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Abstract 

Distributed mutual exclusion is a fundamental problem of distributed systems that coordinates the access to critical 
shared resources. It concerns with how the various distributed processes access to the shared resources in a mutually 
exclusive manner. This paper presents fully distributed improved token based mutual exclusion algorithm for distributed 
system. In this algorithm, a process which has owing token, could enter to its critical section. The processes communicate 
to each other in an asynchronous message passing manner. We assume the distributed processes are organized in a 
wraparound two dimensional array. Also, the communication graph of the network is supposed to be a complete graph. The 
proposed algorithm uses three types of messages, namely ReqMsg, InfoMsg and RelMsg. Beside token-holding node, there 
are some nodes, we call them informed-nodes, which can know token-holding node and transmit request message to it 
directly. The number of messages, which are exchanged per each critical section entrance, is a key parameter to avoid posing 

additional overhead to the distributed system. In this paper, we obtain to 3√� − 1 messages per critical section access where 
N is the number of nodes in the system. The proposed algorithm outperforms other token based algorithms whilst 
fairness is kept and the proposed algorithm is starvation free. 

Keywords: Critical Section, Concurrency, Distributed System, Mutual Exclusion, Message Passing, Token-based Algorithm. 

 

1. Introduction 

A distributed system consists of many independent 

process that communicate using message passing and 

collaborate to execute some task. In a distributed system, 

any given node has only a partial or incomplete view of 

the total system and a system-wide common clock does 

not exist [1]. In distributed systems, the resources are 

allowed to be shared. The mutual exclusion problem 

states that only a single process can be allowed to access 

a protected resource, also termed as a critical section, at 

any time. The mutual exclusion algorithms should have 

two main properties: (1): safety, by which at most one 

process can get the resource at each time, and (2): 

liveness, by which all process that want a resource can get 

it in a finite time [2], [3]. Mutual exclusion is a form of 

synchronization and one of the most fundamental 

paradigms in computing systems. The algorithms 

designed to ensure mutual exclusion in distributed 

systems are termed Distributed Mutual Exclusion (DME) 

algorithm. Distributed mutual exclusion algorithms is 

divided to two families, token-based and permission-

based algorithms. In the token-based model, only the 

process that holds a privileged message called token can 

access the shared resource [4], [5], [6], [7]. The token is 

moved among the processes following a logical order. In 
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the permission- based model, each process must ask for 

permission to use the resource and will be allowed to 

access the resource only after getting permission from all 

other processes [3], [8].  

Token-based algorithms exploit different solutions for 

the forwarding of critical section requests of processes 

and token transmission. Each solution is usually 

expressed by a logical topology that defines the paths 

followed by critical section request messages which 

might be completely different from the physical network 

topology. In proposed token-based algorithm, distributed 

process are organized in a wraparound two dimensional 

array. An entry request message, into the critical section 

(CS), is sent to the nodes horizontally in a row. On the 

other hand, the token vertically circulates in the array. The 

CS entry request are sent vertically down or vertically up 

with probability 1/2. In half of cases, the correct path was 

selected. Token continue to vertical travel until arrive at 

one of the nodes that know the token holding node, which 

named informed-nodes. Then the request sent directly to 

token-holding node. 

The reminder of paper is organized as follows: In 

section 2, we discuss about related works and describe the 

problem and preliminary definitions. The proposed 

algorithm is presented in section 3. Section 4 proofs 

correctness properties and section 5 presents performance 

analysis. Finally, section 6 conclude the paper and points 

out directions of future work. 

2. Related Work 

A distributed computing system is a collection of 

autonomous computing sites that do not share a global or 

common memory and communicate solely by exchanging 

messages over a communication facility. In a distributed 

computing system any given site (also referred to as 

"node") has only a partial or incomplete view of the total 

system and a system-wide common clock does not exist. 

Processes must share common hardware or software 

resources, cooperating in such a way that they can work 

in parallel and independently of each other. The access to 

a shared resource must be synchronized to ensure that 

only one process is making use of the resource at a given 

time.  

Each process has a code segment, called a critical 

section, in which the process can access the shared 

resource. The problem of coordinating the execution of 

critical sections by each process is solved by providing 

mutually exclusive access in time to the critical section. 

