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Abstract

Simultaneous estimation of the range and the angle of close emitters usually requires a multidimensional search. This paper proposes an
algorithm to improve the position of an element for arrays designed on the basis of some certain or random rules. In the proposed method,
one element moves along the same previous direction, maintaining its vertical distance from each source, to reach a constellation with less
Cramer-Rao Bound (CRB). The efficiency of this method has been demonstrated through simulation and a comparative study has been
conducted, contrasting both the CRB and the determinant of the received signal’s covariance matrix before and after applying our proposed

scheme.
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1. Introduction

Direction of arrival (DOA) estimation is usually carried
out under the assumption that signal sources are in the far
reading field of the array, and hence the wavefront is planar
across the array aperture. Supposing that the far field range
is denoted by Ry, as the range of the largest departure of the
wavefront from a plane wave across the array is I4, where
A is the wavelength, it is straightforward to show that
Ry = D?/8l, where D is the array aperture measured in
wavelengths [1]. For arrays with small aperture, Ry is rather
small and the far field assumption holds very well.
However, for arrays with large aperture, e.g., those used in
sonar systems, sources are usually located in the near field.

Bearing estimation for near-field sources requires
simultaneous estimation of the bearing and range since the
curvature of wavefront cannot be ignored. This estimation
usually requires a multidimensional search. Previous works
on this estimation can be sought in [1-5]. Starer and
Nehorai [4] developed an algorithm based on path-
following. This algorithm is limited to the context of
uniform linear arrays and to sources that are located in the
Fresnel region; this region is taken to be between near-field
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case (with spherical wavefronts) and far-field case (where
wavefronts can be estimated in plane form). Collins et al.
[5] have proposed an analytic simulated algorithm to solve
the problem of estimating the range and bearing. Their
algorithm is also limited to uniform linear arrays. The
works in [6-9] have also focused on transforming the
problem of single dimensional search into polynomial
rooting in different cases.

The aim of this paper is not to propose a constellation,
but to change the position of one element designed on the
basis of some certain or random rules to reach a
constellation with less Cramer-Rao bound (CRB). In
section 2, the received signal is modeled as a deterministic
signal in Additive White Gaussian Noise (AWGN). Section
3 briefly discusses previously obtained results on CRB.
Section 4 describes how to change an element’s position to
obtain less CRB. Section 5 evaluates our theoretical results
using computer simulation. Section 6 concludes the article.

2. System Model
N sources of emitters are assumed to be observed by an

arbitrary array of M sensors. The signal at the output of the
mth sensor can be described by:
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N
t):;sn(t—rmn)wm(t); 1)
T/2<t<T/2, m=12,...M
where {s,(t)}", are the radiated signals, {v, (t)}™ are

waveforms of additive noise processes and T denotes the
observation interval. The parameters r,,, stand for the

delays associated with the signal propagation from the

source to the mth sensor. These parameters are significant
for containing information about the position of source to
arrays. Applying appropriate Fourier transform on (1)
results in:

N .
Xm(i)=2 e 8, (1)+Vin () @
=1
m=12..,M
where S,(j) and V,(]J)are Fourier transforms of s, (t)

and v, (t), respectively, and @, denotes the center

frequency of the radiated signal from the nth source. The
index | represents the snapshot number. Using vector

notations, formula (2) can be restated as follows:
X(j)=As(j)+V(j) 3

where,

X(3)= D63 X, (3, X (BT

8(i)=[8,().5,(i)..... sy (3 (@)
V(i)=M()V, (5. vy ()T
A =le* ] sm=12_.M.n=12 N

For the sake of simplicity, we assume that sensors and
sources are located on the same common plane, so [10]:

1 pn ) P &
Tmn :Ern{l-ﬁ-[rj —ZTCOS(Hn_¢m )] (5)

where ¢ is the propagation velocity, r, and @, are the
range and bearing of the nth source, and p,along with

@ is the polar coordinate of the mth sensor. The problem
is to estimate {r &, ™ using data {X(j)}}'s, where Nis

the number of snapshots.
Before we obtain CRB, defining the following
covariance matrices is necessary:

R, —EfS(i)s" (j)} (6)

R, = V(N ( ‘}= | "
R, = EX(j)x

We also adopt the following sample covariance matrix
as an estimation of R, [2]:

} AR AR 4R, (8)

X(3)x"(j) )

3. Cramer Rao Bound

In this section, we briefly explain CRB for the
estimation of the DOA of N observed sources with M
elements. An array with M elements can at most separate
M —1 sources. Therefore, N < M is needed.

