
 Journal of Computer & Robotics 1 (2010) 83-93

83

Turning P2P Networks into DDoS Engines: A Survey

Hamid Farhadi
a
, Behzad Akbari

b *
, Shahab Rajaee

a
, Mohammad Farahani

a

 a School of Science and Eng., Sharif University of Technology (International Campus), Kish, Iran
b Department of Electrical and Computer Eng., Tarbiat Modares University, Tehran, Iran

Received 9 November 2009; revised 8 May 2010; accepted 25 May 2010

Abstract

Recently, Peer-to-Peer (P2P) networks contribute to a large fraction of the Internet backbone traffic. Consequently, misusing such networks

for malicious purposes is a potential side effect. In this review article, we investigate different techniques of misusing P2P overlay

networks to launch large-scale next-generation Distributed Denial of Service (DDoS) attacks. In particular, we investigate representative

systems of the structured (Overnet), unstructured (Gnutella) and hybrid (BitTorrent) P2P overlay networks. Real world experiments

indicate the high performance, difficulty in detection and tracking, and the low cost of launching such attacks.

Keywords: P2P overlay Network, DDoS Attack, Overnet, Gnutella, BitTorrent.

1. Introduction

The Internet has experienced considerable changes since

its creation. It has grown from a small scientific prototype,

for exchanging data among trusted parties, to a complex

communication infrastructure, transmitting various types of

data such as multimedia and financial transactions. Conflict

of interests, is a natural phenomenon in such environments,

and criminal motivations are inevitable [1]. This leads to

attacks from malicious users against innocent victims or the

infrastructure itself. One of the most important types of

attacks over the Internet is the Denial of Service (DOS)

attack which causes a service or property (e.g. web server

or network connectivity) to be disrupted [2]. An elementary

implementation mechanism of the DoS attack involves

flooding the target with either ordinary (i.e. non-attack) or

attack traffic in a manner that the requests belonging to the

legitimate users have almost no chance to be responded. By

the attack traffic, we mean the useless traffic that is

generated by a peer unintentionally because of some

protocol exploitation by the attacker. Such attacks, can be

performed separately or as a part of a complicated attack.

Distributed Denial of Service (DDoS) attack is an

improved version of DoS attack in which redundant DoS

attacks are coordinated as a single attack which is

geographically distributed. Millions of contributors may

cooperate in forming an effective attack that can severely

impact even on high bandwidth backbone facilities. Several

types of DDoS attacks exist that are much more

sophisticated than the ordinary overloading of resources via

bombarding the target with a large number of packets.

Launching such attacks usually needs little knowledge both

about the attack and about the target and its security state.

Mitigation methods against DDoS attacks are a live

research topic in the community, and are still far from a

full-proof solution.

DDoS attacks can be applied for different purposes; they

can be used for terrorism and vandalism or as an aid to the

other attacks. For example, it can be used to overload an

Intrusion Detection System by many fake attacks, targeting

different hosts, in order to mask the main attack.

Traditional DDoS attacks include two steps: Firstly,

using different techniques such as viruses, Trojan Horses,

buffer overflow attacks, etc., many hosts are compromised,

organizing them into a type of overlay network (also

known as Botnet or zombie network) with a single

Command and Control (C&C) host; secondly, the C&C

host (also known as botmaster) sends the attack command

to the overlay, and each member starts attacking the victim.

The first step can be a time-consuming task if it is carried

out manually. Therefore, many attackers try to automate the

botnet construction process using techniques such as

Corresponding Author. Email: b.akbari@modares.ac.ir

H. Farhadi et al. / Turning P2P Networks into DDoS Engines: A Survey

84

Internet worms that continuously seek for a new target to

infect. That explains why botnets are sold expensively in

the black market. Another difficulty in conducting a DDoS

attack is the heavy cost associated with botnet maintenance.

While more and more Internet users recognize the

importance of the security of computer systems and

networks, they are more likely to remove their systems

from the botnet and provide some protection against

possible re-infection. Moreover, most powerful members of

botnets are server hosts that possess more computational

capability and connection bandwidth, and are usually

maintained by professional administrators who detect

malicious activities in their systems, sooner or later.

In this paper, we narrow in on a particular type of DDOS

attacks which exploit P2P networks as their traffic

generation engine.

The rest of the paper is organized as follows: first, in the

remaining of this section, we review the preliminary

concepts of P2P networks and briefly explain how they can

be exploited for conducting DDOS attacks over the

Internet. We then investigate the exploitation of different

P2P file sharing networks for running DDOS attacks in

Sections II, III and IV. In particular, Gnutella, as an

unstructured P2P network, is investigated in Section II.

Section III is centered on Overnet as a representative

example of a structured network. The BitTorrent network

along with the specifics of its exploitation as a DDOS

attack engine is presented in section IV. The paper ends

with concluding remarks.

1.1. Peer-to-Peer Overlay Networks

P2P overlays are application layer networks, made up of

several peers organized into a self-managing network on

top of the Internet Protocol. It is reported that P2P file

sharing applications contribute to more than 70% of the

backbone traffic in some areas, and are getting more

prevalent among Internet users [3]. P2P overlay networks

are divided into two groups: Structured and Unstructured.

Technically, in a structured P2P topology, a mapping is

defined between a peer’s ID and the shared content in order

to support more efficient queries. These networks usually

use a hash table in which the location information

associated with the data object (or value) is placed

deterministically at the peers with identifiers corresponding

to the unique key of the given data object. This table is

stored in a distributed fashion amongst a selective number

of peers, and acts as a routing table by consistently

assigning uniform unique numbers to both peers and shared

files, i.e. in the form of Peer-IDs and keys, respectively [4].

In Unstructured P2P networks, the location of the data

objects has no logical relation with the member’s location.

In other words, new peers join the network without having

a clue about the network's topology. In effect, the members

rely on a query flooding mechanism to transmit/pass their

messages over the network. Depending on the network

policies, these queries get disseminated in a depth-first or

breadth-first manner, until their time-to-live (TTL) reaches

zero and the query expires. Hybrid P2P networks, on the

other hand, are defined from the combination of structured

and unstructured P2P networks, exhibiting characteristics

from both paradigms [4].