A process is said to execute repeatedly a sequence of non-

critical section code and critical section code segments, 

each of finite execution time. Each process must request 

permission to enter its critical section and must release it 

after it has completed its execution.  

A mutual exclusion algorithm must provide mutually 

exclusive access to a resource, ensure deadlock freedom, 

ensure starvation freedom, and must provide some 

fairness in the order that requests are granted.  

Two approaches can be used to implement a mutual 

exclusion mechanism in a distributed computing system. 

In a centralized approach, one of the nodes functions as a 

central coordinator. Processes ask only the coordinator 

for permission to enter their critical section. Only when a 

requesting process receives permission from the 

coordinator can it proceed to enter its critical section.  

The central coordinator is fully responsible for having 

all the information of the system and for granting 

permission to make use of a shared resource.  

In a distributed approach, the decision making is 

distributed across the entire system and the solution to the 

mutual exclusion problem is far more complicated 

because of the difficulty to obtain a complete knowledge 

of the total system. This is due to the lack of a common 

shared memory, a common physical clock and because of 

unpredictable message delay. 

A distributed mutual exclusion algorithm for multiple 

access channel was proposed in [10] that its time 

complexity is O (log2N) where N is the number 

independent processes. In [11] intersection traffic control 

was modelled as a distributed mutual exclusion 

algorithm.  

Distributed mutual exclusion algorithms can be 

classified into two groups by a basic principle in their 

design. These two groups are token-based algorithms and 
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permission-based algorithms. The basic principle for the 

design of a distributed mutual exclusion algorithm is the 

way in which the right to enter the critical section is 

formalized in the system. 

 

Fig. 1. Distributed Mutual Exclusion Algorithms. 

2.1. The Token-based Approach 

In the token-based group the right to enter a critical 

section is materialized by a special object, namely a 

token. The token is unique in the whole system. Processes 

requesting to enter their critical section are allowed to do 

so when they possess the token. The token gives to a 

process the privilege of entering the critical section. A 

token is a special type of message. The singular existence 

of the token implies the enforcement of mutual exclusion. 

Only one process, the one holding the token, is allowed to 

enter to its critical section.  

At any given time, the token must be possessed by one 

process at most. Granting the privilege to enter the critical 

section is performed by a single process, which is the 

current owner of the token. This process chooses the next 

token owner and sends it the token. A distinction has to 

be made between the mechanisms used to move the token 

among the processes in the system. If processes are 

logically organized in a direct ring structure, the token can 

travel around the ring from process to process to give 

them the right to enter the critical section. If a process 

receives the token and it is interested in the critical section 

(CS), it can proceed to its execution. After the process 

exits its CS the token is released to circulate again. On the 

other hand, if the process is not interested in its CS it just 

passes the token to the next node in the logical ring. If the 

ring is unidirectional, starvation freedom is ensured. 

Under light load this algorithm has a high cost since the 

token message circulates even if no process wants to enter 

the CS, but it is very effective under high load.  

Another method to move the token in the system is by 

asking for it when a process wants to enter its CS. A 

requesting process sends a request message to the token 

holder and waits for the token arrival. After completing 

the execution of its CS, the process holding the token 

chooses a requesting process and sends it the token. If no 

process wants to use the token; the token holder does not 

need to send the token away. Using this method, a major 

concern is how to locate the token holder in order to 

minimize message exchanges originated by a requesting 

process.  

The token-based approach is highly susceptible to the 

loss of the token, since this can induce a deadlock 

situation. Also, problems can occur with the existence of 

duplicated tokens. Complex token regeneration must be 

executed to ensure the uniqueness of the token. 

In [12] an effective token-based starvation-free 

priority-based mutual exclusion algorithm was proposed. 

For avoiding starvation, the priority of requests was 

increased dynamically. By postponing priority increment, 

the number of priority violations can be strongly reduced 

but at the expense of message overhead. 

Kakugawa et al. [13] proposed a token-based 

distributed algorithm for the group mutual exclusion 

problem in asynchronous message passing distributed 

systems. The message complexity of proposed algorithm 

is O(|Q|) in the worst case, where |Q| is a quorum size that 

the algorithm adopts. 

