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Abstract 

With the ever-increasing growth of electrical energy consumption in different fields of a power plant, expanding strategies 
in power plants is a vital, important and inevitable action. Generally, greenhouse gas emissions can be reduced by replacing 
wind energy instead of using fossil fuels in power plants for electricity generation. A physical system that is capable of 
harnessing energy for distribution and compensation electricity at a desired and determined later time is called a typical 
energy storage system. In this paper, a proper optimization method for expansion planning of electrical energy storage is 
presented. Since the meta-heuristic algorithms are a very suitable tool for optimization purposes, a hybrid of genetic 
algorithm (GA) and particle swarm optimization (PSO) technique are used in this research. The main objective of the 
optimization problem is to increase the energy storage. The implementation of the proposed method is performed using 
MATLAB and GAMS tools. The simulation results strongly validate the correctness and effectiveness of the proposed 
method. 

Keywords: Energy storage, Optimization, MATLAB, Energy distribution, GAMS, PSO, GA. 

 

1. Introduction 

Typical Optimization models for solving planning 
problems concerned with power distribution and dispatching 
systems have been studied and utilized in recent decades. 
The main purpose is to optimize investments and minimize 
total costs, involving investment and operation costs [1]. 
Optimization tools used in such power plants are becoming 
significantly essential to support the complex task of 
efficiently providing electricity to the power network. The 
power plant areas where these optimization tools are needed 
include power plant operations, analysis, scheduling, and 
energy management systems.  

Fundamentally, problems coped with such fields require 
study of the objective functions and constraints in various 

ways [2]. Optimization problems, which contain uncertain 
parameters, have been challenged in different papers in 
recent years by using different optimization methods and 
uncertainty modeling techniques [3]. 

In order to assure using an efficient and reliable 
performance of power plant components, optimization 
methods are used at each level of planning and operations. 
For example, they are widely used for planning power plant 
expansion, generator scheduling, regulating control devices, 
measuring security margins, and for several other important 
tasks [4]. Utilizing an improved planning process, it is 
practically performable to cost-efficiently maintain the 
reliability of a power plant and functioning of the electricity 
business markets. The power plant planning process and 
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planning techniques are further developed based on the 
identified lack of existing planning practices. The improved 
planning techniques, appearing in various planning steps, are 
combined with the existing planning process, making it 
much better and versatile [5]. 

This is considered to be extremely essential since the 
power generated from these renewable power sources is 
really depended on natural conditions; therefore, 
unpredictable fluctuations will be inevitable [6]. 

Regarding worldwide growing trend of clean energy 
utilization and attention of legislators system to this subject, 
the presence of renewable energy sources (RESs) in the 
power plant is increasing. In addition to significant benefits 
of using RESs, uncertainties in their amount and dependence 
on natural resources have compounded the growing trend of 
these resources. The operation and planning of the power 
plant in the presence of RESs have faced uncertainties that 
result in the complexity of problem. Using controllable 
distributed generation (DG) sources with rapid changes in 
amount of generated power, application of power storage 
systems and using demand-side sources to reduce the impact 
of uncertainty in the presence of RESs has been one of the 
most important parts of utilization of such systems. Due to 
rapid response, no demand to invest in expanding power 
plant capacity, development of smart tools and 
controllability, demand response sources are considered as a 
suitable and reliable source from the utility point of view [7]. 
The technical progress inefficiency of renewable energy 
sources, have been raised involved with greenhouse gas 
emission, significant power losses within transmission and 
distribution networks, unpredictable and unreliable fossil 
fuel cost, and expansion of reliable communication 
infrastructure provided by smart grids have all led to an 
increasing interest in deployment of new renewable energy 
sources [8]. An increase in the amount of RESs is essential. 
Over the past decades, this amount has increased in Germany 
and many developed countries [9]. The South Korean 
government has been actively promoting an educational-
facility improvement program as part of its main energy-
saving attempts [10]. In 2015, 195 countries signed the Paris 
Agreement under the United Nations Framework 
Convention on natural Climate Changes. In order to attain 
the ambitious greenhouse gas-reduction targets therein, the 

electric power sector must be transformed fundamentally 
[11]. 

