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Abstract 

Computation of the second order delay in RC-tree based circuits is important during the design process of modern VLSI systems with 
respect to having tree structure circuits. Calculation of the second and higher order moments is possible in tree based networks. Because of 

the closed form solution, computation speed and the ease of using the performance optimization in VLSI design methods such as floor 
planning, placement and routing, the Elmore delay metric is widely implemented for past generation circuits. However, physical and 
logical synthesis optimizations require fast and accurate analysis techniques of the RC networks. Elmore first proposed matching circuit 
moments to a probability density function (PDF), which led to the widespread implementation of it in many networks. But the accuracy of 
Elmore metric is sometimes unacceptable for the RC interconnect problems in today’s CMOS technologies.  The main idea behind our 
approach is based on the moment matching technique with the power-lognormal distribution and proposing the closed form formula for the 
delay evaluation of the RC-tree networks. The primary advantages of our approach over the past proposed metrics are the ease of 
implementation, reduction of the complexity and proposing an efficiency formula without referring to lookup tables. Simulation results 

confirmed that our method illustrates a good degree of accuracy and the relative average of errors is less than 20%.  
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1. Introduction 

The wires linking transistors together are called 

interconnect and play a major role in the performance of 

the modern VLSI circuits. In the early days of the VLSI 
systems, wires were wide and thick and had low resistance, 

also transistors were slow. Under these conditions, wires 

could be treated as ideal nodes with lumped capacitance. 

However, in modern VLSI systems, transistors act as much 

faster switches and wires have become narrower and stay 

very close together; thus, the wire delay exceeds from gate 

delay and tends to affect its neighbour through inductance 

effects.  

Elmore [1] proposed a method in 1948, using the means 

of the impulse response, to approximate the median of 

impulse response under the probability distribution. But, 

the accuracy of his metric is sometimes unacceptable for 
RC interconnection problems with today’s CMOS 

technologies [2]. Elmore delay was shown to be an upper 

bound on the 50% step and ramp response delays for the 

RC trees [3]. However, it can be shown, that the first 

moment of the impulse response is incapable due to 

sensitivities with respect to changing path resistance and 

resistive shielding effects.  For example, in the RC network 

shown in Figure 1, the Elmore delay to capacitor 𝐶1 is 

independent of the resistors 𝑅2 ,𝑅3 ,𝑅4 and 𝑅5. The higher 
the values of these resistors, the more downstream 

capacitance are shielded, and large errors occur in the 

Elmore approximation. 

 

 

Fig. 1. An example of RC tree network. 

 

To achieve greater accuracy than Elmore delay can 

provide, additional moments of the impulse response can 

be employed. Consequently, several delay metrics have 

been proposed that achieve higher degrees of accuracy than 

Elmore delay [4-14, 15]. The works of [10, 16] start with 2-
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pole approximation and then make simplifying assumption 

to derive a delay metric. In [6], Alpert et al. proposed D2M, 
an empirical metric that has a remarkably high accuracy at 

the far end nodes. 

The PRIMO [13] and H-gamma [14] metrics revealed 

that the impulse response of an RC circuit network can be 

treated as the probability density function (PDF) of a 

statistical distribution. PRIMO and H-gamma try to match 

the circuit response to the Gamma statistical distribution, 

and then compute the median directly. Recently, [12] 

proposed the Weibull distribution to match the moments of 

impulse response of the RC circuit networks.  However, to 

compute delay using these approaches, one needs to 

carefully construct a 2-dimensional lookup table in order to 
find the median. 

In this paper, we propose a metric delay that is derived 

from matching the circuit moments to the Power-lognormal 

distribution. The primary advantage of our work is the ease 

of implementation and it does not require referring to a 

lookup table.   

 

 
 

Fig. 2. Probability density function (left) and cumulative distribution 

function of the Power-lognormal distribution. 

2. Extracting the Parameters of RC-tree Circuits 

We assume that h(t) is the impulse response of a node in 

an RC circuit and H(s) is the corresponding transfer 

function. The moments of a circuit at s=0 are defined as 

[4]: 

 

𝐻 𝑠 =  ℎ 𝑡 𝑒−𝑠𝑡𝑑𝑡 =  
(−1)𝑘

𝑘!

