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Abstract 

Simultaneous estimation of the range and the angle of close emitters usually requires a multidimensional search. This paper proposes an 

algorithm to improve the position of an element for arrays designed on the basis of some certain or random rules. In the proposed method, 

one element moves along the same previous direction, maintaining its vertical distance from each source, to reach a constellation with less 

Cramer-Rao Bound (CRB). The efficiency of this method has been demonstrated through simulation and a comparative study has been 

conducted, contrasting both the CRB and the determinant of the received signal’s covariance matrix before and after applying our proposed 

scheme. 
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1. Introduction 

Direction of arrival (DOA) estimation is usually carried 

out under the assumption that signal sources are in the far 

reading field of the array, and hence the wavefront is planar 

across the array aperture. Supposing that the far field range 

is denoted by R0, as the range of the largest departure of the 

wavefront from a plane wave across the array is 𝑙𝜆, where  

𝜆 is the wavelength, it is straightforward to show that  

𝑅0 ≈  𝐷2/8𝑙, where D is the array aperture measured in 

wavelengths [1]. For arrays with small aperture, R0 is rather 

small and the far field assumption holds very well. 

However, for arrays with large aperture, e.g., those used in 

sonar systems, sources are usually located in the near field.  

Bearing estimation for near-field sources requires 

simultaneous estimation of the bearing and range since the 

curvature of wavefront cannot be ignored. This estimation 

usually requires a multidimensional search. Previous works 

on this estimation can be sought in [1-5]. Starer and 

Nehorai [4] developed an algorithm based on path-

following. This algorithm is limited to the context of 

uniform linear arrays and to sources that are located in the 

Fresnel region; this region is taken to be between near-field 

case (with spherical wavefronts) and far-field case (where 

wavefronts can be estimated in plane form). Collins et al. 

[5] have proposed an analytic simulated algorithm to solve 

the problem of estimating the range and bearing. Their 

algorithm is also limited to uniform linear arrays. The 

works in [6-9] have also focused on transforming the 

problem of single dimensional search into polynomial 

rooting in different cases. 

The aim of this paper is not to propose a constellation, 

but to change the position of one element designed on the 

basis of some certain or random rules to reach a 

constellation with less Cramer-Rao bound (CRB). In 

section 2, the received signal is modeled as a deterministic 

signal in Additive White Gaussian Noise (AWGN). Section 

3 briefly discusses previously obtained results on CRB. 

Section 4 describes how to change an element’s position to 

obtain less CRB.  Section 5 evaluates our theoretical results 

using computer simulation. Section 6 concludes the article. 

2. System Model 

N sources of emitters are assumed to be observed by an 

arbitrary array of M sensors. The signal at the output of the 

thm sensor can be described by: 
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where   N

nn ts
1
 are the radiated signals,   M

mm tv
1
 are 

waveforms of additive noise processes and T  denotes the 

observation interval. The parameters mn  stand for the 

delays associated with the signal propagation from the nth 

source to the mth  sensor. These parameters are significant 

for containing information about the position of source to 

arrays. Applying appropriate Fourier transform on (1) 

results in: 
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where )( jSn  and )( jVm are Fourier transforms of )(tsn  

and )(tvm , respectively, and n0  denotes the center 

frequency of the radiated signal from the thn source. The 

index j  represents the snapshot number. Using vector 

notations, formula (2) can be restated as follows: 

 

     jVjSjX  A  (3) 

 

where, 
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(4) 

For the sake of simplicity, we assume that sensors and 

sources are located on the same common plane, so [10]:  
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where c  is the propagation velocity, nr  and n  are the 

range and bearing of the thn  source, and mp along with 

m  is the polar coordinate of the thm  sensor. The problem 

is to estimate N

nnnr
1

,


  using data    sN

jjX 1 , where sN is 

the number of snapshots. 