Napster, a precursor P2P file sharing system, was

introduced in 1999. It attracted mainstream attention and

has been popularly used for music sharing. Napster relies

on a centralized server to maintain a list of live clients

together with the shared files. Napster, of course, was shut

down due to copyright violations [5]. Gnutella was the

second P2P file sharing network that also received a great

deal of attention. It is a purely distributed P2P network that

works independently of any single server. Each new peer

needs to be aware of the address of a single remote peer

during the bootstrap phase [6]. FastTrack is yet another P2P

network which makes use of some powerful and long-

lasting nodes (i.e. super-nodes) as the distributed directory

service of the overly, with each super-node in charge of

serving a number of peers as their children. Kazaa was one

of the popular FastTrack-based P2P overlays. The notion of

super-nodes in Kazaa allows the joining and searching

overhead to be balanced out over a number of more stable

and powerful hosts, leading to a more scalable design [7].

Later, Bram Cohen introduced a new P2P file sharing

network using hybrid characteristics from both unstructured

and structured P2P overlays, the so-called BitTorrent

syetm. It was designed for efficient sharing of large files

over the Internet with fairness mechanisms (e.g., the tit-for-

tat policy) that revolves the users' habits from download

only to download and upload behavior. BitTorrent is

efficient in transferring large files among peers, and has,

thus, gained popularity within the last several years [8,9].

In the future, we may witness P2P networks completely

free of any centralized server and with all nodes providing

the same functionality. In addition to traffic

encryption/obfuscation, we expect some anonymity

preserving improvements that hide the source and the

destination of the connections. Moreover, long-life

connections may also be used in conjunction with the

currently short-term connections between peers.

1.2. Using P2P Networks as DDoS Attack Frameworks

A hijacked P2P network allows launching large-scale

DDoS attacks against a host even outside the overlay. That

is, while there is no compromised host in the overlay, the

P2P protocol itself is exploited and compromised. Ease of

operation, low cost, high performance and difficulty in

defense and detection have made the misuse of P2P

systems for DDoS attacks a new research topic in the

community [10-13]. In this sub-section, we discuss how the

effectiveness of using P2P networks as DDoS attack

engines is justified in the context of next generation DDoS

attacks.

Turning P2P overlays into DDoS attack engines is

advantageous to attackers for the following reasons: First,

 Journal of Computer & Robotics 1 (2010) 83-93

85

in traditional DDoS attacks, the intruder compromises a

large number of hosts by turning them into zombies and by

installing a small malware (usually undetectable by anti-

malware software) to control the zombies. This process can

be done either manually or in an automated fashion using

robot software (e.g. worms). On the other hand, in P2P-

based DDoS attacks, there is not any direct attack to the

hosts in the overlay at all; instead, the P2P protocol

vulnerabilities are subject to exploitation. Misusing the P2P

protocol, the attacker is able to mislead the traffic to a

victim host. The traffic can be either legitimate or

abnormally generated using P2P protocol vulnerabilities. In

the latter case, the traffic is generated in the peers that are

maliciously stimulated by the attacker node. In addition,

using P2P protocol vulnerabilities, one may hijack a

million peers in a day, as opposed to the traditional

methods in which much more time is usually needed for

constructing a botnet of the same size.

Second, in traditional methods, the constructed botnets

may not be reusable after a month. That is, due to the

growing awareness of both desktop users and system

administrators with respect to security issues, the botnet

members will be detected by their owners and removed

from the network. Additionally, anti-malware vendors may

detect the controlling software on zombie hosts and come

up with a remedy for its removal through their malware

definition updates. In contrast, as P2P users are growing,

the size of botnets in such networks can even increase in

time. In P2P-based DDoS attack botnet construction

process, the intruder neither exploits any software or

service on the hosts, nor does it gain any kind of access on

peer systems. Thus, there is not any malware installed on

peer hosts. Moreover, even a user with above-average

knowledge of computer security would not be able to easily

understand such an anomalous behavior in his P2P client

software. In this case, the botnet size is not expected to be

subject to a considerable decrease in time.

Third, the undetectability of the DDoS attack strongly

depends on the geographical distribution of the botnet. The

more the botnets are geographically dispersed the more

chance a typical attack has of going undetected. In

traditional DDoS Attacks, zombie hosts are compromised

either manually or automated. In the former case, the

attacker needs to manage the distribution of botnet himself,

while in the latter case, the automated robots seek for new

victims usually in the same range as their own machine. As

a result, we may see many zombies from a single service

provider (e.g. a large ADSL service provider) in the botnet,

a fact which eases the detection and tracking of the attack.

In P2P-based DDoS attack, however, the attack’s

geographical distribution obviously mirrors the distribution

of the overlay. Due to the popularity of P2Ps, thousands of

Autonomous Systems may contribute to the overlay

network, essentially making it difficult to trace back the

botmaster.

Fourth, in attacker trace-back investigations, the

computer forensic specialists first detect a zombie host, and

then try to find the C&C channel between the zombie host

and the botmaster in order to determine the main attacker.

In traditional DDoS attack methods, C&C is usually

performed using an available infrastructure such as IRC

[14] or Twitter [15]. Therefore, the investigators seek for

evidence on such connection infrastructures to detect the

botmaster. However, in P2P-based DDoS attacks, the

legitimately running P2P protocol is hijacked to facilitate

the communication. Therefore, it is more difficult to

determine the attack source via inspection of a zombie host.

Fifth, the generated traffic from the DDoS attack engine

plays an important role in the success of the attack. In

traditional methods, the engine’s output depends on the

total bandwidth of the botnet. Conversely, in P2P-based

DDoS attacks, the total overlay traffic can potentially

appear at the engine’s output. Given that a large fraction of

the Internet backbone traffic is generated from such

overlays, it is unlikely to have as little traffic as in

traditional botnets. Hence, P2P-based DDoS attacks are

potentially capable of generating more traffic compared to

the traditional DDoS attacks.

However, turning P2P overlays into DDoS attack

engines is also associated with a number of drawbacks. A

hijacked P2P overlay can only be used as a DDoS attack

engine; this is while the traditional botnets are essentially

multipurpose platforms for sabotaging activities. For

instance, a botnet can be used as a chain of proxies for

hiding the attacker from the victim. The longer the chain,

the more anonymity the attacker can achieve. Yet another

example is the case of gathering all documents or credit

card information from the compromised systems for

possible trade in the black market [16,17].