Most power plant units currently use fossil fuels. Fossil 
fuel resources are scarce and contribute to numerous 
environmental effects. In recent years, special attention has 
been paid to renewable power plants in order to overcome 
these critical problems. Generally, investment cost in 
renewable power plants is exorbitant and the produced 
power by this type of power unit is non-dispatchable and 
uncertain. On the other hand, the investment costs of fossil 
fuel power plant units are lower than those of renewable 
power plants and their production capacity is dispatchable. 
Accordingly, in order to obtain an optimal expansion plan, it 
is necessary to use fossil fuel power plants besides 
renewable power plant units to reach a trade-off in 
investment costs [12]. The simultaneous expansion plan of 
generation and transmission systems has been accomplished 
using mixed-integer linear programming (MILP) and mixed 
integer nonlinear programming (MINLP) [13]. The 
development of electrical energy storage technology for 
power generation in emergencies has a special place in the 
power plant. Energy storage is one of the most important 
topics in the electrical engineering field.  

Moreover, the constant use of electricity is not possible 
because a load of low in some hours and all power plant units 
are not always operating simultaneously. Optimizing energy 
consumption means that using equipment or better 
management we can do the same work with less energy.  

The combination of PSO algorithm and the genetic 
algorithm in power plants has been of interest to scholars 
[14, 15]. In [14] a hybrid usage of GA and PSO is presented 
for optimal location and sizing of DG on distribution 
networks and their objective is to minimize network power 
losses, better voltage regulation and improve the voltage 
stability within the frame-work of system operation and 
security limitations in radial distribution systems. While 
discussing the optimal use of energy storage systems, this 
new hybrid approach has received less attention. 

In this paper, a hybrid usage of GA and PSO for power 
plants subject to energy storage is considered. The novelty 
of this paper can be described as follows. 
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• Hybrid usage of GA and PSO algorithms for 
simultaneous optimization 

• GA is used to obtain the best value and best quality. PSO 
algorithm is used to get the best position in the fastest time. 

•  Using energy storage systems in order to enhance 
network reliability. 

In this paper, energy management of the system is 
determined by considering the security constraints, power 
flow of generated power by power plant units, and power 
generation cost. In order to obtain generation costs and 
annual costs of power generation units as well as the power 
generation of units, GAMS software is used. Then 
MATLAB software is employed for optimization purposes.  

In the remainder of this paper, Section 2 presents an 
uncertainty planning model of a power plant with energy 
storage and power optimization. A brief description of the 
optimization problem is provided in section 3. Then in 
Section 4, the proposed model is performed on the IEEE 24-
bus test system [14]. The obtained results of the paper are 
provided in Section 5.  

2. Uncertain Model of Power Plant Planning with 
Energy Storage and Power Optimization 

Main purpose of solving the uncertain model of power 
plant expansion plan considering optimal transmission lines 
switching is determining the accurate amount of power plant 
units and new transmission lines, reducing investment cost 
and optimizing the system consumed energy.  In order to 
cope with this static problem, we should consider 
uncertainties associated with load demand and power 
generation of non-dispatchable RESs, the following model 
that is based on MILP is proposed [13]: 

푁 ( 퐶 푃 . + 퐶 푃 .  

+ 퐶 푃 . + 퐶 푃 . + 퐶 푑 . ) 

+ 퐶 푃 + 퐶 푃 + 퐶 푃  

  + 퐶 푃 + 퐶 푃  

(1) 

Constraint (2) provides the power balance at each buses 
of the system for different scenarios, 

푃 .
∈ ( )

+ 푃 .
∈ ( )

+ 푃 .
∈ ( )

+ 

 푃 .
∈ ( )

− 푑 .
∈ ( )

+ 푃 .

( )

+ 

푃 .

( )

= 0 

(2) 

and (3), (4), (5), and (6) are constraints of active power 
generated by thermal, biomass, wind, concentrated solar 
units for different scenarios. 

0 ≤ 푃 . ≤ 푃 , ∀푖. ∀푠 (3) 

0 ≤ 푃 . ≤ 푃 , ∀푏. ∀푠 (4) 

0 ≤ 푃 . ≤ 퐹 . 푃 , ∀푏. ∀푠 (5) 

0 ≤ 푃 . ≤ 푃 , ∀푐. ∀푠 (6) 

Also, constraint (7) denote the capacity of each 
concentrated solar unit (with maximum number of hours this 
unit can operate during a year in full capacity). 

