLIW architecture and

allows for variation in a common set of applications and

system resources such as issue width, number of functional

units and registers, and processor’s instructions set. The

VEX development system, referred to as the VEX

toolchain ‎[12], includes the set of tools that allows C

programs compiled for a VEX target to be simulated on a

host workstation. The VEX toolchain is mainly intended

for architecture exploration, application development, and

benchmarking. It includes a very fast architectural

simulator that uses a form of binary translation to convert

the VEX assembly language files to native binaries running

on the host workstation. The translator annotates the

binaries to collect execution statistics and includes a cache

simulator to collect D-cache and I-cache data. Figure 1

shows the overall structure of the VEX toolchain. The Vex

system can be characterized in terms of the following three

components.

Fig.1. Structure of the VEX toolchain ‎[11].

2.2.1. The VEX Instruction Set Architecture: VEX ISA

The VEX architecture is a 32-bit clustered VLIW that is

parametric and customizable to application-specific

domains. The VEX ISA is based on the ISA of the HP/ST

Lx family of VLIW embedded cores ‎[13]. Its scaling

 Journal of Computer & Robotics 1 (2010) 137-143

139

property allows for changing the number of clusters,

execution units, registers, and latencies while its

customizability enables adding special-purpose instructions

to the base instruction set. The basic structure of each

cluster has been specified in ‎[11]. VEX includes a complete

experience of all architecture latencies and resource

constraints: Parallel execution units including multiple

ALUs and multipliers, parallel memory pipelines, a large

visible register set, and an efficient branch architecture. The

basic unit of execution in VEX is an operation, which is

similar to the notion of instruction in typical RISC

processors. Syllable is the encoded operation, and a

collection of syllables issued in a single package and

executed in VLIW architecture as an atomic unit is called

an instruction word.

The default VEX cluster contains two register files, four

integer ALUs, two 16 × 32-bit multiplication units, and a

data cache port as shown in Figure 2. Up to four operations

per instruction can be issued in each cluster. The register

set consists of 64 general-purpose registers (GRs) that are

32-bits wide, and there are eight 1-bit branch registers

(BRs). In addition, the default VEX cluster also contains a

control or branch unit. Without changing the instruction set,

the cluster could be significantly altered with no impact on

the software. Also, the functionality of the cluster could be

expanded with additional special-purpose instructions. The

default VEX clusters contain memory, integer, and branch

functional units. The memory units perform operations

such as load, store, and prefetch. Each memory unit is

associated with an access to the memory system. The

integer units execute the common set of integer operations

on registers or immediate operands; viz. compare, shift, and

select. The branch units execute control operations based

on the conditions stored in the branch registers, such as

conditional branches, unconditional jumps, direct and

indirect calls, and returns. Given the restriction that only

four syllables may be used to encode the operations for

each cluster, at most four operations may be issued in a

single instruction.

2.2.2. The VEX C Compiler

The VEX C compiler is at the core of the VEX

toolchain, and is derived from the Lx/ST200 C compiler,

which is, in turn, derived from the Multiflow C compiler.

This compiler draws on trace scheduling, and is a robust

ISO/C89 compiler. A very flexible parametric machine

model determines the target architecture. VEX permits

architecture space exploration by changing the number of

clusters, execution units, the issue width, and the operation

latencies without recompiling the compiler. In the VLIW

architecture, the compiler plays an important role in

scheduling multiple concurrent operations and in exploiting

the maximum amount of ILP.

2.2.3. The VEX Simulation system

The VEX simulator is a functional simulator that is

based on the notion of the so-called compiled simulation

technology. The compiled simulator (CS) converts the

VEX binary to the host computer’s binary by first

converting VEX to C and then producing the host

executable by invoking the host’s C compiler. In addition

to the standard semantics of the instructions, CS introduces

a profiler to count the execution cycles and other

interesting statistics and also performs a simple cache

simulation. CS operates on each of the individual VEX

assembly language files and translates these files back to C.

The CS-generated C files are then compiled with the host

platform’s C compiler and linked with the support libraries

that deal with the instrumentation. The simulation system

also comes with a fairly complete set of POSIX-like libc

and libm libraries based on the GNU newlib libraries.

3. Experimental Setup

With the VEX simulation environment, the source code

of each algorithm has its own MAKEFILE which is

modified to use the VEX compiling tools. In the VEX

compiler, several types of architectural customizations are

possible; for instance, one may augment the VEX ISA with

custom instructions for functions which are

computationally intensive. It is also possible to consider

different processor and memory architectures in which the

customizations are supplied at the compile time. In this

experiment, we have used the memory customizations

which are defined in a cfg file. For the parameters not

defined within the custom memory architecture, the default

CS configuration file (i.e. vex.cfg) is used. Before running

the VEX compiler, since there is no default value for the

machine configuration, it must be defined within an mm

file.