2. Gnutella: An Unstructured P2P Network

The Gnutella network is an unstructured P2P system.

Every node in this system, called servent, has the roles of

both server and client. Each node provides a client-side

interface. Through this interface, users can issue queries

and view search results, accept queries from other servents,

check for matches against its local data set and respond

with the corresponding results.

Since Gnutella network features a pure Ad-Hoc

topology, the clients may join/leave the network at any

time. Thus, the protocol has been designed as a highly

fault-tolerant mechanism to minimize the effects of peer

churns. However, this leads to a large overhead induced by

synchronization messages, traveling amongst the peers in

the network. Every peer, at first, searches the entire

network for its desired files and establishes connections

with peers who own the searched files. Then, the peer

begins downloading directly from the peers. There are

different kinds of messages in the Gnutella network [18]:

● Group Membership (PING and PONG) Messages; every

new node needs to find a connection point to join the

Gnutella network. Thus, most client vendors set up a

number of host-cache servers which maintain the IP

address of the other peers currently connected to the

H. Farhadi et al. / Turning P2P Networks into DDoS Engines: A Survey

86

network. After obtaining a random number of available

peers, the new node broadcasts a PING message to the

other nodes to announce its presence. Upon receipt of the

PING message, each node issues a back-propagated PONG

message towards the sender. The PONG message contains

some information about the node such as its IP address,

port number, the number and the size of the shared files,

etc. At the same time, the node forwards the received PING

message to its neighbors.

● Search (QUERY and QUERYHIT) Messages; in order to

look up its desired files, each node broadcasts QUERY

messages, containing the user specified search string. In

order to respond to a QUERY, the other nodes, receiving

the QUERY message, are free to send back a QUERYHIT

message to the QUERY sender. The QUERYHIT message

includes the information needed for downloading the

specified file(s).

● File Transfer (GET and PUSH) Messages; file downloads

are done directly between two peers using GET/PUSH

messages. The PUSH message is used when the node

receiving the QUERY is firewalled. In this situation, the

QUERY sender can identify its request to the firewalled

node with a PUSH message to push the file.

2.1. Gnutella’s Vulnerabilities and Attack Description

Gnutella’s designers had never considered security as a

basic design principle; security, in the context of these

systems, has always been sacrificed for the sake of more

simplicity and better performance. In particular, since

messages are sent in plain text format, an attacker is able to

read and modify the messages. Attackers may also exploit

this vulnerability to run spamming DDoS attacks, as will be

explained later.

Furthermore, due to processing overhead and response

time considerations, encryption is not accounted for in the

Gnutella protocol. Hence, a malicious peer can spy on other

peers’ activities and violate their personal privacy.

In the following section, we explain these vulnerabilities

and discuss possible DDoS attacks over the Gnutella

network.

2.1.1. DDoS Attack through Spamming

In Email world, “spam” is a familiar word given that

typically everyone receives unsolicited emails occasionally.

It is, however, rather easy to delete the spam emails with

little nuisance. This is not the same when it comes to a

spammed query result in the Gnutella network. A spammed

query could make a peer an active part of a DDoS attack

against any arbitrary host.

There is no provision for dealing with DDoS attacks in

the Gnutella network. A malicious peer can launch a DDoS

attack via answering positively to any query it receives,

causing every peer to download a resource from the victim.

In order to get a concrete idea, let P1 and P2 be two Gnutella

peers and let M be a malicious peer in the network. Finally,

let A be a host, subject to the attack and claimed to have the

searched files by M. P1 and P2 send QUERY messages to

peer M in order to search for and download different files.

M responds to both peers with a QUERYHIT message,

directing P1 and P2 to download their interested files from

peer A. To render the QUERYHIT message more appealing

to the peers, M can also indicate in the message that A is a

server with a LAN connection. In addition, it tries to come

up with a file name as relevant to the initial QUERY as

possible. This can be achieved by using the initial QUERY

keywords appended with a random extension from the

popular media files. With this understanding, it is possible

that a large number of Gnutella peers connect to the victim

and try to download a non-existent file. The host can

respond with an HTTP 404, which means that it was unable

to locate the requested file. Since an HTTP 404 response

code may not be too difficult to handle for a server, authors

in [19] have presented a method so as to force the Gnutella

peers to actually perform a real download from the server.

They have essentially embedded specially composed file

names in the QUERYHIT message, making the attack more

efficient.

In order to maximize the number of polluted peers in the

network, the malicious node M first connects to a Gnutella

IP host-cache server so as to obtain a random number of

available hosts which are connected to the network. After

polluting them with spammed QUERYHIT messages,

following the aforementioned mechanism, M disconnects

from these peers. It, however, immediately re-connects to

the host-cache server to obtain another random number of

hosts for repeating the same procedure [20].

The interesting aspect of spamming DDoS attack in

Gnutella network is that most of the poisoned peers insist

on downloading from the victim for a long time. They keep

trying even after the malicious peer was shut down given

that many Gnutella clients are designed to endlessly and

periodically retry downloading in case the initial download

attempt fails.

2.1.2. The PONG Attack

The other type of a DDoS attack is the PONG attack.

Although this attack is not as powerful as the spamming

attack, yet it can illustrate the other weaknesses of the

Gnutella protocol. As mentioned before, when a peer P

sends a PING message to the other peers, they reply to the

received PING message with a PONG. A PONG message

typically contains the IP address and the port number of the

replier. Let M be a malicious peer and H be a typical

Internet host which is not connected to the Gnutella

network. M could easily respond with a PONG message

which contains the IP address and the port number of a host

like H. Now P, receiving a PONG message from M, sets up

a connection with H, stores the H’s address in its cache and

forwards all its QUERY messages to H. By sending the

PONG message as a response to many PING messages, the

malicious peer could direct a bunch of QUERY messages to

 Journal of Computer & Robotics 1 (2010) 83-93

87

the host H. Every peer in the Gnutella network re-sends a

PING message to all the neighbors in its cache after a short

time period to discover the changes in the network

topology. Hence, the PONG attack only lasts for a short

time period, given that H is not a real Gnutella peer and

cannot respond to the P’s PONG message. Finally, P

removes H from its cache and the attack terminates.