(푁 푃 . ) ≤ 퐹 . 푃
∈

푁
∈

, ∀푐, ∀푠 (7) 

It should be noted that the main difference between cold 
and hot seasons is modeled through the capacity factor.  

Constraint (8) indicates the load demand in each scenario, 
and the constraint (9) denotes the maximum amount of the 
demand not supplied. 

푑 . = 퐷 . − 푑 . , ∀푗. ∀푠 (8) 

0 ≤ 푑 . ≤ 퐷 . , ∀푗. ∀푠 (9) 

Constraint (10) also denotes the flowing power and its 
limitations for new transmission lines. 

−푃 . ≤ 푃 . ≤ 푃 . , ∀푙 ∈ 훺 . ∀푠 (10) 

Constraints (11), (12) and (13), respectively, denote 
maximum capacity that can be considered for each 
corresponding renewable technology: 

0 ≤ 푃 ≤ 푃 . , ∀푤 (11) 

0 ≤ 푃 ≤ 푃 . , ∀푐 (12) 
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0 ≤ 푃 ≤ 푃 . , ∀푏 (13) 

According to (1), the objective function of this 
optimization problem is to minimize the investment clear 
units, and Susceptance of transmission lines. Constraint (2) 
provides the power balance at each bus of the system for 
different scenarios, and (3), (4), (5), and (6) are constraints 
of active power generated by thermal, biomass, wind, 
concentrated solar units for different scenarios. Also, 
constraint (7) denotes the capacity of each concentrated solar 
unit (with maximum number of hours this unit can operate 
during a year in full capacity). It should be noted that the 
main difference between cold and hot seasons is modeled 
through the capacity factor. 

Constraint (8) indicates the load demand in each scenario, 
and the constraint (9) denotes the maximum amount of the 
demand not supplied. Constraint (10) also denotes the 
flowing power and its limitations for new transmission lines. 
Constraints (11), (12) and (13), respectively, denote 
maximum capacity that can be considered for each 
corresponding renewable technology. 

푀푖푛 푁 ( 퐶 푃 . + 퐶 푃 .  

+ 퐶 푃 . + 퐶 푃 . + 퐶 푑 . ) 

+ 퐶 푃 + 퐶 푃 + 퐶 푃  

+ 퐶 푃 + 퐶 푃  

s.t.  

퐸푞푢푎푡푖표푛푠 (2) − (13) 

2.1. DC Power Flow Formulations 

For the purpose of fast solution and determination of 
active power lines, DC power flow must be used.  

Respectively DC power flow is carried out based on the 
following assumptions: 

푠푖푛( 훿 − 훿 ) ≅ 훿 − 훿  (14) 

- Voltage amplitudes of all system buses are equal to 
unity, 

- Ohmic characteristics of lines are neglected and 
lines are modeled by using only their reactance,  

- The reactive power of the lines is neglected. Hence, 
load power factors are equal to unity and the 
following equation can be used for calculating 
active power: 

푝 =
푠푖푛( 훿 − 훿 )

푥 =
훿 − 훿

푥  (15) 

- In this case, power flow is conducted just by having 
,i j   (in radian) and without using iterative 

solution methods.  

2.2. Energy Storage Systems 

Every grid includes several batteries used as storage 
systems in the grid. Equations (16) to (25) show the 
equations related to the battery [12]. 

0 ≤ 푝 (푡) ≤ 

    푈 (푡). 푃 . (1 − 푆푂퐶(푡 − 1)).
1

1 − 푃
.

1
휂

 
(16) 

0 ≤ 푃 (푡) ≤ 

    푈 (푡). 푃 . 푆푂퐶(푡 − 1). (1 − 푝 ). 휂  
(17) 

0 ≤ 푃 (푡) ≤ 푈 .
푃

휂  (18) 

0 ≤ 푃 (푡) ≤ 푈 (푡).
푃

휂  (19) 

푈 (푡) + 푈 (푡) ≤ 1, (20) 

푈 (푡), 푈 (푡) ∈ {0,1} (21) 

푆푂퐶(푡) = 푆푂퐶(푡 − 1) −
1

푃
. 푃푥. 휂 . 푃 (푡) (22) 

where 

푃푥 = 1
1 − 푃푏푎푡−푑푖푠푐ℎ

푙표푠푠 . 1
휂푐표푛푣

. 푃푏푎푡−푑푖푠푐ℎ(푡) − (1 − 푃푏푎푡−푐ℎ
푙표푠푠 ) 

0 ≤ 푆푂퐶(푡) ≤ 1 (23) 

푆푂퐶(푡 ) = 푆푂퐶  (24) 

푆푂퐶(푇) = 푆푂퐶  (25) 
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Parameters in the simulated system above are defined as 
follows.  