CRB gives a lower bound on the covariance matrix of
any unbiased estimator. Let's assume that we have N
independent samples of zero mean Gaussian process X
which statistically depends on an arbitrary parameter vector
P . The Fisher Information Matrix (FIM) is, then, as

follows [11]:

(10)

X

Fm = N iR,
o

S OR, o 6RX}

CRB is shown to be equal to the main diagonal elements
of F inverse [11].
The following relation can be obtained from (8):

R, = AR A" +71. 11)

We assume that the signals and the Gaussian noise are
uncorrelated. However, the signals might be correlated or
even coherent.

We define our parameter vector as follows:

P= QT,ET,;_IT,V]T (12)

where@ is the DOA vector of N signals, r is the
corresponding vector of N source ranges, x is a parameter
vector that specifies the R entries, and v denotes the noise

variance. FIM can be partitioned into two blocks, each of
which is linked to one or two parametric vector inP . It is

shown that these blocks are as follows [2]:

F,,=2 Re{(RSA“ R/'AR, )x(ASRA! )T
) ; (13)
+(RA"RIA, )x(R,ATRIA, ) }
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F,.=Q,= {(AH RAR, ) ®(A'R'A)

~(A"RA, ) x(RA"RIA) Q! 0
F, = 2ReldiagR,A"R2A, )| (15)
Fo :Q{(AH RAS ® (A" R;lA)} Qr (16)
Fu =Q [(R A ©(R;A) } 10) 17)
F, =triR;2 18)

where ¢ and 8 can be either one of the 8 and r parameter
vectors. We have used x to denote the Hadamard product
of two operands. Also, ® signifies the Kronecker product
[12]. 1(:) denotes a vector consisting of the concatenation

of the columns of the matrix and diag{B}is a column
vector containing the diagonal elements of the matrix B .
The operators ()7, ()* and () represent transposition,
conjugation, and conjugate transposition, respectively.
Further details concerning the above equations are saved
for the appendix.

Equations 13 to 18 provide a set of closed form
equations to compute the two dimensional CRB (2-D
CRB).

4. Changing an Element’s Position to Obtain Less
CRB

The proposed scheme centers on the element with the
strongest received signal. It is not intended to propose a
constellation, but rather, to modify the position of an
element in a pre-designed arbitrary array in a way that the
element moves along the same direction (maintaining its
vertical distance from each source) to reach a constellation
with less CRB. It is known from [8] that:

‘det([A]MxM )abs s{max‘aij Lbs}M M "2 (19)

ij=12,...,M

Using the above formula, we can take the largest entry
of R, as the same kth element without loss of generality.

In other words, it is possible to assign k to an element with
the strongest received signal. We have:

det RX\mSS{E{Lk(j)L;(j)}}M M "2

. (20)
=[x ()

To reduce the determinant of R,,|X, (j)’should be
reduced. Therefore:

X, (J) =

N

N 2
>, (i )Xcos wp, 7y, + jsin wOnTkn*

n=.

2

i cosa)(,nrkn)+ji(sn(j)sinwOnrkn)

E]
I
N

n

= i)
(g( (j)COSa)Onrkn)]2+ NZ(Sn(j)COSa)OnTkn)jz 1)

n=1

(.
Sn

Since the sequenceS,(j); n=12,...,N, depends on the
specification of the sources, it has no significant role in the
minimization of the determinant. Supposing that S,(j) is

the largest of the S, (j) sequence, we have:

%) s[5 () Eoosae |

n=t , (22)
N
+[S,(j)23ina)0nrknj =S (j){G+F}
n=1
where,
N 2
G =[Zcosa)0nrknj n=12..,N (23)
n=1
N 2
F =[Zcosw0nrknJ in=12..,N (24)
n=1

Now some measure should be taken to reduce the
{G + F}. Figure 1 shows an array with M elements and N

sources in which H,, and ¢, denote the vertical distance

and the angle of arrival between the mthelement and the
nth source. According to this figure, we have:

Hin n=12..,N (25)
Tkn

sing, =

=]

Fig. 1. Arbitrary constellation of sensors and sources.
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rknzi ;n=12..,N (26)
Csing,,

where C is the transmission velocity of the signals in the
given environment. Then:

G+F={[icosTnJ +(§:sinTn] } (27)

where,
T =—9  n=12..,N (28)
sing,,
_ %nHia ‘n=12..N (29)
thus,
G+F=

(cosT, +¢cosT, +---+cosT,, ) +
(sinT, +sinT, +---+sinT, )’

=C0s°T, +c0s°T, +---+C0s’T
+8IN%T, +8in’T, +---+sin’T
+2cosT, cosT, +---+2cosT,, , cosT
+2sinT,sinT, +---+2sinT _, sinT,

(30)

=N +2(cosT, cosT, +---+cosT,_, cosT,

+sinT,sinT, +---+sinT _,sinT, )

Equation (30) should be reduced.