     Before we obtain CRB, defining the following 

covariance matrices is necessary: 
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H
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We also adopt the following sample covariance matrix 

as an estimation of xR [2[: 
 

   



sN

j

H

s

x jXjX
N 1

.
1

R̂  (9) 

3. Cramer Rao Bound 

In this section, we briefly explain CRB for the 

estimation of the DOA of N  observed sources with M

elements. An array with M elements can at most separate 

1M  sources. Therefore, MN   is needed.  

CRB gives a lower bound on the covariance matrix of 

any unbiased estimator. Let's assume that we have Ns 

independent samples of zero mean Gaussian process x

which statistically depends on an arbitrary parameter vector

P . The Fisher Information Matrix (FIM) is, then, as 

follows [11]: 
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CRB is shown to be equal to the main diagonal elements 

of F  inverse [11]. 

     The following relation can be obtained from (8): 

 

.IAARR  H

sx
 (11) 

 

We assume that the signals and the Gaussian noise are 

uncorrelated. However, the signals might be correlated or 

even coherent. 

     We define our parameter vector as follows: 
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where  is the DOA vector of N  signals, r  is the 

corresponding vector of N  source ranges,   is a parameter 

vector that specifies the Rs entries, and   denotes the noise 

variance. FIM can be partitioned into two blocks, each of 

which is linked to one or two parametric vector in P . It is 

shown that these blocks are as follows [2]: 
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where 𝛼 and 𝛽  can be either one of the 𝜃  and 𝑟  parameter 

vectors. We have used   to denote the Hadamard product 

of two operands. Also,  signifies the Kronecker product 

[12].  :I  denotes a vector consisting of the concatenation 

of the columns of the matrix and 𝑑𝑖𝑎𝑔{𝐵} is a column 

vector containing the diagonal elements of the matrix 𝐵 . 

The operators ( )𝑇 , ( )∗ and ( )𝐻  represent transposition, 

conjugation, and conjugate transposition, respectively. 

Further details concerning the above equations are saved 

for the appendix.  

     Equations 13 to 18 provide a set of closed form 

equations to compute the two dimensional CRB (2-D 

CRB). 

4. Changing an Element’s Position to Obtain Less 

CRB 

The proposed scheme centers on the element with the 

strongest received signal. It is not intended to propose a 

constellation, but rather, to modify the position of an 

element in a pre-designed arbitrary array in a way that the 

element moves along the same direction (maintaining its 

vertical distance from each source) to reach a constellation 

with less CRB. It is known from [8] that: 
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Using the above formula, we can take the largest entry 

of xR  as the same thk element without loss of generality. 

In other words, it is possible to assign k  to an element with 

the strongest received signal. We have: 
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To reduce the determinant of xR ,   2
jX k should be 

reduced. Therefore: 
 

    
2

1

00

2
sincos




N

n

knnknnnk jjSjX   

     

     

2

0 0

1 1

2 2

0 0

1 1

cos sin

cos cos

N N

n n kn n n kn

n n

N N

n n kn n n kn

n n

S j j S j

S j S j

   

   

 

 

 

   
    
   

 

 

 

 

(21) 

Since the sequence  jSn ; Nn ,,2,1  , depends on the 

specification of the sources, it has no significant role in the 

minimization of the determinant. Supposing that  jSl  is 

the largest of the  jSn  sequence, we have: 
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where, 
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Now some measure should be taken to reduce the

 FG  . Figure 1 shows an array with M elements and N  

sources in which mnH  and mn denote the vertical distance 

and the angle of arrival between the thm element and the 

thn source. According to this figure, we have: 
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Fig. 1. Arbitrary constellation of sensors and sources. 
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where C  is the transmission velocity of the signals in the 

given environment. Then: 
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thus, 
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Equation (30) should be reduced. 

     It is known that the minimum of a phrase containing the 

summation of the cross-product of sinusoidal and cosine 

terms occurs when the angles are equally composed of 0 ’s 

and 2 ’s for an even number of angles, and when the 

angles are alternatively 0 and 2  for an odd number of 

angles. 