: Charging rate,  

: Discharging rate,  

: Maximum capacity of the battery,  

: Charging and discharging level,  

: Efficiency, 

: Capacity of the mediate power electronics 

converter between the battery and the grid. 

Equations (16)-(25) represent the constraints related to 
charge and discharge rates of batteries. Since the battery 
cannot charge or discharge at the same time, constraint (22) 
is defined, whereas parameters are given as follows:  

 and : binary variables of the function.  

Equation (22) represents the dynamic model of energy 
at any time for the battery. And, (23) and (25) state 
constraint of energy storage in the battery, initial and final 
energy at the beginning and end of the energy management 
time interval.  

The operating cost of the battery storage system is given 
as (26). 

퐶 = 

         훼 . ∑ 푃 (푡) + 푃 (푡)                

     +훽 . ∑ 푃 (푡) + 푃 (푡)  

    +훾 . ∑ [푚푖푛( 푆푂퐶(푡) − 훿 , 0]  

(26) 

In this model, three costs are considered for probable 
damages that battery may experience during the operation: 
fast charging cost, cost of successive charge and discharge 
modes, and severe battery depletion costs.  

The proposed model in this section overcomes the 
successive charge and discharge modes. Parameters given 
in (26) are defined as follows: 

, , : are constant values to make a 
compromise between different costs.  

: Minimum energy stored in the battery to prevent 
severe battery discharge.  

For example, = 0.15 means that if the energy level 
of the battery drops to less than 15% of the rated capacity 
of the battery, it will absolutely harm the whole battery and 
causes additional costs. 

2.3. Models of Shortage and Surplus Powers 

Concepts of shortage power ( ) and surplus power 

( ) are presented in the operation of microgrids due to 

the stochastic intrinsic nature of RESs and/or lower or higher 
price of energy in the upstream grid than the operating costs 
of local controllable power sources.  

The operational characteristic of each microgrid is so that 
every grid can sell its corresponding surplus power to the 
upstream grid. On the other hand, in case of power not being 
supplied, shortage of energy within the microgrid, and lack 
of local sources in supplying the customers, the utility 
purchases power from the upstream grid by considering the 
electricity price. 

2.4. Loads 

Two types of loads have been considered for the proposed 
network in this section. The first type is time-variable and 
interruptible loads, and the second type is fixed loads. For 
the former one, it is necessary to supply a specific amount of 
required energy within different time intervals. Concerning 
interruptible loads, they can be interrupted by paying a 
penalty for this type of load. Therefore, loads of the first type 
can participate in demand response programs. On the 
contrary, fixed loads are sensitive and uninterruptible loads 
and their demanded power must be supplied at the requested 
exact time.  

Equation (27) shows the minimum, maximum and the 
amount of energy for time-variable loads, load shifting costs, 
and load interruption cost, respectively. 

푃 ≤ 푃 (푡) ≤ 푃  

퐸 ≤ ∑퐸 (푡) ≤ 퐸  
 

_ ( )bat chP t

_ ( )bat dischP t

_bat capP

SOC

conv

_conv capP

_ ( )bat chU t _ ( )bat dischU t

bat bat bat

bat

bat

shortageP

surplusP
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퐶 = 훹. 퐸 − 퐸 (푡)  

퐶 = 휁. 푃 (푡)  

(27) 

In the above equations, parameters are defined as follows.  

: Shiftable load, 

푃 , 푃 : Minimum and maximum values of the shiftable 
load, 

퐸 , 퐸 : Energy limitations of the shiftable load, 

퐶 : Load shifting cost, 

: Constant value, 

푃 (푡): Interrupted load, 

퐶 : Load interruption cost, 

휁: A constant value as load interruption penalty. 