2.2. Implementation Achievements

Authors in [19] have employed five malicious peers and

five distinct web servers. The peers simultaneously

generated 10K, 100K, 1M, 10M and 100M QUERYHIT

messages. The traces from the first two peers have been

discarded, since their query rate was quite low in

comparison with the other three. The recorded log files

have shown that for 10M QUERYHITs, more than 10

million downloads have been recorded from 52,473 unique

IP addresses within about one day. On the other hand, the

larger attack trace, with 100M QUERYHIT messages,

embeds nearly 71 million downloads issued by 421,217

unique IP addresses within more than 12 days. The

observation indicated that nearly 80% of the IP addresses

issue less than 100 requests and about 0.5% issue thousands

of requests. One interesting observation has been that the

web servers logged some download requests even 10 days

after the end of the experiment. It suggests that some peers

that could not download the content they were looking for

kept on trying for many days, insinuating that Gnutella has

a kind of memory. Similar results are obtained in [20].

3. Overnet, a Structured P2P Network

In this section, we examine, in detail, the exploitation of

Overnet as a DDoS attack engine. Overnet is a part of the

eDonkey client software. Kad, deployed in eMule, is an

open-source version of Overnet. Both Overnet and Kad are

based on the Kademlia Distributed Hash Table (DHT) [21]

which is similar in many aspects to Pastry [22] and

Tapestry [23] protocols.

3.1. Overview

To understand how Overnet can be exploited, we first

review some of its relevant features and then describe its

vulnerabilities.

3.1.1. Join Process

A new node has to know at least one live peer in the

overlay to be able to join the network. The known node

may have been either cached from previous sessions or

provided manually by the user. New nodes use a 128-bit

key as their unique identifier and then search for their own

IDs through the DHT. The search process uses iterative

UDP messages. By sending a series of UDP messages from

the querying peer, the Kademlia DHT would be able to find

peers with the closest IDs, using a simple XOR-based

distance measurement function.

3.1.2. Routing Table Construction and Maintenance

During the search process initiated by the newly joined

peer X, each intermediate peer Y routes the search

messages to a Y' with an ID which is closer to the ID of X.

Intermediate peers also send their own routing tables to the

querying peer. Using the received routing tables, X is able

to construct its own table by aggregating entries of the

received tables [21]. Following the successful creation of

the routing table, X announces itself to all its neighbors in

the routing table. Each peer receiving such presence

announcements adds an entry for X in its own routing table.

3.1.3. File Advertisement

The new peer starts advertising its shared data objects

(files in this case) after introducing itself to the overlay in

the joining process. The file publishing process consists of

two steps:

1. Publishing the location information: first, all files are

hashed to yield a representative identifier. Then, peer X

sends a location publish message, including the file ID H

and its location (i.e. the IP address and the corresponding

port number) to the DHT. The publish message is routed to

the peer with the closest ID to H in the ID space via

iterative routing through the overlay. The closest peer to H

updates its local index of files.

2. Publishing the metadata information: in the second

step, the source peer extracts keywords from the file name.

Then, it hashes each keyword separately and makes a 128-

bit key for each keyword G. All keywords are then sent to

the DHT via a metadata publish message. Each message

contains the keyword hash plus the related file hash and

some metadata information (e.g. title, size, type, etc.).

Similar to information publish messages, the metadata

publish messages are routed iteratively through the DHT to

the peer with the closest ID to G in the ID space. The peer

with the closest ID to G updates its local index with the

newly received keyword hash G.

3.1.4. File Searching

The search mechanism is similar to the file

advertisement process. The difference is that during the

search, the two steps of the advertisement process are

performed in reverse order. First of all, the client software

GUI receives n keywords from the user to initiate the

search. Then, it calculates n hashes from the keywords and

sends n search messages (one for each) to the overlay. The

searching message crawls iteratively through the DHT to

reach the peer with the closest ID to the keyword hash. The

search results in the identification of a peer that holds some

records stating where the corresponding files are located.

The matching records are sent to the querying peer, passing

the file's ID (i.e. the hash of the file) plus all available

metadata. Thus, the querying peer receives various sets of

IDs, one for each keyword. Depending on the client

H. Farhadi et al. / Turning P2P Networks into DDoS Engines: A Survey

88

configurations, the raw search results may be filtered and

then shown to the user. The user can select some to be

downloaded via the client GUI. When the user selects a

file, a location search message, including the file identifier,

is sent to the overlay. After a number of iterations on the

DHT, the message reaches to the corresponding peer. The

peer holds a set of location information, such as pairs of IP

addresses and port numbers, each representing the location

of a file copy. Finally, the client software establishes TCP

connections to those peers to receive the file.

3.2. Overnet’s Vulnerabilities and Attack Description

In this section, we discuss different vulnerabilities and

attacks in the context of Overnet and KAD.

3.2.1. Asymmetric Attack

Request and response messages in a given protocol

come in varying sizes. Exploiting this feature, it is possible

to send smaller or fewer messages while posing them to the

victim as larger or more response messages. For example, a

bootstrap request in the eMule client software includes only

2 bytes of data, while the bootstrap response message, that

contains information from 20 peers, needs 527 bytes of

data. Using this feature of the protocol, the attacker can

achieve a considerable amplification with which to increase

the attack’s performance. In the case of 20 peers, the

response message amplified more than 260 times that of the

request message. However, this method is only applicable

to the victims inside the overlay [24].

3.2.2. Index Poisoning Attack

In the index poisoning attack, the underlying idea is that

the attacker advertises the victim as a source of some

popular files. Therefore, many overwhelming requests are

routed to the victim. It can be realized since there is no

validity checking for the advertisements in the overlay. To

add more details, the attacker first crawls on the network

and grabs as many node addresses as possible. Then, it

sends a location publish message to each of these nodes.