For design space exploration, we have changed the value

of different parameters when generating the machine

configuration files. Our intention is to experiment with the

VEX architectural characteristics whilst running on

different architectures and to obtain the best

cost/performance trade-off for our application of interest.

Table 1 shows the ranges of parameter values possible to be

Fig.2. Structure of the default VEX cluster. The default cluster includes 4

integer units, 2 multipliers, a load-store unit, and a control unit ‎[11].

M. E. Salehi et al./ Exploring VLIW Architecture Space for Network Applications

140

varied for the design space. Details on the definition and

description of each parameter are given in ‎[11].

4. Domain-Specific Applications and Optimization

Strategy

According to the IETF (Internet Engineering Task

Force), the operations of network applications can be

functionally categorized into data-plane and control-plane

functions ‎[14]. There are a large variety of NP applications

that contain a wide range of different data-plane and

control-plane processing tasks. To properly evaluate

network-specific processing tasks, it is necessary to specify

a workload that is typical of this context. Commbench ‎[15]‎

is composed of eight data-plane programs that are

categorized into four packet-header processing and four

packet-payload processing tasks. Within a similar line of

work, NetBench‎ ‎[16] contains nine applications that are

representative of commercial applications for network

processors featuring both small low-level code fragments

as well as large application-level programs. Both

CommBench and NetBench present data-plane applications.

NpBench ‎‎[17]‎, on the other hand, targets both control-plane

and data-plane workloads. Ramaswamy and Wolf et. al.

‎[18] have presented a tool, called PacketBench, which

provides a framework for implementing network-

processing applications and extracting workload

characteristics. The Embedded Microprocessor

Benchmarking Consortium (EEMBC) ‎[19] has also

developed a networking benchmark suite to reflect the

performance of client and server systems (TCPmark), and

functions mostly carried out in infrastructure equipment

(IPmark).

With the representative benchmark applications for IPv4

protocol header- and payload-processing at hand, we have

performed a simulation-based design space exploration for

packet-processing applications based on the VEX

architecture. The selected applications are IPv4-radix and

IPv4-trie as RFC1812-compliant look-up and forwarding

algorithms ‎[20], a packet-classification algorithm called

Flow-Class ‎[18], internet protocol security (IPSec) ‎[21] and

the message-digest algorithm 5 (MD5) as payload-

processing applications. The measurements carried out with

reference to these network applications reveal the

performance challenges of different programs. The

presented measurements also account for dynamics, in that

the frequency of a measured event is weighed by the

number of times the event occurs during execution of the

application.

Each pipeline stage of our simulation model is

parameterized by the width of the stage and the sizes of the

specialized memory structures within the stage. All these

parameters must be tuned in a way to maximize the

processor performance for the selected applications. In this

paper, a heuristic optimization scheme has been used for

design space exploration. The heuristic is intended to vary a

broad range of processor parameters to obtain an optimum

processor configuration in terms of performance.

5. The Analysis of Packet-Processing Applications

A common approach to lower the application execution

time is reducing the number of clock cycles per instruction

or instead increasing the number of instructions per clock

(IPC). The instruction-level parallelism (ILP) techniques

try to increase the IPC. The utilization of this technique

requires a detailed analysis of the application

characteristics for making a proper architectural decision.

The superscalar and VLIW processors exploit concurrent

functional units and execute as many instructions as

possible in parallel. Therefore, an architecture designer

needs to know the optimum number of parallel functional

units promising the best cost/performance trade-off. This

metric depends strictly on the consequent logic or

arithmetic instructions that would be executed on the

concurrent functional units. The most frequent chains of

consequent logic or arithmetic instructions in our

applications are summarized in Figure 3. As can be seen in

the figure, the most frequent chains of logic/arithmetic

sequences in header-processing applications (i.e IPV4-

radix, IPV4-trie, and Flow-class) are one or two

instructions. However, the payload-processing applications

(i.e IPSec and MD5) are more computationally intensive

Table 1

The ranges of parameter values for the machine architecture configuration

file.

Parameter Values

Issue width 1-32

MemLoad 1-32

MemStore 1-32

ALU 1-32

Multiply 1-32

General Registers 4-64

Branch register 2-8

Fig. 3. The occurrence of consequent logic/arithmetic instruction chains

according to the length of the logic/arithmetic chain.

 Journal of Computer & Robotics 1 (2010) 137-143

141

and have sequences of one, two, and three instructions.

