
 Journal of Computer & Robotics 11 (2), 2018 49-58

* Corresponding author. Email: shahryari.kolsoom@gmail.com

49

An Improved Token-Based and Starvation Free Distributed Mutual
Exclusion Algorithm

Om-Kolsoom Shahryari a,*, Ali Broumandnia b

a Department of Computer Engineering, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
b Faculty of Computer and Information Technology Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran

Received 31 January 2017; Revised 05 July 2018; Accepted 27 August 2018; Available online 18 September 2018

Abstract

Distributed mutual exclusion is a fundamental problem of distributed systems that coordinates the access to critical
shared resources. It concerns with how the various distributed processes access to the shared resources in a mutually
exclusive manner. This paper presents fully distributed improved token based mutual exclusion algorithm for distributed
system. In this algorithm, a process which has owing token, could enter to its critical section. The processes communicate
to each other in an asynchronous message passing manner. We assume the distributed processes are organized in a
wraparound two dimensional array. Also, the communication graph of the network is supposed to be a complete graph. The
proposed algorithm uses three types of messages, namely ReqMsg, InfoMsg and RelMsg. Beside token-holding node, there
are some nodes, we call them informed-nodes, which can know token-holding node and transmit request message to it
directly. The number of messages, which are exchanged per each critical section entrance, is a key parameter to avoid posing

additional overhead to the distributed system. In this paper, we obtain to 3√� − 1 messages per critical section access where
N is the number of nodes in the system. The proposed algorithm outperforms other token based algorithms whilst
fairness is kept and the proposed algorithm is starvation free.

Keywords: Critical Section, Concurrency, Distributed System, Mutual Exclusion, Message Passing, Token-based Algorithm.

1. Introduction

A distributed system consists of many independent

process that communicate using message passing and

collaborate to execute some task. In a distributed system,

any given node has only a partial or incomplete view of

the total system and a system-wide common clock does

not exist [1]. In distributed systems, the resources are

allowed to be shared. The mutual exclusion problem

states that only a single process can be allowed to access

a protected resource, also termed as a critical section, at

any time. The mutual exclusion algorithms should have

two main properties: (1): safety, by which at most one

process can get the resource at each time, and (2):

liveness, by which all process that want a resource can get

it in a finite time [2], [3]. Mutual exclusion is a form of

synchronization and one of the most fundamental

paradigms in computing systems. The algorithms

designed to ensure mutual exclusion in distributed

systems are termed Distributed Mutual Exclusion (DME)

algorithm. Distributed mutual exclusion algorithms is

divided to two families, token-based and permission-

based algorithms. In the token-based model, only the

process that holds a privileged message called token can

access the shared resource [4], [5], [6], [7]. The token is

moved among the processes following a logical order. In

Computer
& Robotics

O.K. Shahryari et al. / An Improved Token-Based and Starvation Free Distributed Mutual Exclusion Algorithm.

50

the permission- based model, each process must ask for

permission to use the resource and will be allowed to

access the resource only after getting permission from all

other processes [3], [8].

Token-based algorithms exploit different solutions for

the forwarding of critical section requests of processes

and token transmission. Each solution is usually

expressed by a logical topology that defines the paths

followed by critical section request messages which

might be completely different from the physical network

topology. In proposed token-based algorithm, distributed

process are organized in a wraparound two dimensional

array. An entry request message, into the critical section

(CS), is sent to the nodes horizontally in a row. On the

other hand, the token vertically circulates in the array. The

CS entry request are sent vertically down or vertically up

with probability 1/2. In half of cases, the correct path was

selected. Token continue to vertical travel until arrive at

one of the nodes that know the token holding node, which

named informed-nodes. Then the request sent directly to

token-holding node.

The reminder of paper is organized as follows: In

section 2, we discuss about related works and describe the

problem and preliminary definitions. The proposed

algorithm is presented in section 3. Section 4 proofs

correctness properties and section 5 presents performance

analysis. Finally, section 6 conclude the paper and points

out directions of future work.