The messages are spoofed with the victim's IP address and

port number and also contain an arbitrary file hash. Any

peer, receiving such a message, adds it into its local index

along with the location of the victim. In fact, the peer

neither checks whether the file exists at the claimed source,

nor does it verify if the source peer is actually a member of

the overlay. Eventually, any matching search query for the

advertised file is redirected to the victim. Later, the

querying peer establishes a fully open TCP connection to

the service running on the target. Depending on the service

configurations at the target, the connection may last for a

minute or more [25].

3.2.3. Routing Table Poisoning Attack

The idea is that the attacker falsely advertises the victim

as the neighbor of many nodes in the overlay. Hence, the

victim receives many messages of different types routed by

the DHT and exhausting its resources. It can be realized

since there is not any mechanism to verify whether an

announced peer is a valid overlay member or not.

Particularly, the attacker sends an announcement message

to every crawled peer. These messages are spoofed with the

victim's IP address, making it possible that the

compromised node be added into the routing table of any

crawled peer (of course depending on the node ID included

in the message). Let Y denote the peer currently visited by

the crawler and Z denote the victim system. During

crawling, the Y’s node ID can be retrieved, and by using

close IDs to that of Y’s in the announcement message, the

attacker can boost the probability of adding Z to the routing

table of Y. Such poisoning is feasible since there is no

mechanism in Y to check if Z is a valid peer in the overlay.

The victim Z receives many messages if (i) a lot of crawled

nodes add a record to their routing tables, stating Z as their

neighbor, and (ii) Z’s ID is such that it is often selected as a

neighbor from the routing table of Y. The routing table

poisoning attack can not only be launched using

announcement messages, but also one may perform the

attack using publish and query messages [26].

3.3. Implementation Achievements

In [26], a list of 7,564 file hashes has been used. The

routing table poisoning attack generated on average about

1.5 Mbps of upstream traffic at the victim. Moreover, the

traffic has been launched from hundreds of thousands of

different Overnet nodes. Index poisoning caused over 300

TCP connections to hang at the victim, which persisted for

hours after the attack. This can be attributed to the fact that

for the entire duration of the attack, the target host received

traffic from 340,274 peers from 22,484 Autonomous

Systems. As a result, a good geographical distribution has

been achieved. Similar results have been presented in [25]

and [26].

4. BitTorrent: A Hybrid P2P Network

4.1. Overview

A recent analysis of the latest P2P trends worldwide

shows that BitTorrent is still the most popular file sharing

protocol [27]. Although emerging technologies to enforce

traffic shaping restrictions (applied by some ISPs) have

declined P2P traffic, the BitTorrent traffic is still on the rise

(Figure 1). It is responsible for more than 45-78% of all

P2P traffic, i.e. roughly 27-55% of all Internet traffic across

different regions, as documented by Ipoque Internet Study

group [28]. The key fact that can be inferred from this

report is that in most regions, BitTorrent is the dominating

protocol where HTTP could best stand in the second place.

As can be seen in the figure, the usage share of BitTorrent

clients is much higher than that of the other P2P protocols.

BitTorrent has proved to be extremely effective in

 Journal of Computer & Robotics 1 (2010) 83-93

89

distributing files and it has gained great achievements as a

massive-scale content distributer. BitTorrent’s users

doubled from 2006 to 2007 [28], with also an outstanding

increase in 2008; for instance, downloading torrent files

from Minova, a popular torrent search engine website,

doubled and reached to 7 million in 2008 [29]. All these

achievements have rendered BitTorrent into a successful

blueprint for other P2P-based systems; therefore, it is

particularly important to know the possible vulnerabilities

and hazards associated with the exploitation of such a

popular protocol.

4.1.1. Terminology

In this section, we give a brief overview of the

BitTorrent system with special emphasis put on those parts

which could be exploited to launch DDoS attacks. The

BitTorrent system is made up of the following main

entities:

● BitTorrent Client: A client-side software that provides

facilities for P2P file sharing (upload & download) via the

BitTorrent protocol.

● Leecher: Peers that do not have the whole shared file(s).

● Seed(er): A peer who owns all blocks of the file and

provides pieces to other peers.

● Torrent File: A file which includes metadata for

describing the shared files’ attributes and is used for

bootstrapping the download. Its main entities are: an

announce section for specifying the address (URL) of the

corresponding tracker, an info section that consists of the

proposed names for the files, their lengths, the length of the

pieces and a SHA-1 hash code for each piece.

● Swarm: A group of peers who join in downloading a

common file.

● Tracker: An element which stores and manages the list

of the contributing peers of a swarm together with their

current communication in the BitTorrent Protocol.

4.1.2. How Does BitTorrent work?

Whenever one decides to share content over the

BitTorrent network, he should first generate a

corresponding torrent file which contains the tracker

URL(s) and some other meta-data about the shared content.

He also notifies the tracker that he is the initiator peer who

shares the content described in the torrent file. The next

step is to publish the produced torrent file in (popular)

torrent search engine sites or discussion forums. The

interested users will then be able to download the torrent

file and use their BitTorrent client program to decrypt its

content. The BitTorrent clients start downloading the file

by connecting to the tracker periodically. As pointed out

earlier, in order to have each swarm coordinated, the

members should periodically declare their existence

together with their current status to the tracker. The tracker

has the responsibility of keeping and distributing the list of

peers for different swarms individually.

The BitTorrent P2P protocol is different from the earlier

peer-to-peer protocols such as FastTrack (iMesh [30],

Morpheus [31], etc.) or eDonkey [32] (eMule [33], Overnet

[34], etc.). One of the most significant characteristics of

this fabulous protocol is that it divides each file into several

smaller parts (chunks) in order to use peers’ bandwidth

more efficiently. Therefore, each peer is able to download

not only from the peers which have all chunks (i.e. seeds),

but also from the peers that just own some of the chunks

(Figure 2). In comparison with the older versions of other

P2P protocols like Napster, Gnutella, or KazaA [35], this

mechanism also outstandingly lessens the load on both the

content distributors and seeds.

Chunk Transmission
Or Peer Exchange

BitTorrent
Tracker

1
1

1Torrent Search
Engine

2a

2b

2b
2a

33
3

3
3

3

Leecher

3

Download
Torrent File

1

2a

2b

Join Swarm

Peer List

`

Leecher
Seed

Leecher

Fig. 2. How BitTorrent works [36].