∞

𝑘=0

∞

0

𝑠𝑘 𝑡𝑘ℎ 𝑡 𝑑𝑡
∞

0

 (1) 

 

Thus, the transfer function of any circuit is given by: 
 

𝐻 𝑠 =
𝑉𝑜𝑢𝑡  𝑠 

𝑉𝑖𝑛 𝑠 
=

1 + 𝑎1𝑠 + 𝑎2𝑠
2 +⋯+ 𝑎𝑛𝑠

𝑛

1 + 𝑏1𝑠 + 𝑏2𝑠2 +⋯+ 𝑏𝑛𝑠𝑛
 

 
                            = 𝑚0 +𝑚1𝑠+ 𝑚2𝑠

2 +𝑚3𝑠
3 

 

 

(2) 

 

where, the k-th coefficient of equation (2) is: 

𝑚𝑘 =
 −1 𝑘

𝑘!
 𝑡𝑘
∞

0

ℎ 𝑡 𝑑𝑡            ∀𝑘 = 1,2,3,… (3) 

 

In [11], it is shown that for an RC circuit without 

resistive path to ground, the impulse response, h(t), satisfies 
ℎ 𝑡 ≥ 0     ∀𝑡  and : 

 ℎ 𝑡 𝑑𝑡 = 1
∞

0

 (4) 

 

The condition of equation (4) is also required for a 
continuous function to be a PDF. Thus, we can interpret the 

impulse response of RC circuits as a PDF. However, there 

is no adequate underlying statistical distribution [2]. Now, 

we can describe the mean, variance and skewness from the 

circuit moments [17]: 

 

𝜇1 = 𝑚1                                           

𝜇2 = 𝜎2 = 2𝑚2 −𝑚1
2                

𝜇3 = −6𝑚3 + 6𝑚1𝑚2 − 2𝑚1
3

  (5) 

 

The general formula for the calculation of the n-th 

central moments around the origin can be obtained from the 
following equation: 

𝜇𝑛 =   𝑡 − 𝜇 𝑘ℎ 𝑡 𝑑𝑡 =   
𝑛

𝑘
 

𝑛

𝑘=0

∞

0

𝑚𝑘(−𝑚1)𝑛−𝑘  (6) 

 

The skewness of the circuit can be expressed by: 

𝛾 =
𝑚𝑒𝑎𝑛−𝑚𝑒𝑑𝑖𝑎𝑛

𝜇2
1.5 =

𝜇3

𝜇2
1.5 =

−6𝑚3+6𝑚1𝑚2−2𝑚3
3

( 2𝑚3 −𝑚1
2)3

 (7) 

 

The empirical relationship between mean, mode and 

median in unimodal curves is [17]: 

 
𝑚𝑒𝑎𝑛− 𝑚𝑜𝑑𝑒 ≈ 3(𝑚𝑒𝑎𝑛−𝑚𝑒𝑑𝑖𝑎𝑛) (8) 

 

The main idea behind our delay metric is matching the 

mean, variance and skewness of the impulse response to 

those of the Power-lognormal distribution.  

3. The Power-lognormal Metric 

The formula for the probability density function of the 

standard form of the Power lognormal distribution is [18]: 

 

𝑓 𝑦,𝑝,𝐵 =  
𝑝

𝑦𝐵
 ∅ 

ln𝑦 − 𝐴

𝐵
  𝜑 

ln𝑦 − 𝐴

𝐵
  

𝑝−1

 (9) 

The CDF of Power-lognormal distribution is given by: 

 

𝑓 𝑦,𝑝,𝐵 =  𝜑 
ln𝑦 − 𝐴

𝐵
  

𝑝

               𝑦,𝑝,𝐵 > 0     

 

(10) 

where p (also referred to as the power parameter) and B are 

the shape parameters, Φ is the cumulative distribution 

function of the standard normal distribution, and φ is the 

http://www.itl.nist.gov/div898/handbook/eda/section3/eda363.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda3661.htm


 Journal of Computer and Robotics 1 (2010) 77-82 

 
79 

probability density function of the standard normal 

distribution. The A is also called scaling parameter.  
As with other probability distributions, the Power-

lognormal distribution can be transformed with a location 

parameter and a scale parameter. We omit the equation for 

the general form of the Power-lognormal distribution. Since 

the general form of the probability functions can be 

expressed in terms of the standard distribution, all 

subsequent formulas in this paper are given for the standard 

form of the function. Figure 2 is the plot of the Power-

lognormal probability density function with value of p set 

to 1.  As we can see, the plot of the Power-lognormal’s 

PDF is more like the shape of the impulse response of the 

RC circuits. In [4], it is shown that all RC interconnect 
networks have the following features: 

 Their impulse responses, h(t),  are unimodal. 