It is known that the minimum of a phrase containing the
summation of the cross-product of sinusoidal and cosine
terms occurs when the angles are equally composed of 0 ’s
and z/2’s for an even number of angles, and when the
angles are alternatively 0and z/2 for an odd number of
angles.

Hence, T,,; n=12,...,N, should consist of an equal
number of 0’s and z/2’s. In other words, |N/2] of T;’s
(where |_J denotes the largest previous integer) should be
equal to zero and the same number should be /2. With an
odd N, then, either the number of 0’s or that of z/2’s is

one unit larger, with either case having identical effects on
final results. So:

T,=0 , Tn+1=% ‘n=12...N (31)

a)OnHkn _

Csin Pr(n+1) 2

Don)Hini) _ 7 (32)
Csingy,

Using a simple set of algebraic phrases and knowing
that @, = 24f,,, we will obtain:

. 2mfy.H
Py = arcsm% (33)
4f H
¢k(n+1) =arcsin M (34)

where the larger the parameter mis, the more accurate the
estimation and determination of the position of the arrays
will be. In fact, since T;; i=12,...,N, can not be zero,

we can assume that it is a small number like 7z/m .

5. Numerical Results
5.1. Simulation Based on Three Sources

In this section, we evaluate our theoretical results using
computer simulation. The simulation is based on three
sources and four elements. With the index j representing

the constant snapshot number, we assume baseband
transmission  signals of the form S;(j)=2+i2,
S,(j)=1+i3, S5(j)=5+i3, where i = ,/(—1); also, the
frequency and propagation velocity are taken as fy; =
1.1787 x 10° Hz, fy, = 10* Hz, fy; = 9.9298 x 10° Hz,
C =3x10%m/, respectively. Figure 2 demonstrates the

DOAs of the array elements as well as the vertical ranges
according to the values listed in Tables 1 and 2. The

determinant of R, ,CRB, and CRB, have been computed

Fig. 2. Arbitrary designed array. The determinant of R, is equal to
1.8112x10™?
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Table 1
Angles between the elements and the sources (in degrees)

Table2

Vertical distances between the elements and the sources (in meters)

Sources Sources
Elements 1 2 3 Elements 1 2 3
1 74 56 45 1 49 42 56
2 111 100 70 2 54 47 61
3 66 53 44 3 62 55 69
4 90 77 59 4 66 59 73

Table 3
Angles between the elements and the sources (in degrees)

Table 4

Vertical distances between the elements and the sources (in meters)

Sources Sources
Elements 1 2 Elements 1 2
1 74 56 1 49 42
2 111 100 2 54 47
3 66 53 3 62 55
4 90 77 4 66 59

as 1.8112 x 107*?, 1.0308 x 107%° , 8.8505 x 1072° ,
respectively. In order to evaluate the effect of changing an
element’s position, we have computed the power of
received signals at each element and have identified the
third element as the one bearing the strongest received
signal. Once we change the array constellation according to
the formalism discussed in section 4, the new angels are

obtained as ¢3; =103°, @5, =90°, @53 =66°, as depicted
in Figure 3. Next, we compute the determinant of R,,
CRB, and CRB, for the proposed constellation, resulting
in values equal to 3.4102x10™**, 6.0716x103!, and

6.1691x107%7, respectively.
B. Simulation Based on Two Sources

The simulation results discussed in this section are based

Fig. 3. Proposed constellation. The determinant of RX is equal to

3.4102x10*4.

on two sources and four elements. We assume transmission
signals of the form S;(j)=2+i2, S,(j)=1+1i3, with
frequency and propagation velocity taken as f;; = 1.5 X
106, f,, =9 x 10°,C = 3 x 10> respectively. Figure 4
depicts the DOAs of the array elements as well as the
vertical ranges according to the values listed in Tables 3
and 4. We have computed the determinant of R, , CRBy

and CRB.as 23737 x107*2, 5.0207 x 1073 and
4.3154 x 10739 | respectively.

Once again, in order to evaluate the effect of changing
an element’s location, we have computed the power of the
received signals at each element and have identified the
third element as the one bearing the strongest received
signal. Once we change the array constellation according to
the formalism discussed in section 4, the new angels are

obtained as ¢y, =90°and g5, =41.3°. Next, we compute

Fig.4. Arbitrary designed array using two sensors.
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the determinant of R, , CRB, and CRB, for the proposed
constellation, resulting in values equal to 4.1649x1073,
1.1578x10°%  and 2.1629x107°, respectively.