4.2. Vulnerabilities and Attack Description

Before describing the BitTorrent’s vulnerabilities, it is

important to have a better understanding of the underlying

connection in this protocol. The communications in

BitTorrent can be classified into two main categories based

on whether the exchange of data occurs between the peers

or between the peers and the trackers. Peers communicate

with each other either for the transmission of (blocks of)

files or for finding out more about other existing peers by

exchanging their peer list. To the best of our knowledge,

Fig. 1. Most popular P2P protocols [28].

H. Farhadi et al. / Turning P2P Networks into DDoS Engines: A Survey

90

only peer-tracker connections are vulnerable to the DDoS

attacks. All transmissions taking place over this type of

connection are based on the HTTP protocol, and each

tracker has to process hundreds of different HTTP requests

in every given moment. Hence, the tracker developers have

to forgo some security features for mitigating the load on

the tracker. As will be discussed later in subsequent

sections, an attacker may exploit some of these

vulnerabilities to run a DDoS attack.

We divide BitTorrent attacks into two categories based

on whether they lead to a DDoS attack or not. Authors in

[36-39] have shown how it is possible to exploit this

protocol in different ways to run a successful DDoS attack.

Other studies have discussed several possible attacks on a

BitTorrent network by exploiting the weaknesses within the

BitTorrent P2P protocol. These attacks are focused on the

BitTorrent members and their aim is to collapse or at least

to slow down the BitTorrent network. In this paper, we

discuss the ideas which may lead to DDoS attacks and the

type(s) of ignorance that lay the ground for such

vulnerabilities.

The very facilities that help BitTorrent become the most

popular P2P application may also be exploited maliciously

to turn it into a powerful DDoS engine. For example, the

lack of tracker validation mechanisms by most of the

popular torrent search engines could prepare for some

security threats. As will be explained shortly, an attacker

could exploit this vulnerability and publish fake torrent

file(s) to run a DDoS attack against a target.

An interesting fact about the BitTorrent DDoS attack is

that its victim could have attacked by internal IP address,

we mean it exists inside the BitTorrent network as a peer

who has the client-side BitTorrent application running;

external IP address, on the other hand, applies to the clients

outside the overlay that cannot process BitTorrent

messages. It is of note that the victims of a BitTorrent

DDoS attack are not limited to hosts with an internal

address. It is possible to have both internal and external

victims in DDoS attacks over a BitTorrent network. Table 1

comes with more details on these issues. Our upcoming

discussion in the subsequent section will be according to

this classification. Each attack will be evaluated separately

and we will identify the weaknesses that lead to the

corresponding vulnerabilities.

4.2.1. Victim as a Peer

As explained previously, a peer could have all pieces of

a shared content only if it connected to the other peers

asking for the blocks of shared file(s) they already have

downloaded. Accordingly, there must be an entity that lets

the members of each swarm know a number of

participating peers to start exchanging data with. Initially,

Table 1

Different DDoS attacks over the BitTorrent network

Attack Mode How

Victim

in place of

a peer

Tracker mode
(centralized)

Victim has no BitTorrent client

(Outer mode)

1- The attacker make the tracker advertise the victim as a

cooperative peer by sending a spoofed message to the tracker in

the swarm (reported and fully implemented in [37]).
2- The attacker modifies/hacks a tracker to insert the victim’s

address in the peer list.

(reported and fully implemented in [38]).

Victim has a BitTorrent client
(inner mode)

DHT mode

Victim has no BitTorrent client

(Outer mode)

Sending a spoofed PING message on behalf of the victim (by

using the victim’s IP address) to the DHT (reported in [37], but
not implemented yet)

Victim has a
BitTorrent

client

(inner mode)

Inner node is a

tracker

Same as above but the victim is part of the BT network (not

reported or implemented in the literature; just envisioned by the
authors).

Inner node is a

peer

Victim

in place of

a tracker

Tracker mode

(centralized)

Victim has no BitTorrent client
(Outer mode)

Publishing a modified torrent file with multiple trackers and

having at least one entry including the IP address of the victim,
also having another entry with the address of an evil tracker

which answers with a fake number of seeders / leechers.

(reported and fully implemented in [36]).

Victim has a
BitTorrent client

(inner mode)

Inner node is a

tracker

Same as above but the victim is part of the BT network (not

reported or implemented in the literature; just envisioned by the

authors).
Inner node is a

peer

Amalgam mode Both modes Both modes All the above.

 Journal of Computer & Robotics 1 (2010) 83-93

91

peers know the tracker(s) (from the torrent file) but not the

other peers. The tracker is the sole entity which maintains

the list of participating peers for each swarm. As a result,

an attacker should somehow modify the tracker’s peer list

to be able to introduce a victim as a peer. In the subsequent

sections, we explain two possible approaches to members

into connecting to the victim as a peer.

4.2.1.1. Spoofed Message Attack with a Centralized Tracker

In this model, there is a central entity which accepts

queries from peers over the HTTP protocol (in CGI

format). However, depending on the BitTorrent client’s

policies, the peers may communicate with the tracker over

the TCP or UPD protocol. Once a peer establishes

connection, it sends a GET request to the tracker to receive

a peer list while also letting the tracker know about its

status (connected/disconnected) by including its new

statistics (e.g., the remaining blocks) and other parameters,

as discussed previously. The tracker also returns a list of

other peers who are currently sharing files in that Swarm.

Since the tracker trusts the peers, it does not authenticate

the requester. An attacker could thus send a spoofed

message (by changing the IP address and the port number

of the Peer-Tracker request message) on behalf of the

victim to the tracker, announcing the victim as a

participating peer (Figure 3). The tracker, believing the

spoofed message, adds the fake peer (victim) to its peer list.

Consequently, the members with the given victim (in place

of a real peer) in their peer list, attempt to connect to the

victim to ask for a block of file, without paying attention to

the invalid response(s) (error messages) generated as a

result. Such ignorance can be attributed to the imperfect

handling of all possible exceptions by BitTorrent client

developers.