      Hence, nT ; Nn ,,2,1  , should consist of an equal 

number of 0’s and 2 ’s. In other words,  2N  of iT ’s 

(where  .  denotes the largest previous integer) should be 

equal to zero and the same number should be 2 . With an 

odd N , then, either the number of 0’s or that of 2 ’s is 

one unit larger, with either case having identical effects on 

final results. So: 
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Using a simple set of algebraic phrases and knowing 

that nn f00 2  , we will obtain: 
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where the larger the parameter m is, the more accurate the 

estimation and determination of the position of the arrays 

will be. In fact, since iT ; Ni ,,2,1  , can not be zero, 

we can assume that it is a small number like m .  

5.  Numerical Results 

5.1. Simulation Based on Three Sources 

In this section, we evaluate our theoretical results using 

computer simulation. The simulation is based on three 

sources and four elements. With the index j  representing 

the constant snapshot number, we assume baseband 

transmission signals of the form 22)(1 ijS  , 

31)(2 ijS  , 35)(3 ijS  , where 𝑖 =  (−1); also, the 

frequency and propagation velocity are taken as 𝑓01 =
1.1787 × 106 𝐻𝑧, 𝑓02 = 104 𝐻𝑧, 𝑓03 = 9.9298 × 105 𝐻𝑧, 

s
mC 8103 , respectively. Figure 2 demonstrates the 

DOAs of the array elements as well as the vertical ranges 

according to the values listed in Tables 1 and 2. The 

determinant of xR , CRB  and rCRB  have been computed 

 
Fig. 2. Arbitrary designed array. The determinant of 

xR  is equal to

-42101.8112 . 
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as 1.8112 × 10−42, 1.0308 × 10−29 , 8.8505 × 10−26 , 

respectively. In order to evaluate the effect of changing an 

element’s position, we have computed the power of 

received signals at each element and have identified the 

third element as the one bearing the strongest received 

signal. Once we change the array constellation according to 

the formalism discussed in section 4, the new angels are 

obtained as 10331  , 9032  , 6633  , as depicted 

in Figure 3. Next, we compute the determinant of xR , 

CRB  and rCRB  for the proposed constellation, resulting 

in values equal to -44103.4102 , -31100716.6  , and 
-27101691.6  , respectively.  

 B.   Simulation Based on Two Sources 

 The simulation results discussed in this section are based 

on two sources and four elements. We assume transmission 

signals of the form 22)(1 ijS  , 31)(2 ijS  , with 

frequency and propagation velocity taken as 𝑓01 = 1.5 ×
106, 𝑓02 = 9 × 105,𝐶 = 3 × 105 respectively. Figure 4 

depicts the DOAs of the array elements as well as the 

vertical ranges according to the values listed in Tables 3 

and 4. We have computed the determinant of xR , 𝐶𝑅𝐵𝜃  

and 𝐶𝑅𝐵𝑟  as 2.3737 × 10−42, 5.0207 × 10−30 and 

4.3154 × 10−30 , respectively.  

Once again, in order to evaluate the effect of changing 

an element’s location, we have computed the power of the 

received signals at each element and have identified the 

third element as the one bearing the strongest received 

signal. Once we change the array constellation according to 

the formalism discussed in section 4, the new angels are 

obtained as 9031  and 3.4132  . Next, we compute 

Table 1 

Angles between the elements and the sources (in degrees) 

Sources   

3 2 1  Elements 

45 56 74  1 

70 100 111  2 

44 53 66  3 

59 77 90  4 

 
 

Table 3 

Angles between the elements and the sources (in degrees) 

Sources   

 2 1  Elements 

 56 74  1 

 100 111  2 

 53 66  3 

 77 90  4 

 

Table2 

Vertical distances between the elements and the sources (in meters) 

Sources   

3 2 1  Elements 

56 42 49  1 

61 47 54  2 

69 55 62  3 

73 59 66  4 

 

 
Table 4 

Vertical distances between the elements and the sources (in meters) 

Sources   

 2 1  Elements 

 42 49  1 

 47 54  2 

 55 62  3 

 59 66  4 

 

 
 

Fig. 3. Proposed constellation. The determinant of 
xR  is equal to

-44103.4102 . 