Tamhane and Kumar in [14] presented a token-based 

distributed mutual exclusion algorithm for accessing to a 

shared resource in opportunistic networks. They proved 

algorithm's correctness and its communication efficiency. 

Bagchi in [15] showed that traditional distributed 

mutual exclusion algorithms which were used for 

accessing to shared resource, were not suitable for 

heterogeneous large scale mobile distribute systems and 

in some cases would lead to violate safety property of 

distributed critical section. He proposed a failure analysis 

model identifies such condition in analytical forms. 
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2.2. The Permission-based Approach 

In the permission-based group the right to enter a 

critical section is formalized by receiving permission 

from a set of nodes in the system. A process wishing to 

enter its critical section asks the others to give it their 

permission to proceed; and then it waits until these 

permissions have arrived. A process enters its CS only 

after receiving permission from all nodes in a set. Non-

requesting processes send their permission to requesting 

ones. 

In [16] an autonomic distributed permission-based 

algorithm for k-mutual exclusion was presented. The 

proposed algorithm adapts itself dynamically to changes 

in the system composition. The proposed algorithm 

employs a hierarchical broadcast algorithm to propagate 

messages reliably and efficiently based on spanning trees 

which constructed in a fully distributed way.    

In [17] an efficient permission-cum-cluster based 

distributed mutual exclusion algorithm was proposed for 

MANETs. The average number of messages/CS entry in 

proposed algorithm significantly is less than similar 

algorithms which it will lead to reduced communication 

delay in order to retrieve the required permissions. 

Table. 1. Each node of system has these data structures 

Definition Data Structure 

A counter that process Pi increases by one whenever it attempts to invoke its CS, to indicate that there is a request 

from this process which is not responded. 
SNi 

A FIFO queue of process Pi which is composed of not responded ReqMsgs. Waitingi 

A variable to keep the node identifier of the current token-holding node. Also, when Pi is the token-holding 

process, if CL_tokeni equals i , it can enter its CS 
CL_tokeni 

A Boolean variable to determine that Pi is informed-node (Sr=1) or no (Sr=0). Sr 

Every node knows its right, Up and down neighbours which are represented by constant identifiers placed in Right, 

Up and Down variables, respectively. 

 

Right and Up and Down 

3. System Model 

3.1. Assumptions 

We assume an asynchronous message passing 

distributed system with a finite set Π of N > 1 nodes. Set 

Π is known by all processes. One process is executed per 

node, thus we use the terms node and process 

interchangeably. Processes are organized on a logical 

topology that is based on wraparound two-dimensional 

array with N nodes that each row has  

� = √� nodes and each column has � = √� nodes too. 

A priority or an order of events has to be established 

between competing requesting processes so only one of 

them receives permission from all other nodes in the set.  

Only one process, the one that has received permission 

from all members of a given set of nodes, is allowed to 

enter the critical section. This enforces the requirement 

for mutual exclusion. Granting the privilege to enter the 

critical section is performed by the set of nodes that send 

their permission to requesting processes. Conflicts are 

solved by a priority or an order of events mechanism.  

The problem of finding a minimal number of nodes 

from which a process has to obtain permission to enter its 

CS has to be considered. This can be translated as to how 

many rights a process has to collect in order to proceed to 

the execution of the critical section. Many protocols have 

been developed to find a majority or quorum of processes 

from which rights have to be collected. The solution to 

this problem has a direct impact in the cost of messages 

exchanged per mutual exclusion invocation [9]. 
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Fig. 2. Two dimensional wrap-around array network. 

 

Initially, a unique identification number between 1 to 

N is randomly assigned to each process. There were some 

assumptions that we considered in proposed algorithm: 

 It supposed that the communication graph of the 

network is complete graph. On the other hand, 

there is a channel between each arbitrary pairs 

nodes Pi and Pj. 

 The links are assumed to be reliable. It means 

that each transmitted message get to destination 

node surely. 

 For any two processes Pi and Pj, the messages 

sent from process Pi to process Pj are received in 

the same order as they are sent.  