Tables 5 to 10 contrast the performance of the proposed
algorithm against the primary constellation by altering the
propagation velocity as well as the frequency of the first
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source. Tables 5 and 6 list the determinant of R, for

different  frequencies and propagation velocities,
respectively. Tables 7 and 8, on the other hand, report
CRB, for different frequencies and propagation velocities.

Finally, CRB, for varying frequencies and propagation
velocities is listed in Tables 9 and 10, respectively.

Table 5

The determinant of R , versus frequency for an array of four elements

Table 6

The determinant R, versus propagation velocity for an array of four

(M=4) elements (M=4)

Mlethods Erimary An Element Changing \\M elhods Primary An Elemeot Changing
Poirlrs-.“ 2eplrces Anounces 2eonirces Asources Pui.r\:l\s“ EMITC0S TSOUrCes ) T
(H:,} I:"'.""':I

1000000 | & 206k 107 | 5308507 | ddiatoo™ | 3oias«o 1000000 | 5971 1107 | 25484= 107 | Lo427=107¥ | 28985107

2000000 [ 205441079 | SRIF=107 | L4084 107F | 43982107 2000000 | L0950 | 19735x10 | 6 T70RxI0 | 4152210

IONKNND | 15740 107 | ZE10dxI0" | 1L0032<l0™ | |Lo4aT«10™ 000000 | 1808510~ | 60ddnx 107 | 30009107 | | 848310

4000000 [ Lea02x 107 | 34560107 | 36470107 | 6.1592x 107 4000000 | 37700107 | 77086107 | 30950107 | 82311107

SOO0000 | 13052107 | 40266107 | Ledon o™ | 4n0aex 0 SO00000 | 35659107 | 3148407 | 33004107 | 44076107

OO0 | 4 1237107 | 31241007 | 322531077 | & 5000x 107" GONOOON | 77422107 | 142531072 | LO307=107 | 20275=107%

FOOMRN | 17775007 | L3on6x107" | A97E0=107 | L9gR0x107" TOMRDO0 | 30107 | $5752007 | ees26:107™ | 12188107

BOOM0O | 30428 107 | 11584107 | 32493007 | zaamoxo0™ SOOD000 | 13874007 | 59383107 | a0dadx10™ | soenxn™

GO0 | 6702 107 | TO0RI 1072 | TASSTx10r® | | 4d6fx o SO0 | 24159107 | 120 | zassexan™ | saoszen™
TOO0OOON | 45180 107 | 1LS868x 107" | 15247 107% | s03dam 07 10000000 | 872761072 | 32287107 | 55864107 | 152601077

Table 7 Table 8

CRB, versus frequency for an array of four elements (M=4)

CRB,, versus propagation velocity for an array of four elements (M=4)

Metheds Primary An Element Changing \\\ Methods Primary An Element Changing
Po'lnl.:i\\\ 2sources Jsources Zsources 3sources Poin\l:\\\ 2sources Asources Zsources Asources
(H:) \\ s) S

1000000 2.2696x 107 | 3.0932x107 | 3.5038<107™ | 2.1268x107% 1000000 8.3219:107" | 89179107 | 85501x107™ | 4.1315x1077
2000000 277401077 | L1183<107% | LO00Ox 107" | 78426107 2000000 475360 107 | 3.9642x 107 | 47522x107% | 3.9588x10°
3000000 53165107 | 24879x 107 | 250811077 | 14406107 3000000 25533x 107" | 9.5407 <107 | 33845x107 | 5.8610x1077
4000000 1.4743x107 | 4.9795x107™ | 22232x107 | 2.2062x107 4000000 27540007 | 12440107 | 12274107 | 2.7070x107
5000000 443491077 | 27030107 | 4.2344x107" | 1L4155x107" 5000000 70811107 | 7.4506x107™ | s5.6050x107 | 36407: 007
6000000 1.0600x 107" | 67074107 | 1.2585x107" | 615311077 HO0DO00 425722107 | 198722107 | 34724x107° | 33847x007°
7000000 S5.8662x 1077 | 6.5676x107" | 4.6382x107" | 5.5043x107 7000000 70252107 | 2.0080 107 | 8.6511x107 | 4.9795x107
S000000 34001107 | 1L1740x 107 | 8.3975x 107 | L0026 107" 8000000 45400107 | 3.3976x107 | 26775x107 | 26244107
9000000 2.0360x 107 | 6.2097x107" | 1.4965x107% | 1.2696x107" Q000000 12252107 | 15149107 | 7.3698x10°% | 5.2732x107
10000000 14627107 | 35560107 | 00363107 | 1.6848x107" 10000000 L4381 107 | 543700107 | L2839x10°" | 3.3276x107"
Table 9 Table 10

CRB, versus frequency for an array of four elements (M=4).