11.111.11.22:6882

22.33.122.1:6882

111.222.33.4:6882

123.123.123.1:80

Leecher

123.123.123.1:80

Leecher

123.123.123.1

Tracker

Leecher

Spoofed Message

Victim

Attacker

Fig.3. Attack using spoofed message.

In effect, peers simply assume that they have received a

faulty message and thus should try again and again to

obtain a correct response. Even if the victim does not

respond to the queries issued from the P2P members, the

victim’s connection resources can get exhausted since most

of the web services hold a connection in open state for

several minutes.

This type of attack is more like index poisoning in the

context of P2P DDoS attacks. In both cases, the attackers

redirect the peers’ queries towards the victim’s machine by

falsely introducing the victim as a member of the P2P

network.

4.2.1.2. Spoofed Message Attack with a Decentralized

Tracker

As explained before, in DHT-based networks, the

tracker is not a central entity anymore. Peers (and

accordingly attackers) cannot specify their own source

address in the announcement message. Instead, since all

connections in the DHT-based BitTorrent are based on

UDP protocol, the source address of the UDP

announcement message is used by the peers [37].

In DHT-based BitTorrent network, each peer sends out

Ping messages to announce its presence to other peers. One

can manipulate the source address of the Ping message,

redirecting a huge volume of DHT query traffic towards the

victim’s machine. The spoofed Spoofed message in DHT-

based BitTorrent is analogous to the routing table attack in

the context of Overnet network.

4.2.1.3. DDoS Attack via Malicious Tracker

If the attacker owns a tracker or somehow gains the

control of a tracker, he can directly change the participating

peers’ list by adding the victim’s IP address and port

number, effectively introducing it as a cooperating peer in

the network. Consequently, the peers try to establish a

connection with the victim for downloading the file blocks.

This vulnerability is rooted in the peers’ complete trust in

the tracker and not validating the peers in the peer list.

4.2.2. Victim as a Tracker

In this type of attack, the attacker exploits three facts to

pretend the victim is a tracker. First of all, in each swarm,

the BitTorrent’s members rely on a central server (tracker)

for finding other participating peers and updating their own

statistics. Accordingly, the peers have to contact the tracker

in a periodic manner. Consequently, in comparison with the

previous attack scenarios, the victim would face heavier

attacks if the attacker announced it as a tracker. Secondly,

most of the torrent search engines do not validate the

trackers’ URLs when a new torrent file is registered. They

virtually accept any address in the torrent files.

Additionally, no BitTorrent handshaking is performed

between the peer and the tracker, although such a

handshaking exists between the peers themselves.

A simple way to launch such an attack is to publish

several manipulated torrent files. As shown in Figure 4,

these files refer to the IP address of the victim instead of

the real tracker. Not surprisingly, the deceived peers

connect to the victim instead of the tracker. This can prove

troublesome especially if the manipulated torrent files have

a huge number of fans. However, this type of attack does

not last enough since the torrent search engines do not

receive valid responses from the victim and thus show zero

H. Farhadi et al. / Turning P2P Networks into DDoS Engines: A Survey

92

number of leechers and seeders (zero-sized swarm) for the

torrent file. Accordingly, the other users would not be

willing to download torrent files with small swarm sizes.

Also, some torrent search engines would not list a torrent

file within the search results, unless the corresponding

tracker reports a positive number of seeders and leechers.

Besides changing the tracker’s list in the torrent file, the

attacker can also employ a customized tracker to increase

the effectiveness of the attack. He changes the tracker’s list

in such a way that the first address refers to the modified

tracker while all the others are replaced with the victim’s IP

address. As shown in Figure 5, the duty of this customized

tracker is to return a fake swarm-size to the torrent search

engines. Further details concerning this attack can be found

in [3].

4.3. Imlementation Achievements

The spoofed message attack has been reported and

practically implemented in [37]. Around 1900 popular

torrent files have been gathered from a popular tracker, and

more than 600 connections have been made per second for

about 9 hours. It is worth noting that most popular sites

cannot handle more than 400 connections in every second.

As argued in [37], this type of attack may also be

categorized as a connection attack since the other services

provided by the victim remained up during the attack time.

The spoofed message attack with decentralized tracker over

BitTorrent, although mentioned in [37], has not been

implemented yet. The authors in [38] have discussed

similar results by announcing a peer as a tracker.

5. Conclusion

In this paper, we have investigated different methods to

generate unwanted traffic on third parties through misusing

P2P systems. This issue needs more attention as future P2P

protocols are preferably required to be designed void of

such vulnerabilities. Even though some specific

vulnerabilities can be mitigated and patched, it is important

to recognize the inherent hazard associated with the

hijacking and misdirection of P2P networks such as the

generation of considerable volumes of traffic with

sabotaging motives.

Acknowledgment

We would like to thank Adel Ghanbari for his comments

and help during this research.

References

[1] D.D. Clark, J. Wroclawski, K.R. Sollins, and R. Braden, Tussle in
cyberspace: defining tomorrow's internet, IEEE/ACM Trans. on

Networking, vol. 13, pp. 462–475, 2005.

[2] J. Mirkovic, S. Dietrich, D. Dittrich, and P. Reiher, Internet Denial
of Service: attack and defense mechanisms (Radia Perlman

Computer Networking and Security), Prentice Hall PTR Upper

Saddle River, NJ, USA, 2004.

[3] “The NGN forum” [Online], Available: http://www.catr.cn/

zhthg/ngn/2007/ [Accessed: May 2010].

[4] E.K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, A survey

and comparison of peer-to-peer overlay network schemes, IEEE

Communications Surveys & Tutorials, vol. 7, pp. 72–93, 2005.

[5] Napster - Wikipedia, the free encyclopedia, May 2010, [Online].
Available: http://en.wikipedia.org/wiki/Napster [Accessed: May

2010].

[6] Gnutella - Wikipedia, the free encyclopedia, May 2010, [Online].
Available: http://en.wikipedia.org/wiki/Gnutella [Accessed: May

2010].

[7] FastTrack - Wikipedia, the free encyclopedia, May 2010, [Online].
Available: http://en.wikipedia.org/wiki/Fasttrack [Accessed: May

2010].

[8] B. Cohen, Incentives build robustness in BitTorrent, The First
Workshop on Economics of Peer-to-Peer systems, Berkeley, CA,

USA, June 2003.