 Their h(t) distributions have positive skewness. 

 In their h(t) distributions always: 

.
𝑚𝑜𝑑𝑒 ≤ 𝑚𝑒𝑑𝑖𝑎𝑛 ≤ 𝑚𝑒𝑎𝑛.

 

The statistics for the Power-lognormal distribution are 

complicated and require tables. However, extracting the 

mean, median, mode, and standard deviation of the Power- 

lognormal distribution, it is feasible for p=1. Therefore, 

these parameters can be written as: 

 

 
 
 
 

 
 
 𝑀𝑒𝑎𝑛 = 𝜇 = 𝐸 𝑥 = 𝑒𝑥𝑝 𝐴 +

𝐵2

2
                                      

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝜎2 = 𝑉 𝑥 = 𝑒𝑥𝑝 2𝐴+ 𝐵2  𝑒𝑥𝑝 𝐵2 − 1 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 = 𝛾 =  𝑒𝑥𝑝 2𝐴 + 𝐵2  
1
2 2 + 𝑒𝑥𝑝 𝐵2           

      
𝑀𝑜𝑑𝑒 = 𝑒𝑥𝑝 𝐴 − 𝐵2                                                                

  

 

 
 
 
 

(11) 

 

As we see in equation (11), the skewness of the Power-

lognormal distribution is non-negative. Therefore, this 

distribution is more applicable for the estimation of the RC 
delay metric. Hence, the next step for extracting the RC 

delay metric, is matching the moments of the circuit with 

their corresponding moments of impulse response mean 

and the variance of the distribution. Solving the equation 

(11) for A and B parameters, we will have: 

 

 
 
 

 
 𝐴 = 𝐿𝑛  

𝑚1
2

 2𝑚2 −𝑚1
2
 

𝐵 =  𝐿𝑛
2𝑚2 −𝑚1

2

𝑚1
2

  (12) 

 

It is shown that, the median of the Power-lognormal 

distribution is exp (A). This means that half of the surface 

of this distribution relies in [0, exp (A)] interval.  Thus, it 

seems to be sufficient to approximate the delay value at 
50% point. For this purpose, when matching the impulse 

response with the expected value (median), the 50% delay 

metric becomes approximately: 

𝑒𝑥𝑝 𝐿𝑛 
𝑚1

2

 2𝑚2 −𝑚1
2
  =

𝑚1
2

 2𝑚2 −𝑚1
2
 (13) 

 
The D2M metric [5] was derived empirically, and is a 

simple function as the two first moments ration is equal to 

0.8003m1. Thus, D2M is never as close as 2% to the 

Elmore delay; i.e., D2M has 80% accuracy. The D2M 

delay metric is given by: 

  

𝐷2𝑀 =
𝑚1

2𝐿𝑛(2)

 𝑚2

 (14) 

  

Theorem 1: The Power-lognormal delay metric is 

always less than the Elmore delay. 

Proof: We know that the second central moment (i.e. σ2) 

is always non-negative. We have: 

  

𝜎2 = 𝜇2 = 2𝑚2 −𝑚1
2 ≥ 0 ⟹ 2𝑚2 ≥ 𝑚1

2 ⟹
𝑚1

2

2𝑚2
≤ 1 

 

(15) 

Hence the Power-lognormal metric is given by:    

 
𝑚1

 
2𝑚2

𝑚1
2 − 1

≈
𝑚1

2

 2𝑚2

=
𝑚1

2

 𝑚2

×
1

 2
 

 

≅⩰
0.8003𝑚1

𝐿𝑛 2 
×

1

 2
≈ 0.81642𝑚1 

 

(16) 

 

Theorem 2: The Power-lognormal delay metric is 
always a non-negative value. 

Proof: For each RC circuit network, m2 > 0 and m1 < 0 

[20]. Since the square of m1 is always in the numerator and 

the denominator is always positive, thus, we see that the 

Power-lognormal metric guarantee the return value as an 

estimation of delay, is non-negative.   