CRB, versus propagation velocity for an array of four elements (M=4).

'\\\\ Methods Primary An Element Changing
Poinl;\\ Zsources 3sources 2sources 3sources
(#z) \\

1000000 247855 1075 | 15590 107%° | 48277x107 | 6.1092x 107"
2000000 8.5074 107* | 82220107 | 2.5775x107% | 3.8235x107%°
3000000 408171072 | 5461621072 | 876021072 | 6£.1092x 1072
4000000 24048 107 | 3.0655x107%7 | 23159x 107 | 1.4885x 107
5000000 22176107 | 9.4367x107% | 21461107 | 11737107
6000000 14267107 | 16220107 | 77170007 | 3.3228%1077
7000000 10392=107% | Low27=1077 | 34091007 | 1L.0OIx 1077
SO00000 25680 1077 | 0.0454x1077 | L1824x107" | 55565x107%
9000000 19810107 | 13019107 | 1.3549x107 | 1.2179x107%
10000000 7.6638x 1077 | 8.8748x 107 | 2.0034=107" | 6.3073x107°

\ Methods Primary An Elment Changing

Poi J..R\\ 2sources 3sources 2sources 3sources

(m.-".'r}
1000000 22184107 | 3604421077 | 0.0762x107F | 7.8264x107"
2000000 67851107 | 7.5031=107 | 56365x<107° | 1.3934x107*
3000000 81053107 | 5.2576x107 | L1763x107 | 3.0189%107"
4000000 2.0674x1077 | 2.0001x 1077 | 1L4828x107" | 1.0399x10™
5000000 4.5562> 107" | 48737107 | 11500107 | 7.5032x107"
6000000 85730107 L7672 107 | 3.0725x107™ | 3.4801x1077
7000000 46804107 | 31980107 | 2.7233x107 | 1.2080x1077
3000000 66242107 | 7.4334% 107 | 17407107 | 12640107
9000000 416191072 | 34597107 | 91560107 | 333142107
10000000 9.6997 =107 | 22495107 | 52477x107™ | 6.0149x107%
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6. Conclusion

In this paper, we have proposed an algorithm to improve
the position of an array element for arrays designed on the
basis of some certain or random rules. In the proposed
method, one element moves along the same previous
direction, maintaining its vertical distance from each
source, to reach a constellation with less CRB. The
efficiency of the proffered method has been demonstrated
through simulation; also, a comparative study has been
conducted, contrasting both the CRB and the determinant
of the received signal’s covariance matrix before and after
applying our proposed scheme. We have effectively shown
that the new constellation formed by this element changing
initiative is of superior performance and with less CRB
compared to the primary constellation.
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Appendix: Further details on the CRB equations

In this appendix, we present further details concerning
the equations (13)-(18) of the main text. It should be noted
that Q, and Q, are constant matrices [2]:

o -foref (A1)

Q. =10,.3,) (A2)
where:

Q=Q,Q (A3)

Q=-jQ,Q, (A4)

Qi =1+103,,3,) (A5)

where | is the Identity matrix of size equal to N2 x N2
and 1(gl,g2) represents a matrix of the same size, with

“1” elements associated with the indices J, and J,and
“0’s” elsewhere. Also, we have:

61 =1 —1@1rlz) (A-G)
Q:=1(34.35) (A7)
Q, :1@11i1) (A-8)
J,=[23...N,N+3 N+4,..2N,2N +4 (A9)
2N +5,...3N,3N +1,...,(N +1N] '
J,=[2...(N-2)N/2] (A.10)
J,=[N+L2N+1...,(N-1N +1,2N +2,3N +2, (A1)
(N-DN+2,(N-DN+3,...,N2 1] '
J,=[2..,N,N+2,N+3 (A12)
..2N,2N +1,2N +2,...,N2]
J,=[L2...,N(N+1)2] (A13)
J, =L N+2,2N+3,.. N2 (A14)

and J, is characterized simply by the indexes [1,2,...,N],
also:

A=A (A.15)

n=1 afn

The needed derivations in the formula (A.15) are
calculated as follows:
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A _ O j(a’o /C)Amkpm [ Si”(Qn - ¢m) (A.16)

agn [[n +pr$1 _mefn COS(Qn _¢m) ?
OAmc __ OAmk (r, — P c0s(0, —¢n)) (A.17)
a[n aQn (pm[n Sin(Qn _¢m ))