2.5. Energy management 

Wide usage of micro grids, contributes to attempts of 
minimizing their operating costs by solving the energy 
management problems. Following equation presents optimal 
objective function of a microgrid, which includes costs of 
generators, battery, power purchase from upstream grid, 
obtained profit by selling power to the upstream grid and 
costs related to the demand response programs. 

푚푖푛 퐶 푃 + 퐶 + 퐶 + 

         푝푟 , . 푃 − 푝푟 , . 푃  

    + 퐶 , + 퐶 ,  

(28) 

In the above equations, ,sell DN
tpr and ,buy DN

tpr are the 

prices of selling electricity to and purchasing electricity from 
local distribution networks. 

2.6.  Energy Management of Power Plant 

After determining the output power of microgrids, 
distribution network starts the energy management process. 

The objective function in this section, given in (29), is 
minimizing the costs related to the operation of the power 
distribution grid in presence of microgrids and DGs. 

푚푖푛 퐶 푃 + 퐶 , + 

푝푟 , . 푃 − 푝푟 , . 푃  

     + 푝푟 , . 푃 ,  

     + 퐶 _ , + 퐶 _ ,  

(29) 

where utilitybuy
t

DNbuy
t prpr ,, , are the electricity selling and 

purchasing prices to and from the distribution network, and 
MGsurpluss

itP 
, is the amount of electricity the distribution 

network purchases from the surplus power of the i-th 
microgrid. Each microgrid re-plans its units after its situation 
is specified. Larger system results in complicated energy 
management problems in distribution network level; and 
apparently using mathematical methods to solve them 
become much more difficult. 

3. Optimization 

Main purpose of optimization is finding the best 
acceptable solution regarding the constraints and 
requirements of a given problem. For a particular problem, 
there may be several solutions that a function called the 
objective function is defined to compare and select the 
optimal solution among the provided solutions. Selecting a 
suitable function depends on the nature of the problem. For 
example, the shortest time or cost is among the common 
objectives of optimizing transportation networks. However, 
selecting the appropriate objective function is one of the 
most important steps in optimization process. 

Optimization is the art of finding the best solution among 
the available situations. Optimization is used in designing 
and maintenance of many engineering, economic and even 
social systems to minimize costs or minimize energy waste. 

Due to the widespread application of optimization in 
different sciences, this topic has grown significantly during 
last decades. In order to solve an optimization problem, 
firstly it must be modeled. Modeling means describing a 

( )defP t
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problem with corresponding mathematical variables and 
equations so that it simulates optimization problem 
correctly. 

3.1. Optimization Using PSO 

PSO is one of the most famous group optimization 
techniques based on a random search, and its modified 
versions are used in solving complicated engineering 
problems.  

In this method, a group of particles search the search 
space to reach the final optimal solution or to a solution close 
to that. Each of the particles is considered as a random 
solution within the search space of the problem. PSO is a 
population-based random optimization technique inspired 
by the group behavior of birds and flock of fish.  

The procedure of PSO is described as follows.  
- Initialization: initializing a population of particles 

with random positions and velocities in D dimensions 
within the search scope 

- Estimation: estimating the fitness of each section in 
the population 

- Update: calculating velocity of each part and moving 
to the next position 

- Termination: stopping the algorithm if an ending 
criterion happens; otherwise, switching to next 
Estimation step. 

3.2. Optimization Using GA 

GA is also a special type of evolutionary algorithm that 
uses inheritance and mutation. In fact, GAs use Darwin's 
natural selection principles to find the optimal formula for 
pattern prediction or matching. GA is generally an iteration-
based algorithm that most parts of it are selected by random 
processes. Furthermore, it is a search technique in computer 
sciences to find an approximate solution for search 
problems, and it is one of the most important algorithms used 
for the optimization of different functions. 

The procedure of GA is as follows: 

- Initialization: Individuals with random chromosomes 
are produced that form the initial population of N. 

- Reproduction: the degree of fitness of each object is 
calculated and the individual is multiplied by static law 
that depends on degree of fitness. Then individuals with 

low fitness values are eliminated, while those with high 
fitness values are maintained. 

- Crossover: New individual is generated by crossover 
operation. 