[9] BitTorrent (protocol) - Wikipedia, the free encyclopedia, May
2010, [Online]. Available: http://en.wikipedia.org/wiki/

Fig. 4. DDoS attack by announcing the victim as a tracker using fake
torrent files.

 Fig. 5. DDoS attack by announcing the victim as a tracker using a
Dishonest tracker.

Tracker

.torrent

files

VictimTorrent Search

Engine

4

3

21

Attacker

2

Victim 3

1

Leecher

Sending Fake Number

of Seed and Leecher

Tracker Modified Tracker

 Journal of Computer & Robotics 1 (2010) 83-93

93

BitTorrent_(protocol) [Accessed: May 2010].

[10] K. El Defrawy, M. Gjoka, and A. Markopoulou, Bottorrent:

Misusing Bittorrent to launch DDoS attacks, the 3rd USENIX
workshop on Steps to reducing unwanted traffic on the internet

(SRUTI'07), Berkeley, CA, USA, June 2007.

[11] Y. Liu, X. Liu, C. Wang, and L. Xiao, Defending P2Ps from
overlay flooding-based DDoS, The Int. Conf. on Parallel Processing

(ICPP), Xian, China, September, pp. 28–28, 2007.

 [12] X. Sun, R. Torres, and S. Rao, DDoS attacks by subverting
membership management in P2P systems, Secure Network

Protocols, pp. 1–6, 2007.

[13] X. Sun, R. Torres, and S. Rao, Preventing DDoS Attacks with P2P
systems through robust membership management, Technical Report

TR-ECE-07-13, Purdue University, USA, February 2007.

[14] J. Oikarinen and D. Reed, Internet relay chat protocol, RFC 1459,
May 1993.

[15] Twitter - Wikipedia, the free encyclopedia, May 2010, [Online].

Available: http://en.wikipedia.org/wiki/Twitter [Accessed: May
2010].

[16] N. Friess and J. Aycock, Black Market Botnets, Jul. 2007.

[17] Z. Li, Q. Liao, and A. Striegel, Botnet Economics: Uncertainty
Matters, Managing Information Risk and the Economics of

Security, pp. 245-267, 2009.

[18] M. Ripeanu, Peer-to-Peer Architecture Case Study: Gnutella
Network, University of Chicago, Department of Computer Science,

2001.

[19] E. Athanasopoulos, K.G. Anagnostakis, and E.P. Markatos,
Misusing unstructured p2p systems to perform dos attacks: The

network that never forgets, Lecture Notes in Computer Science,

vol. 3989, p. 130, 2006.

[20] D. Zeinalipour-yazti, Exploiting the security weaknesses of the

Gnutella protocol, Course Project for Seminar in Computer Security

at University of California - Riverside, Department of Computer

Science, March 2002.

[21] P. Maymounkov and D. Mazieres, Kademlia: A peer-to-peer
information system based on the xor metric, First International

Workshop on Peer-to-Peer Systems, pp. 53–65, 2002.

[22] A. Rowstron and P. Druschel, Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems,

IFIP/ACM Int. Conf. on Distributed Systems Platforms

(Middleware), pp. 329–350, 2001.

[23] B.Y. Zhao, J.D. Kubiatowicz, and A.D. Joseph, Tapestry: a fault-

tolerant wide-area application infrastructure, ACM SIGCOMM

Computer Communication Review, vol. 32, pp. 81–81, 2002.

[24] Z. Li and X. Chen, Misusing Kademlia protocol to perform DDoS

Attacks, IEEE Int. Symp. on parallel and distributed processing

with applications, Sydney, Australia, pp. 80–86, 2008.

[25] J. Liang, N. Naoumov, and K.W. Ross, The index poisoning attack

in p2p file sharing systems, IEEE INFOCOM 2006, Barcelona:

2006.

[26] N. Naoumov and K. Ross, Exploiting P2P systems for DDoS

attacks, The first Int. Conf. on Scalable information systems

(InfoScale '06), NY, USA, pp. 47, 2006.

[27] A. Belapurkar et al., Infrastructure-Level threatsand vulnerabilitie,

distributed systems security: issues, processes and solutions, Wiley,

pp. 71-98, 2009.

[28] H. Schulze and K. Mochalski, Internet Study 2008/2009 [Online].

Available: http://www.ipoque.com/resources/internet-studies/

internet-study-2008_2009.pdf [Accessed: October 2009].

[29] Mininova’s torrent downloads double to 7 billion in a year |

TorrentFreak [Online]. Available: http://torrentfreak.com/

mininovas -torrent- downloads -doubled-in-a-year-090105/
[Accessed: February 2010].

[30] iMesh Homepage [Online]. Available: http://www.imesh.com/

[Accessed: May 2010].

[31] KaZaA Homepage [Online]. Available: http://www.kazaa.com/

[Accessed: May 2010].

[32] Morpheus [Online]. Available: http://en.wikipedia.org/wiki/
Morpheus_(computer_program) [Accessed: May 2010].

[33] eDonkey network [Online]. Available: http://en.wikipedia.org/

wiki/EDonkey_network [Accessed: May 2010].

[34] Official eMule Homepage. [Online]. Available: http://www. emule-

project.net/home/perl/general.cgi?l=1 [Accessed: May 2010].

[35] Overnet [Online]. Available: http://en.wikipedia.org/wiki/ Overnet
[Accessed: May 2010].

[36] K.C. Sia, DDoS vulnerability analysis of Bit-Torrent protocol,

Technical Report, UCLA: 2006.

[37] K. El Defrawy, M. Gjoka, and A. Markopoulou, Bottorrent:

Misusing bittorrent to launch ddos attacks, USENIX SRUTI, Santa
Clara, 2007.

[38] J. Harrington, C. Kuwanoe, and C.C. Zou, A BitTorrent-driven

distributed denial-of-service attack, 3rd Int. Conf. on Security and
Privacy in Communication Networks, Nice, France: , pp. 17–20.

[39] N. Naoumov and K. Ross, Exploiting p2p systems for ddos attacks,

Proc.s of the 1st Int. Conf. on Scalable information systems, Hong
Kong, pp. 47-53, 2006.