 

Fig.4. Arbitrary designed array using two sensors. 
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the determinant of xR , CRB  and rCRB  for the proposed 

constellation, resulting in values equal to 43101649.4  , 
-30101578.1  , and -30101629.2  , respectively.   

     Tables 5 to 10 contrast the performance of the proposed 

algorithm against the primary constellation by altering the 

propagation velocity as well as the frequency of the first 

source. Tables 5 and 6 list the determinant of xR for 

different frequencies and propagation velocities, 

respectively. Tables 7 and 8, on the other hand, report 

CRB  for different frequencies and propagation velocities. 

Finally, rCRB  for varying frequencies and propagation 

velocities is listed in Tables 9 and 10, respectively. 

 

 
Table 5 

 The determinant of 
xR versus frequency for an array of four elements 

(M=4) 

Table 6 

The determinant 
xR versus propagation velocity for an array of four 

elements (M=4) 

  
 

Table 7 

CRB versus frequency for an array of four elements (M=4) 

 

Table 8 

CRB  versus propagation velocity for an array of four elements (M=4) 

  
 

Table 9 

rCRB  versus frequency for an array of four elements (M=4). 

 

Table 10 

rCRB  versus propagation velocity for an array of four elements (M=4). 
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6.  Conclusion 

In this paper, we have proposed an algorithm to improve 

the position of an array element for arrays designed on the 

basis of some certain or random rules. In the proposed 

method, one element moves along the same previous 

direction, maintaining its vertical distance from each 

source, to reach a constellation with less CRB. The 

efficiency of the proffered method has been demonstrated 

through simulation; also, a comparative study has been 

conducted, contrasting both the CRB and the determinant 

of the received signal’s covariance matrix before and after 

applying our proposed scheme. We have effectively shown 

that the new constellation formed by this element changing 

initiative is of superior performance and with less CRB 

compared to the primary constellation.  
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Appendix: Further details on the CRB equations 

In this appendix, we present further details concerning 

the equations (13)-(18) of the main text. It should be noted 

that tQ  and 4Q are constant matrices [2]: 

 

 HHH
t QQQ   

(A.1) 

 444 , JJ1Q   (A.2) 

 

where: 

 

12QQQ   (A.3) 

12QQQ j  (A.4) 

 211 , JJ1IQ   
(A.5) 

 

where I  is the Identity matrix of size equal to 22 NN   

and  
21 , JJ1  represents a matrix of the same size, with 

“1” elements associated with the indices 1J  and 2J and 

“0’s” elsewhere. Also, we have: 

 

 211 , JJ1IQ   (A.6) 

 332 , JJ1Q   (A.7) 

 112 , JJ1Q   
(A.8) 


  NNNNN

NNNNNJ

1,...,13,3...,,52,

42,2...,,4,3,...,,3,21





 
(A.9) 

  21...,,2,11 NNJ 
 

(A.10) 

 

    1...,,31,21...,

,23,22,11...,,12,1

2

2





NNNNN

NNNNNNJ

 
(A.11) 



2

3

...,,22,12,2,...,

3,2,...,,2,1

NNNN

NNNJ





 

(A.12) 

  21...,,2,13  NNJ

 
(A.13) 

 2
4 ...,,32,2,1 NNNJ 

 
(A.14) 

 

 

and 
4J  is characterized simply by the indexes  N...,,2,1 , 

also: 

 


 




N

n n1 


A
A  (A.15) 

 

The needed derivations in the formula (A.15) are 

calculated as follows: 
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   

   2
1

2

0

cos2

sin

mnnmm
n

mnnmmkkn

n

mk

rr

rcj













 AA
 (A.16) 

  
  mnnm

mnmn

n

mk

n

mk

r

r

r 



 












sin

cosAA
 (A.17) 

 

 

 

 

 

 

 

 

 