- Mutation: This is performed by operations that are 
defined by mutation probability or mutation, and a new 
individual is produced. 

- Final judgment: If final conditions are satisfied, the best 
individual obtained is the final solution, otherwise; go 
to step 2. 

3.3. Proposed Method 

The proposed method is an enhanced search method for 
suitable and fast optimization. The purpose of presenting this 
novel method is to introduce a fast and high-performance 
optimization technique in comparison to other common 
techniques. To achieve the best quality optimization we use 
GA, and to achieve the fastest solution we employ PSO. The 
former has fast synchronization and is suitable for an 
iterative and time-demanding problem. Combined flowchart 
of these two algorithms is shown in Fig. 1. 

 

Fig. 1. Flowchart of combined GA-PSO method. 

3.4. Optimization Algorithm (BOA) 

Butterfly optimization algorithm (BOA) is an interesting 
meta-physical algorithm inspired by nature; in which 
butterflies are search agents of BOA for performing 
optimization [16-18].  
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The natural phenomenon of butterflies is founded on two 
vital problems: Variety (I) and formula (f).  

For simplification, a butterfly is in a relationship with a 
coded objective function. But, f is relative and should be 
sensitive by other butterflies. Regarding these concepts, 
fragrance as the physical intensity function of the stimulus is 
given as follows: 

푓 = 푐퐼  (30) 

where f  is obtained from the fragrance. For instance, 
common fragrance is understood by butterfly i. C is the 
sensory state, I is the stimulus intensity, and A illustrates the 
method-dependent power amount, which denotes the degree 
of absorption. There are two main applicable algorithms 
[18]:  

1. Global search step,  

2. Local search step. 

In the world wide search step, the butterfly goes one step 
to the fittest solution butterflyg∗, which can be given as: 

 (31) 

here 푔∗ denotes the best current solution among all 
available solutions of the step. The fragrance of the i-th 
butterfly is represented by fi and r is a random value in the 
range of [0, 1]. Local search step can be described as: 

푥 = 푥 + (푟 × 푥 − 푥 ) × 푓  (32) 

where x   and x  are the j-th and k-th butterflies randomly 
selected from the solution space. If these belong to the same 
subset and r is chosen as a random value in [0, 1], then Eq. 
(32) turns into a local random walk. Food search by 
butterflies could occur in the local and global searches.  

Thus, a switching probability (p) in BOA is utilized for 
switching between common global search and compressed 
local search. Flowchart of a typical BOA is clearly shown in 
Fig. 2. 

 

Fig. 2. Flowchart of BOA [17, 18]. 

4. Simulation 

A 24-bus system is considered for simulations, which is 
shown in Fig. 3[19]. Input data to the system are standard 
data of an IEEE 24-bus system extracted from [19]. Using 
GAMS software, annual generation and investment costs of 
power plant units and power generated by each power unit 
are obtained and listed in the following table. 

 

Fig. 3. The 24-bus system [19]. 
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Table. 1. Power plants characteristics 

Type of power plant 
Biomass 

unit 
Concentrated 

solar unit 
Thermal 

unit 

Number of units 10 13 10 

Total generation cost 
($/MW) 

1/460/000 1/790/000 2/260/000 

Total annual investment 
cost ($/MW) 

290/000 290/000 1/010/000 

Generation power (MW) 762 472 327/141 

Table. 2. Generation power by the biomass unit in different scenarios (MW) 

 
Biomass units  

1  2 3 4 5 6 7  8 9 10 

D
iff

er
en

t s
ce

na
ri

os
 

1 4 71  58 50 50 98  99 99 93 57 

2  87 71 58  50 50 98 99 99 93 57 

3 87 71 58 50  50 98 99 99 93 57 

Table. 3. Generation power by concentrated solar units in different scenarios (MW) 

 
 Concentrated solar units  

1 2 3  4 5 6 7 8 9 10 11 12 13 

D
iff

er
en

t 
sc

en
ar

io
s

 

2 20.579 19.8 27 60  53  32 8.674    9.806   

3 8.732  9.36 31.067 11.896 10.311  10.853 15.791 12.32 44 9.289 20.24 

 
Table. 4. The capacity factor of solar unit 1 in seasons 1 and 2 Table. 5. Collected data illustrating the daily consumption of a particular 

city for optimization of energy consumption of the power plant 

  
 