2. Related Work

A distributed computing system is a collection of

autonomous computing sites that do not share a global or

common memory and communicate solely by exchanging

messages over a communication facility. In a distributed

computing system any given site (also referred to as

"node") has only a partial or incomplete view of the total

system and a system-wide common clock does not exist.

Processes must share common hardware or software

resources, cooperating in such a way that they can work

in parallel and independently of each other. The access to

a shared resource must be synchronized to ensure that

only one process is making use of the resource at a given

time.

Each process has a code segment, called a critical

section, in which the process can access the shared

resource. The problem of coordinating the execution of

critical sections by each process is solved by providing

mutually exclusive access in time to the critical section.

A process is said to execute repeatedly a sequence of non-

critical section code and critical section code segments,

each of finite execution time. Each process must request

permission to enter its critical section and must release it

after it has completed its execution.

A mutual exclusion algorithm must provide mutually

exclusive access to a resource, ensure deadlock freedom,

ensure starvation freedom, and must provide some

fairness in the order that requests are granted.

Two approaches can be used to implement a mutual

exclusion mechanism in a distributed computing system.

In a centralized approach, one of the nodes functions as a

central coordinator. Processes ask only the coordinator

for permission to enter their critical section. Only when a

requesting process receives permission from the

coordinator can it proceed to enter its critical section.

The central coordinator is fully responsible for having

all the information of the system and for granting

permission to make use of a shared resource.

In a distributed approach, the decision making is

distributed across the entire system and the solution to the

mutual exclusion problem is far more complicated

because of the difficulty to obtain a complete knowledge

of the total system. This is due to the lack of a common

shared memory, a common physical clock and because of

unpredictable message delay.

A distributed mutual exclusion algorithm for multiple

access channel was proposed in [10] that its time

complexity is O (log2N) where N is the number

independent processes. In [11] intersection traffic control

was modelled as a distributed mutual exclusion

algorithm.

Distributed mutual exclusion algorithms can be

classified into two groups by a basic principle in their

design. These two groups are token-based algorithms and

 Journal of Computer & Robotics 11 (2), 2018 49-58

51

permission-based algorithms. The basic principle for the

design of a distributed mutual exclusion algorithm is the

way in which the right to enter the critical section is

formalized in the system.

Fig. 1. Distributed Mutual Exclusion Algorithms.

2.1. The Token-based Approach

In the token-based group the right to enter a critical

section is materialized by a special object, namely a

token. The token is unique in the whole system. Processes

requesting to enter their critical section are allowed to do

so when they possess the token. The token gives to a

process the privilege of entering the critical section. A

token is a special type of message. The singular existence

of the token implies the enforcement of mutual exclusion.

Only one process, the one holding the token, is allowed to

enter to its critical section.

At any given time, the token must be possessed by one

process at most. Granting the privilege to enter the critical

section is performed by a single process, which is the

current owner of the token. This process chooses the next

token owner and sends it the token. A distinction has to

be made between the mechanisms used to move the token

among the processes in the system. If processes are

logically organized in a direct ring structure, the token can

travel around the ring from process to process to give

them the right to enter the critical section. If a process

receives the token and it is interested in the critical section

(CS), it can proceed to its execution. After the process

exits its CS the token is released to circulate again. On the

other hand, if the process is not interested in its CS it just

passes the token to the next node in the logical ring. If the

ring is unidirectional, starvation freedom is ensured.

Under light load this algorithm has a high cost since the

token message circulates even if no process wants to enter

the CS, but it is very effective under high load.

Another method to move the token in the system is by

asking for it when a process wants to enter its CS. A

requesting process sends a request message to the token

holder and waits for the token arrival. After completing

the execution of its CS, the process holding the token

chooses a requesting process and sends it the token. If no

process wants to use the token; the token holder does not

need to send the token away. Using this method, a major

concern is how to locate the token holder in order to

minimize message exchanges originated by a requesting

process.

The token-based approach is highly susceptible to the

loss of the token, since this can induce a deadlock

situation. Also, problems can occur with the existence of

duplicated tokens. Complex token regeneration must be

executed to ensure the uniqueness of the token.