 There is only one process in each node.  

 Each process cannot create new CS entering 

request until the prior are granted. 

3.2. Proposed Algorithm 

We call the proposed algorithm as info-based 

algorithm; because of some nodes that we name them 

informed-nodes have information about the location of 

token. Informed-node is a node in the same row of 

token-holding node. As informed nodes know the 

location of token, when entry request message arrives 

them, they send the request to token-holding node 

directly. In the proposed algorithm each node can 

create an entry request message. This request moves 

along column upward and downward by probability of 

0.5 and at last arrives to an informed-node. By this way 

the maximum steps required to get message to an 

informed-node is √�/2. When Request message reach 

to an informed-node, it sends the request to token-

holding node along the row directly. 

 

Fig. 3. Compare proposed algorithm by similar former algorithm [12]. 

In another work [18] the request sends downward 

along the column that requires in the worst case d-1 or 

√� − 1 message passing until get to an informed- 

node. In our improved inform-based algorithm, in the 

worst case √� − 1 message were exchanged and in the 

average case 
√���

�
 messages were exchanged. So in 

average case, the number of message exchange in the 

later is behalf of former work.  

In the proposed algorithm, token is a data structure 

[5] that defines as Fig.4. 

Table. 2. Description of message types 

Description Message Type 

A message which is sent by 

process Pi to invoke its CS. It is 

composed of the identification 

number of the process i, and its Pi's 

local view of not responded 

messages (Waiting i) 

ReqMsg (i, Waitingi) 

This message informs the 

receiving node that process Pi is 

the explicit token-holding node. 

InfoMsg (i) 

This message requests from its 

receiver node to inform all nodes 

in its row that it is not the token-

holding node, any more.  

RelMsg (i) 

Table 1 shows the data structures that we use in this 

algorithm. Furthermore, in Table 2 we descript some 

message types used by proposed algorithm: ReqMsg, 

InfoMsg, RelMsg. Type of messages in the proposed 

algorithm is fewer that similar algorithm proposed in 

[12]; this leads to reduce message complexity. In the 

following of the paper, we assume that process Pk is a 

token-holding node and process Pi is a node that has 

request to execute its CS. 
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Now we descript the algorithm in more detail. Process 

Pi can execute its CS whenever it receives the token. Now 

Pi sets CL_tokeni to i. 

Now we consider a situation that process Pi requests its 

CS. Pi must increase SNi a unit. Then it set Waitingi[i] by 

SNi and creates ReqMsg (i, Waitingi). If process Pi is an 

informed node, sends ReqMsg (i, Waitingi) to token-

holding node directly. Otherwise, Pi generate a random 

number been 0 and 1. If generated number less than 0.5, 

it sends ReqMsg (i, Waitingi) to its Up and if it greater 

than 0.5, sends ReqMsg (i, Waitingi) to its Down. Thus 

ReqMsg (i, Waitingi) starts its vertical movement until it 

arrives to one of the informed-nodes. Fig. 5 illustrates 

creating request to enter critical section. When a process 

Pj receives a ReqMsg from a Pi, several cases may be 

occurred. Fig. 6. Shows all of these situations. 

Let us consider another scenario, when Pi receives a 

message. This message can have seven types: 

ReqMsg, RelMsg and Token. Table 3 shows the 

various situations of receive a message by Pi. 

Also, Pk by getting token message, be allowed to enter 

its CS. At this time, Pk should notify all node of its row to 

owing the token. Fig. 7. Shows steps of Pk's CS entering. 

Furthermore, Pk after executing CS should release CS. 

It means that Pk sets CL_tokenk to zero and sends RelMsg 

to informed-nodes in its row to show that it no longer hold 

the token. As Pk gets permission to enter its CS by 

ReqMsg (k, waitingk) at time stamp SNk, at the time of 

leaving CS, copies SNk to Q[k] which means that the last 

granted Pk's request message is occurred at SNk. Leaving 

the CS by Pk has been shown at Fig. 8. In addition, Pk 

should inspect Q and Waitingk to find next node for 

sending token. As depicted in Fig. 9, Pk investigates Q 

circularly to find Pi such that Pending_request[i]> Q[i]. 