Counter of 
seasons 

1 2  

C
ou

nt
er

 o
f c

on
ce

nt
ra

te
d 

so
la

r 
un

its
 

1 0.48 0.46 

2 0.42 0.15 

3  0.59 0.46 

4 0.6 0.53 

5 0.41 0.45 

6 0.45 0.5 

7  0.41 0.12 

8 0.34 0.12 

9 0.45 0.19 

10 0.21 0.51 

11 0.6 0.48 

12 0.46 0.1  

13 0.23 0.52 

Load 
(MW) Time (hr) 

1625 1 

1700 2 

1820 3 

1810 4 

1800 5 

1740 6 

1600 7 

1525 8 

1450 9 

1550 10 

1625 11 

1625 12 

1750 13 

1750 14 

2000 15 

Load 
(MW) 

Time 
(hr) 

2150 16 

2000 17 

1870 18 

1700 19 

1475 20 

1350 21 

1350 22 

1280 23 

1380 24 
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Fig. 4 illustrates a particular city’s 24 hours energy 
consumption that utilizes the proposed optimization 
technique 

 

Fig. 4. 24h Consumption linear diagram in MW. 

For GA-PSO algorithm parameters have been considered 
as follows: 

Population size: 50, Maximum iteration: 100 

Cross over probability: 0.7,  

Number of variations: 24, 

Minimum Variation: 1450, 

Maximum variation: 2150. 

Once the generation powers of each of power plant units 
are obtained, the system is optimized using the combined 
GA-PSO algorithm. Then the system will be re-optimized 
using BOA and the obtained results from the optimization 
will be examined using two different algorithms. Fig. 5 
clearly shows the Output curve of the optimized energy 
using the combined GA-PSO and BOA algorithm. Both 
algorithms select their best and the most optimum value of 
their inputs. These data are read by the algorithm and then 
best value among the inputs will be chosen, subject to 
modified cost Function. The best value is the value means 
involving more power and less cost. Comparing results of 
100 iterations of evaluation of obtained cost functions 
contributes to 19.37 (Butterfly algorithm) and 19.20 (GA-
PSO algorithm) that obviously infers that GA-PSO 
algorithm leads to a better performance from the point of 
access point (time) and optimum point (Fig. 5). 

 

Fig. 5. Output curve of the optimized energy using the combined GA-
PSO algorithm. 

5. Conclusions 

The main purpose of this study was to present an efficient 
novel optimization method that could give a relatively better 
solution in terms of both best storage point and convergence 
rate to reach the optimum point than the other common 
methods. For this purpose, firstly a background of 
optimization and energy storage methods is presented. In 
Section 2, to solve this static problem by considering 
uncertainties involved with load demand and power 
generation of non-dispatchable RESs, a model based on 
MILP is proposed. Optimization is defined in Section 3. 
Section 4 presents an optimization method and introduces 
the proposed method. In Section 5, power generation cost, 
annual cost of each power unit and their corresponding 
power generation which are obtained by GAMS program are 
discussed. Then a combined GA-PSO algorithm is used to 
optimize the system. Next, the BOA is utilized to compare 
the proposed technique with another optimization technique, 
and the results of both algorithms are compared. 
Metaheuristic algorithms are a very useful optimization tool 
in optimization problems.  We used a hybrid usage of genetic 
algorithm and particle swarm optimization. The output 
accuracy in this paper was calculated appropriately. Other 
metaheuristic algorithms can also be utilized to optimize 
energy consumption. Regarding the structure of the network, 
DC power flow is implemented. Electrical energy storage 
systems can be used for load backup, frequency, and voltage 
amplification, peak load management, energy quality 
enhancement, and renewable energy support. Utilizing 
energy-saving systems has special virtues and 
disadvantages; because built-in battery-banks are very 
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expensive. For example, an individual 12V (120A-h) Battery 
is about 200$; that stores only 1.44 KW energy and supplies 
about 300W. Of course usage of battery-banks contributes to 
significant benefits such as supporting loads, stabilizing 
voltage and frequency, handling peak consumptions, 
improving energy quality and supporting renewable energy 
sources. Thus, according to requirements of power networks 
to battery-banks, we can make a decision to use or not to use 
battery-banks. Capacity limitation of each bus depends on its 
storage capacity and on the value of optimal function that 
will not be constrained according to the values of buses 3, 6 
and 12. Power storage systems are placed between nodes of 
each bus. Considering outputs and optimizing power 
consumption of power plants, infers that considering energy 
storage can reduce operating costs, provide energy, increase 
reliability and supply operating storage. 