In [12] an effective token-based starvation-free

priority-based mutual exclusion algorithm was proposed.

For avoiding starvation, the priority of requests was

increased dynamically. By postponing priority increment,

the number of priority violations can be strongly reduced

but at the expense of message overhead.

Kakugawa et al. [13] proposed a token-based

distributed algorithm for the group mutual exclusion

problem in asynchronous message passing distributed

systems. The message complexity of proposed algorithm

is O(|Q|) in the worst case, where |Q| is a quorum size that

the algorithm adopts.

Tamhane and Kumar in [14] presented a token-based

distributed mutual exclusion algorithm for accessing to a

shared resource in opportunistic networks. They proved

algorithm's correctness and its communication efficiency.

Bagchi in [15] showed that traditional distributed

mutual exclusion algorithms which were used for

accessing to shared resource, were not suitable for

heterogeneous large scale mobile distribute systems and

in some cases would lead to violate safety property of

distributed critical section. He proposed a failure analysis

model identifies such condition in analytical forms.

O.K. Shahryari et al. / An Improved Token-Based and Starvation Free Distributed Mutual Exclusion Algorithm.

52

2.2. The Permission-based Approach

In the permission-based group the right to enter a

critical section is formalized by receiving permission

from a set of nodes in the system. A process wishing to

enter its critical section asks the others to give it their

permission to proceed; and then it waits until these

permissions have arrived. A process enters its CS only

after receiving permission from all nodes in a set. Non-

requesting processes send their permission to requesting

ones.

In [16] an autonomic distributed permission-based

algorithm for k-mutual exclusion was presented. The

proposed algorithm adapts itself dynamically to changes

in the system composition. The proposed algorithm

employs a hierarchical broadcast algorithm to propagate

messages reliably and efficiently based on spanning trees

which constructed in a fully distributed way.

In [17] an efficient permission-cum-cluster based

distributed mutual exclusion algorithm was proposed for

MANETs. The average number of messages/CS entry in

proposed algorithm significantly is less than similar

algorithms which it will lead to reduced communication

delay in order to retrieve the required permissions.

Table. 1. Each node of system has these data structures

Definition Data Structure

A counter that process Pi increases by one whenever it attempts to invoke its CS, to indicate that there is a request

from this process which is not responded.
SNi

A FIFO queue of process Pi which is composed of not responded ReqMsgs. Waitingi

A variable to keep the node identifier of the current token-holding node. Also, when Pi is the token-holding

process, if CL_tokeni equals i , it can enter its CS
CL_tokeni

A Boolean variable to determine that Pi is informed-node (Sr=1) or no (Sr=0). Sr

Every node knows its right, Up and down neighbours which are represented by constant identifiers placed in Right,

Up and Down variables, respectively.

Right and Up and Down

3. System Model

3.1. Assumptions

We assume an asynchronous message passing

distributed system with a finite set Π of N > 1 nodes. Set

Π is known by all processes. One process is executed per

node, thus we use the terms node and process

interchangeably. Processes are organized on a logical

topology that is based on wraparound two-dimensional

array with N nodes that each row has

� = √� nodes and each column has � = √� nodes too.

A priority or an order of events has to be established

between competing requesting processes so only one of

them receives permission from all other nodes in the set.

Only one process, the one that has received permission

from all members of a given set of nodes, is allowed to

enter the critical section. This enforces the requirement

for mutual exclusion. Granting the privilege to enter the

critical section is performed by the set of nodes that send

their permission to requesting processes. Conflicts are

solved by a priority or an order of events mechanism.

The problem of finding a minimal number of nodes

from which a process has to obtain permission to enter its

CS has to be considered. This can be translated as to how

many rights a process has to collect in order to proceed to

the execution of the critical section. Many protocols have

been developed to find a majority or quorum of processes

from which rights have to be collected. The solution to

this problem has a direct impact in the cost of messages

exchanged per mutual exclusion invocation [9].