Based on this scheme all of processes enter their CS in 

turn. On the other hand, each process waits limited time 

to enter its CS. It is obvious that proposed algorithm is 

starvation-free. 

When a token-holding node receives a request message 

(i, waitingi), it updates pending-request by comparing 

waitingi[i] and pending-request[i] one by one (Fig. 10). 

 

Table. 3. Various situations of receive a message by Pi. 

Description Message Type 

If (Pi is a token-holding node) then update 

pending_requests.  

Send the ReqMsg to token-holding if (Pi is an 

informed-node) then node.  

Else Until ReqMsg arrived at an informed-node, 

ReqMsg continues to move upward or downward. 

ReqMsg (j, waitingj) 

Pi become an explicit token-holding node and 

inform all nodes in its row.  

Token 

if (process Pi does not token-hold node) then first 

it sets CL_tokeni to j  

So, process Pi become as an informed-node and 

set Sr=1 

Send InfoMsg(j) to its Right.  

If (InfoMsg(j) has arrived back to j then Pj stops 

sending infoMsg(j).  

infoMsg(j) 

Pi first set Sr=0 and then set CL_tokeni=0 

Send RelMsg(j) to its Right 

RelMsg(j) 

 

 

Fig. 4. Token data structure. 

4. Correctness Properties 

Correctness of distributed mutual exclusion algorithm 

can be proved by proofing safety and liveness. 

4.1. Safety 

Safety is guarantying mutual exclusion. On the other 

hand, safety is being assured of preventing concurrent 

access to critical section by several process. 

On the one hand there is only a token in the whole of 

distributed system and on the other hand, a process can 

access to its CS if and only if gets token. So, only one 
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process can access to its CS in each time. Thus it's 

impossible simultaneous access to CS by several 

processes. Therefore, safety is guaranteed. 

4.2. Liveness 

Liveness is guaranteed if none of processes meet 

starvation and deadlock does not occur in the system. 

As illustrated in Fig. 11, when process Pj leaves its CS, 

it should inspect Q and Pending_requests arrays in order 

to find next node which the token must be sent to it. 

Proposed algorithm uses circular search from j to find 

next node such that it has at least one not responded 

request. Additionally, at the proposed algorithm each 

process can access its CS consecutively only once. So, all 

processes endure limited waiting time to catch token. 

Thus, processes access to the CS one after another. 

Therefore, the proposed algorithm is starvation-free and 

deadlock does not happen in the system. So, liveness is 

assured. 

5. Performance Evaluation 

The processes can communicate with each other by 

message passing in the distributed systems. So, one of the 

significant parameter for evaluation distributed algorithm 

performance, is message complexity. Message 

complexity shows the number of messages which should 

be exchanged to complete the algorithm. So, we focus on 

number of messages which will be exchanged per each 

request to CS entrance. 

 The performance of distributed mutual exclusion 

often studied consideration to two scenarios: light load 

and heavy load. 

5.1. Light Load 

In this scenario, there is only a process that wants to 

enter its CS. Consider Pi as an applicant node, is neither 

token-holding node nor informed-node. In the worst case, 

Pi situated at the farthest distance to an informed node. 

So, the request of Pi (ReqMsg(i, Waitingi)) achieves to 

informed node by √� − 1 exchanged messages. Then the 

informed-node sends the ReqMsg (i, Waitingi) directly to 

token-holding node. When Pj leaves its CS, sends 

RelMsg(j) to all of nodes in its row to announce them to 

that Pj isn't token-holding node anymore. So √� − 1 

messages are required. Since, there is no request message 

except request of Pi in pendin_requests, Pj (token-holding 

node) sends the token to Pi by a message. As soon as Pi 

receives the token, informs all nodes in its row as 

informed-nodes by sends infoMsg(i) to them. So, √� − 1 

messages are needed to inform all nodes of a row except 

token-holding node itself. Then Pi can enter its CS. 

Therefore,  

�√� − 1� + 1 + �√� − 1� + 1 + �√� − 1�

= 3√� − 1 
(1) 

Messages must be exchanged per each CS entrance in 

light load situation which are fewer than similar prior 

algorithms. 