Nomenclature 
 

Counters 
b Counter of biomass units 
c Counter of concentrated solar units 
i Counter of thermal units 
j counter of load demand 
K Counter of seasons. 1: cold season, 2: hot season 
l Counter of transmission lines 
n Counter of buses 
s Counter of scenarios 
w Counter of wind units 
S(I) Sending-end bus of line l 
R(I) Receiving-end bus of line l 

Sets 
Ω (푛)      Set of nuclear parts connected to bus n 
Ω (푛) Set of biomass units connected to bus n 
Ω (푛) Set of concentrated solar parts connected to bus n 
Ω (푛) Set of load demand connected to bus n 

Ω  Set of biomass parts connected to bus n 
Ω  Set of candidate transmission lines 
Ω  Set of available transmission lines 

Ω ( )  Set of greenhouse gas emission parts connected to bus l 
Ω ( )  Set of thermal parts connected to bus n 
Ω ( )  Set of wind parts connected to bus n 

Constants 
퐵  Susceptance of transmission line l [Mho] 
퐶  Generation cost of biomass unit [$/MW] 
퐶       Annual investment cost of biomass part b [$/MW] 

퐶       Generation cost of the focused solar unit [$/MW] 

퐶  Annual investment cost of the concentrated solar unit 
[$/MW] 

퐶  Generation cost of thermal unit i [$/MW] 
퐶  Annual investment cost of thermal unit i [$/MW] 
퐶  Annual investment cost of transmission line l [$/MW] 

퐶  Cost of demand not supplied [$/MW] 
퐶   Generation cost of wind unit w [$/MW] 
퐶   Annual investment cost of wind unit w [$/MW] 
퐷 ،  Amount of load demand j in scenario s [$/MW] 

 

 

푓 ،  Capacity factor of solar unit c in season k [pu] 

푓 ،  Normalized wind generation power of wind unit w in 
scenario s [pu] 

푁   Number of hours containing scenario s [h] 
M A very large number (e.g. 106) 
푃 ،  Maximum capacity of biomass unit b [MW] 
푃 ،  Maximum capacity of concentrated solar unit c [MW] 
푃 ،  Maximum capacity of wind unit w [MW] 
푃 ،  Capacity of candidate transmission line l [MW] 
푃 ،  Capacity of available transmission line l [MW] 

퐿       Maximum number of lines that could be open 
푦  Costs related to each scenario 

Variables 
푑 ،  Consumed power by load demand j in scenario s [MW] 
푑 ،  Power not supplied for load demand j in scenario s [MW] 
푃  Generated power by biomass unit b [MW] 

푃  Generated power by concentrated solar unit c [MW] 
푃  Generated power by thermal unit i [MW] 
푃  Generated power by wind unit w [MW] 
푃 ،  Generated power by biomass unit b in scenario s [MW] 

푃 ،  Generated power by concentrated solar unit c in scenario 
s [MW] 

푃 ،  Generated power by thermal unit i in scenario s [MW] 
푃 ،  Generated power by wind unit w in scenario s [MW] 

푃 ،  Power flow on candidate transmission line l in scenario 
s [MW] 

푃 ،  Power flow on available transmission line l in scenario s 
[MW] 

푄 ،  Auxiliary variable  

푦  Investment status on transmission line l. 푦  = 1 if the line 
is constructed; otherwise, 푦 = 0   

푍 ،  
A binary variable showing the switching status of the 
candidate transmission lines l in scenario s. 푍 ، = 1 if  
the lines are closed; otherwise, 푍 ، = 0 

푍 ،  
A binary variable showing the switching status of the 
available transmission lines l in scenario s. 푍 ، = 0 if  
the lines are closed; otherwise, 푍 ، = 1 

휃 ،  Voltage angle of bus n in scenario s [rad] 
푎 Auxiliary variable for modeling the regret 
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