Based on the experimental results and comparison with 

other metrics, we can conclude that for having an accuracy 

of around 90% and using the optimality of the proposed 

metric, this value should be multiplied by an empirical 

parameter, α, equal to ln(2) = 0.69314. Thus, the Power-
lognormal metric can be easily computed as shown in 

Figure 3.    

  

 

1. Compute the moments m1 and m2. 
 

2. Compute the parameter  𝑟 =
𝑚1

2

 2𝑚2−𝑚1
2
. 

3. Set the empirical parameter α to ln(2) = 0.69314.  
 

4. Return the parameter 𝜏 = 𝛼. 𝑟 as a 50% delay value.  

 
 

Fig. 3. Algorithm for computing the Power-lognormal metric. 

 
 

http://www.itl.nist.gov/div898/handbook/eda/section3/eda3661.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda364.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda364.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda364.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda364.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda364.htm#FORMULAS
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Table 1 

 Delay comparisons for the RC network shown in Figure 4(a) 

node Elmore D2M PRIMO WED Log-normal 
Power-

lognormal 
Spice (ns) 

Relative 

error% 

1 385 113 -39 45 115 83 40 107.5 

2 1456 797 684 661 812 674 467 44.3 

3 2264 1514 1486 1474 1544 1456 1437 1.32 

4 2393 1640 1621 1620 1672 1612 1589 1.45 

5 2733 1982 1974 2025 2021 2071 1976 4.8 

6 3000 2258 2245 2348 2303 2479 2257 9.8 

 

 

 

 

 

 
(a) 

 

 

 
(b) 

Fig. 4. (a) An RC ladder example; (b) corresponding of delay values in different nodes. 

 
 

 
 

4. Simulation Results 

We apply the Power-lognormal method in many RC-tree 

networks. Two examples of these types of circuits are 

shown in Figures 4(a) and 5(a).  For exact investigation of 

this metric, some of the famous algorithms along with 

Elmore delay are calculated for these circuits. Figures 4(b) 

and 5(b) show the corresponding delay values in different 

circuit nodes at the Spice environment.  We compared these 

approaches and listed their return values in Tables 1 and 2. 

We used a 3.0 volts step function with rise time equal to 0 

as an input for circuit. Also, all of these simulation results 

are compared in Figures 6 and 7. As you can see, our 

proposed approach is considerably closer to Spice over all 

nodes and it is the most accurate metric. While the PRIMO 

and D2M are slightly less accurate and one can observe that 

for the RC shown in Figure 4, PRIMO returns a negative 

delay at node 1. 

 

 
 

 

Table 2 

 Delay comparisons for the RC network shown in Figure 5(a) 

Node Elmore D2M PRIMO WED H-gamma 
Log-

normal 

Power-

lognormal 
Spice(ns) 

Relative 

error% 

1 552 299 241 246 194 305 252 198 27.3 

2 804 514 498 485 486 524 476 480 0.84 

3 996 696 699 698 701 710 698 705 1 

4 1128 830 836 855 840 846 882 844 4.5 

5 1200 905 909 943 912 923 996 922 8.03 

6 684 420 376 386 355 428 378 375 0.8 

7 556 492 450 470 431 501 461 453 1.77 
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(a) 

 

 
(b) 

 

Fig. 5. (a) An RC- tree example; (b) corresponding of delay values in different nodes. 

 

 

 
 

 
Fig. 6. Simulation results for the RC network shown in Figure 4. 

 

 

  
Fig. 7. Simulation results for the RC network shown in Figure 5. 

 

 

 

 

5. Conclusion and Future Works 

In this paper, we investigated some of the recent 

approaches that are widely accepted and implemented for a 
delay calculation of the RC-tree networks. Moreover, we 

used the Power-lognormal distribution probability function 

to drive a new, closed form formula delay metric for the 

RC circuits. This metric is straightforward and can be 

easily implemented via the two first moments of a circuit. 

Also, our approach does not require referring to lookup 

tables for evaluating a delay approximation in constant 

times. Some of the delay metrics [8, 13] may return 

negative values for the calculation of delays. However, we 

could show that our metric always returns a positive value. 

Future research may address other practical and feasible 

probability density functions and apply them into RC-tree 

circuit networks.  
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