Therefore a superscalar or VLIW processor can exploit

concurrent functional units and improve the ILP of the

selected applications. What we have investigated here will

be further elaborated in our discussion on experimental

results.

6. Results and Discussion

We have exhaustively evaluated many VLIW

configurations and explored the architecture design space

for obtaining the optimum performance using

representative packet-processing applications. The

performance has been calculated in terms of the dynamic

execution cycles of each application. An important

parameter to explore is the size of the register file. Large

register files provide enough registers for the compiler,

such that the register allocation algorithm can use as many

registers as required and generate a more optimum code.

On the other hand, when the size of the register file is

small, the local and temporary variables should be placed in

memory; consequently, in our load-store RISC architecture,

extra instructions are required for reading variables from

the memory to the register. Therefore, when the number of

registers is relaxed, the final object code has fewer memory

accesses, and hence, would be more optimized. However,

large register files occupy a large fraction of the chip area

and also have more power consumption. There is, thus, a

trade-off between the chip area on the one hand and the

achieved performance on the other, in terms of the size of

the register file.

We have calculated the execution cycles of IPV4-trie,

Flow-Class, and IPSec for different sizes of the register file

(or general registers in VEX terminology). As shown in

Figure 4, the performance improvement almost levels off

when the number of registers reaches 16, and the

introduction of more registers only increases the area

(a) Performance improvement

(b) Object code compression.

Fig. 4. Performance improvement and code compression of the selected applications for different numbers of general registers compared to the register

file consisting of 5 registers: (a) Performance improvement, (b) code compression.

0%

5%

10%

15%

20%

25%

30%

35%

40%

0 10 20 30 40 50 60 70

P
e

rf
o

rm
an

ce
 im

p
ro

ve
m

e
n

t

Number of general registers

IPv4-trie Flow-Class IPSec

0%

5%

10%

15%

20%

25%

30%

35%

40%

5 7 9 11 13 15 17

C
o

d
e

 c
o

m
p

re
ss

io
n

Number of general registers

IPv4-trie Flow-Class IPSec

M. E. Salehi et al./ Exploring VLIW Architecture Space for Network Applications

142

overhead with negligible payoff on performance.

Other important parameters that considerably affect the

performance are the issue width and the number of

concurrent ALUs. Using the VEX re-targetable compilation

and simulation environment, we have explored the effect of

increasing the issue width and the number of ALU units on

the performance improvement for the representative

applications.

The performance improvement results for different issue

widths are demonstrated in Figure 5. As shown in the

figure, the performance improvements almost level off for

issue width = 4. When the issue width is increased to

values greater than 4, the area overhead would increase

significantly while the performance is improved negligibly.

Therefore, the optimum value of the issue width can be 2 or

4, based on the available area budget and the required

performance improvement.

According to the experimental results, other parameters

such as the number of concurrent memory ports for load

and stores as well as the number of branch registers have

no significant impact on performance improvement. Figure

6 and Table 2 demonstrate the effect of various parameters

in 13 different configurations on performance

improvement. As shown in the figure, the sixth

configuration proves the most superior considering the

area-aware performance improvement. Although there are

Fig. 5. Performance improvement of the selected applications for different issue widths.

Fig. 6. Performance improvement of the representative applications according to the Table 2.

 Table 2

 13 different processor configurations

 Configuration 1 2 3 4 5 6 7 8 9 10 11 12 13

Issue width 1 1 1 1 2 2 2 4 4 4 8 8 8

ALU 4 4 4 4 4 4 4 4 4 4 8 8 8

General registers 5 8 16 32 8 16 32 8 16 32 8 16 32

Memory ports 1 1 1 1 1 1 1 1 1 1 1 1 1

Branch registers 2 2 2 2 2 2 2 2 2 2 2 2 2

0%

10%

20%

30%

40%

50%

60%

0 2 4 6 8 10

P
e

rf
o

rm
an

ce
 im

p
ro

ve
m

e
n

t

Issue width

IPv4-trie IPV4-radix Flow-Class IPSec

0%

10%

20%

30%

40%

50%

60%

70%

0 2 4 6 8 10 12 14

P
e

rf
o

rm
an

ce
 im

p
ro

ve
m

e
n

t

Configuration

IPSec Flow-Class IPv4-trie

 Journal of Computer & Robotics 1 (2010) 137-143

143

some configurations that lead to higher performance

improvements, they impose considerable area overhead.

On the grounds of the experimental results, we have

proposed the optimum values for each parameter to bring

about the best performance improvement relative to the

imposed area overhead. The optimum parameter values are

summarized in Table 3.

Table 3

Optimum configuration in terms of performance improvement with reference

to the starting point.