5.2. Heavy Load 

Suppose Pj is a token-holding node and situated at row 

r. In the heavy load scenario, all nodes want to grab token 

for entering their CSs simultaneously. Even, when Pj 

leaves its CS, it creates reqMsg again for entering its CS. 

Each process Pi create its request message by ReqMsg (i, 

Waitingi) and transmits it vertically (upward or 

downward) if Pi isn't token-holding node and informed-

node too. Since each process has request for invoking 

token itself, when receives a message from other nodes 

from next or prior row, it appends the received request 

messages to its Waiting and sends only one message 

instead of two or more messages. Since there are √� 

columns in the given system, and √� messages are 

exchanged in each column, therefore √� × √� = � 

messages are exchanged. All nodes of row r except Pj 

send received messages and their request messages to 

token-holding node directly. So, √� − 1 messages are 

passed in this step. Due to starvation-free property of 

proposed algorithm, Pj after leaving its CS should send 

the token to another process. Therefore, Pj must send 

RelMsg(j) to all nodes in row r which means that Pj isn't 

token-holding node more. In this step, √� messages are 

passed. Further Pj finds the next applicant node (suppose 

Pk) and sends the token to it by a message. After the 

receiving token by Pk, it sends infoMsg(k) to all nodes in 

its row to inform them based on Pk is token-holding node 

now. The number of total messages which are exchanged 
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in heavy load case is � + 3√� − 2. The number of 

message exchange per each CS request is: 

� + 3√� − 2

�
= 1 +

3

√�
−

2

�
 (2) 

The number of messages which should be exchanged 

in the proposed algorithm are compared with similar 

algorithm which presented at [12] and are summarized in 

Table 4, under these two kinds of loads. 

As mention above, the number of message exchanges 

in proposed algorithm is lower than similar info-based 

algorithm [12] whilst the number of message types which 

used by proposed algorithm is fewer than [12]. Also, 

proposed algorithm uses simple data structures and 

messages. 
 

Fig. 5. A pseudo code for Process Pi. 

 

 

Fig. 6. Process Pj receives ReqMsg from Pi 
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Fig. 7. Pk Enters to its CS  Fig. 8. Pk leaves its CS 

 

 

 

Fig. 9. Token-holding node run find_Node_To_Send_Token to find next 

node. 

 Fig. 10. Token-holding node updates pending-requests when receives 

a new ReqMsg. 

Fig. 11. Circular search Pending_requests array to fine next node to 

send token. 

Table. 4. A comparison based on message complexity. 

Algorithms Message Complexity (per each CS 

invocation) 

Light Load Heavy Load 

Info-based algorithm 

presented at [12] 
4√� + 1 2 +

4

√�
−

1

�
 

Proposed Algorithm 
3√� − 1 1 +

3

√�
−

2

�
 

6. Conclusion and Future Work 

A token-based algorithm for solving distributed 

mutual exclusion problems are proposed in this paper. 

The process which owing the token can run CS. Also, the 

proposed algorithm called info-based because of some 

nodes know the token-holding node. We assumed a 
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logical topology in the form of wraparound two-

dimensional array, which token is getting around between 

all processes. To guarantee mutual exclusion to access to 

shred resource, some message types are used. Request 

messages move vertically until arrive to informed-nodes. 

As informed-nodes know the token, they send request to 

token-holding node directly. By this way, we can reduce 

the number of message exchanges in the system. Since 

there is only a token in the whole of system and only a 

process can grab the token at any given time: So, the 

safety is assured. In the proposed algorithm, a process can 

not run CS more than once successively. So, liveness is 

assured too and the proposed algorithm is starvation-free.  

The Performance analysis done shows that, the 

proposed algorithm needs 3√� − 1 message exchange in 

light load situation, which outperforms other algorithms. 

When the number of process goes to infinity and all of 

them want to run CS, the number of message exchange 

per each CS entry will be close to 1 at heavy load 

situation.  

In future research, it will be necessary to propose a 

distributed mutual exclusion algorithm for other network 

topology such as tree, mesh, ring and hyper-cube. 
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