 Journal of Computer & Robotics 11 (2), 2018 49-58

53

Fig. 2. Two dimensional wrap-around array network.

Initially, a unique identification number between 1 to

N is randomly assigned to each process. There were some

assumptions that we considered in proposed algorithm:

 It supposed that the communication graph of the

network is complete graph. On the other hand,

there is a channel between each arbitrary pairs

nodes Pi and Pj.

 The links are assumed to be reliable. It means

that each transmitted message get to destination

node surely.

 For any two processes Pi and Pj, the messages

sent from process Pi to process Pj are received in

the same order as they are sent.

 There is only one process in each node.

 Each process cannot create new CS entering

request until the prior are granted.

3.2. Proposed Algorithm

We call the proposed algorithm as info-based

algorithm; because of some nodes that we name them

informed-nodes have information about the location of

token. Informed-node is a node in the same row of

token-holding node. As informed nodes know the

location of token, when entry request message arrives

them, they send the request to token-holding node

directly. In the proposed algorithm each node can

create an entry request message. This request moves

along column upward and downward by probability of

0.5 and at last arrives to an informed-node. By this way

the maximum steps required to get message to an

informed-node is √�/2. When Request message reach

to an informed-node, it sends the request to token-

holding node along the row directly.

Fig. 3. Compare proposed algorithm by similar former algorithm [12].

In another work [18] the request sends downward

along the column that requires in the worst case d-1 or

√� − 1 message passing until get to an informed-

node. In our improved inform-based algorithm, in the

worst case √� − 1 message were exchanged and in the

average case
√���

�
 messages were exchanged. So in

average case, the number of message exchange in the

later is behalf of former work.

In the proposed algorithm, token is a data structure

[5] that defines as Fig.4.

Table. 2. Description of message types

Description Message Type

A message which is sent by

process Pi to invoke its CS. It is

composed of the identification

number of the process i, and its Pi's

local view of not responded

messages (Waiting i)

ReqMsg (i, Waitingi)

This message informs the

receiving node that process Pi is

the explicit token-holding node.

InfoMsg (i)

This message requests from its

receiver node to inform all nodes

in its row that it is not the token-

holding node, any more.

RelMsg (i)

Table 1 shows the data structures that we use in this

algorithm. Furthermore, in Table 2 we descript some

message types used by proposed algorithm: ReqMsg,

InfoMsg, RelMsg. Type of messages in the proposed

algorithm is fewer that similar algorithm proposed in

[12]; this leads to reduce message complexity. In the

following of the paper, we assume that process Pk is a

token-holding node and process Pi is a node that has

request to execute its CS.

O.K. Shahryari et al. / An Improved Token-Based and Starvation Free Distributed Mutual Exclusion Algorithm.

54

Now we descript the algorithm in more detail. Process

Pi can execute its CS whenever it receives the token. Now

Pi sets CL_tokeni to i.

Now we consider a situation that process Pi requests its

CS. Pi must increase SNi a unit. Then it set Waitingi[i] by

SNi and creates ReqMsg (i, Waitingi). If process Pi is an

informed node, sends ReqMsg (i, Waitingi) to token-

holding node directly. Otherwise, Pi generate a random

number been 0 and 1. If generated number less than 0.5,

it sends ReqMsg (i, Waitingi) to its Up and if it greater

than 0.5, sends ReqMsg (i, Waitingi) to its Down. Thus

ReqMsg (i, Waitingi) starts its vertical movement until it

arrives to one of the informed-nodes. Fig. 5 illustrates

creating request to enter critical section. When a process

Pj receives a ReqMsg from a Pi, several cases may be

occurred. Fig. 6. Shows all of these situations.

Let us consider another scenario, when Pi receives a

message. This message can have seven types:

ReqMsg, RelMsg and Token. Table 3 shows the

various situations of receive a message by Pi.

Also, Pk by getting token message, be allowed to enter

its CS. At this time, Pk should notify all node of its row to

owing the token. Fig. 7. Shows steps of Pk's CS entering.

Furthermore, Pk after executing CS should release CS.