Parameter Optimum configuration

Issue width 2

MemLoad 1

MemStore 1

ALU 2

General Registers 16

Branch register 2

8. Conclusion

We have presented a high-level simulation-based design

flow to explore the design space for the VLIW architecture.

The adoption of the VEX re-targetable compilation and

simulation framework makes the design flow suitable for a

wide variety of applications. We have used the VEX

exploration framework for experimenting with domain-

specific tasks in packet-processing applications. In the light

of the exploration results, we have proposed the optimum

architecture based on both the estimated hardware cost and

the achieved performance improvement. In our exploration,

we have determined the optimum values for the issue

width, the memory ports, the number of functional units,

the number of branch registers, and the size of the general

register file. With the help of these results, one can

implement an efficient VLIW architecture for a given

application domain.

References

[1] B. Klein and J. Garza, Agere systems – communications optimized

payload plus network processor architecture, in Network Processor

Design: Issues and Practices. Morgan Kaufmann, San Francisco,

California, vol. 1, pp. 219–233, 2002.

[2] J. Marshall, Cisco systems – Toaster2, in network processor design:

issues and practices. Morgan Kaufmann, San Francisco, California,

vol. 1, pp. 235–248, 2002.

[3] P. Lekkas, Network processors architectures, Protocols and

Platforms, McGraw Hill, 2003.

[4] B. Khailany, W. J. Dally, et al., Imagine: Media processing with

streams, IEEE Micro, pp. 35–46, March/April 2001.

[5] Tensilica - Tensilica: Customizable Processor Cores for the

Dataplane, Available online: http://www.tensilica.com/

[6] R. R. Hoare, A. K. Jones, D. Kusic, J. Fazekas, J. Foster, S. Tung,

and M. McCloud, Rapid VLIW processor customization for signal

processing applications using combinational hardware functions,

EURASIP Journal on Applied Signal Processing, article ID. 46472,

pp. 1-23, 2006.

[7] G. Ascia, V. Catania, M. Palesi, D. Patti, Multi-objective

optimization of a parameterized VLIW architecture, In. Proc. of the

NASA/DoD Conf. on Evolution Hardware, 2004.

[8] E. Salami, M. Valero, Initial evaluation of multimedia extensions on

VLIW architectures, SAMOS 2004, LNCS 3133, pp. 403-412, 2004.

[9] A. K. Jones, R. Hoare, D. Kusic, An FPGA-based VLIW processor

with custom hardware execution, In Proc. of FPGA’05, pp. 107-117,

February 2005.

[10] D.byo Saptono, V. Brost, F. Yang, and E. Prasetyo, Design space

exploration for a custom VLIW architecture: direct photo printer

hardware setting using VEX compiler, In Proc. of IEEE Int. Conf. on

Signal Image Technology and Internet Based Systems, pp. 416-421,

2008.

[11] J. A. Fisher, P. Faraboschi, C. Young, Embedded computing a

VLIW approach to architecture, Compilers and Tools, Elsevier Inc,

2005.

[12] Hewlett-Packard Laboratories. Vex toolchain. http://www.hpl.hp.

com/downloads/vex.

[13] P. Faraboschi, G. Brown, J. A. Fisher, G. Desoli, and F. Homewood,

Lx: A technology platform for customizable VLIW embedded

processing, In 27th Int. Symp. on Computer Architecture (ISCA),

pages 203-213, 2000.

[14] IETF Available from: http://www.ietf.org/

[15] T. Wolf and M. A. Franklin, CommBench a telecommunications

benchmark for network processors, in proc. of IEEE Int. Symp. on

Performance Analysis of Systems and Software (ISPASS), pp. 154-

162, April 2000,.

[16] G. Memik, W. H. Mangione-Smith, and W. Hu, NetBench: A

benchmarking suite for network processors, in Proc. Of IEEE/ACM

Int. Conf. on Computer-Aided Design, pp. 39-42, November 2001.

[17] B. K. Lee and L. K. John, NpBench: A benchmark suite for control

plane and data plane applications for network processors, in proc. of

IEEE Int. Conf. on Computer Design (ICCD 03), pp. 226-233,

October 2003.

[18] R. Ramaswamy and T. Wolf, PacketBench: A tool for workload

characterization of network processing, in proc. of IEEE Int.

Workshop on Workload Characterization, pp. 42-50, October 2003.

[19] EEMBC, The embedded microprocessor benchmark consortium,

Available from: http://www.eembc.org/home.php.

[20] F. Baker. Requirements for IP version 4 routers. RFC 1812, Network

Working Group, June 1995.

[21] S. Kent and R. Atkinson. Security architecture for the internet

protocol. RFC 2401, Network Working Group, November 1998.