It means that Pk sets CL_tokenk to zero and sends RelMsg

to informed-nodes in its row to show that it no longer hold

the token. As Pk gets permission to enter its CS by

ReqMsg (k, waitingk) at time stamp SNk, at the time of

leaving CS, copies SNk to Q[k] which means that the last

granted Pk's request message is occurred at SNk. Leaving

the CS by Pk has been shown at Fig. 8. In addition, Pk

should inspect Q and Waitingk to find next node for

sending token. As depicted in Fig. 9, Pk investigates Q

circularly to find Pi such that Pending_request[i]> Q[i].

Based on this scheme all of processes enter their CS in

turn. On the other hand, each process waits limited time

to enter its CS. It is obvious that proposed algorithm is

starvation-free.

When a token-holding node receives a request message

(i, waitingi), it updates pending-request by comparing

waitingi[i] and pending-request[i] one by one (Fig. 10).

Table. 3. Various situations of receive a message by Pi.

Description Message Type

If (Pi is a token-holding node) then update

pending_requests.

Send the ReqMsg to token-holding if (Pi is an

informed-node) then node.

Else Until ReqMsg arrived at an informed-node,

ReqMsg continues to move upward or downward.

ReqMsg (j, waitingj)

Pi become an explicit token-holding node and

inform all nodes in its row.

Token

if (process Pi does not token-hold node) then first

it sets CL_tokeni to j

So, process Pi become as an informed-node and

set Sr=1

Send InfoMsg(j) to its Right.

If (InfoMsg(j) has arrived back to j then Pj stops

sending infoMsg(j).

infoMsg(j)

Pi first set Sr=0 and then set CL_tokeni=0

Send RelMsg(j) to its Right

RelMsg(j)

Fig. 4. Token data structure.

4. Correctness Properties

Correctness of distributed mutual exclusion algorithm

can be proved by proofing safety and liveness.

4.1. Safety

Safety is guarantying mutual exclusion. On the other

hand, safety is being assured of preventing concurrent

access to critical section by several process.

On the one hand there is only a token in the whole of

distributed system and on the other hand, a process can

access to its CS if and only if gets token. So, only one

 Journal of Computer & Robotics 11 (2), 2018 49-58

55

process can access to its CS in each time. Thus it's

impossible simultaneous access to CS by several

processes. Therefore, safety is guaranteed.

4.2. Liveness

Liveness is guaranteed if none of processes meet

starvation and deadlock does not occur in the system.

As illustrated in Fig. 11, when process Pj leaves its CS,

it should inspect Q and Pending_requests arrays in order

to find next node which the token must be sent to it.

Proposed algorithm uses circular search from j to find

next node such that it has at least one not responded

request. Additionally, at the proposed algorithm each

process can access its CS consecutively only once. So, all

processes endure limited waiting time to catch token.

Thus, processes access to the CS one after another.

Therefore, the proposed algorithm is starvation-free and

deadlock does not happen in the system. So, liveness is

assured.

5. Performance Evaluation

The processes can communicate with each other by

message passing in the distributed systems. So, one of the

significant parameter for evaluation distributed algorithm

performance, is message complexity. Message

complexity shows the number of messages which should

be exchanged to complete the algorithm. So, we focus on

number of messages which will be exchanged per each

request to CS entrance.

 The performance of distributed mutual exclusion

often studied consideration to two scenarios: light load

and heavy load.

5.1. Light Load

In this scenario, there is only a process that wants to

enter its CS. Consider Pi as an applicant node, is neither

token-holding node nor informed-node. In the worst case,

Pi situated at the farthest distance to an informed node.

So, the request of Pi (ReqMsg(i, Waitingi)) achieves to

informed node by √� − 1 exchanged messages. Then the

informed-node sends the ReqMsg (i, Waitingi) directly to

token-holding node. When Pj leaves its CS, sends

RelMsg(j) to all of nodes in its row to announce them to

that Pj isn't token-holding node anymore. So √� − 1

messages are required. Since, there is no request message

except request of Pi in pendin_requests, Pj (token-holding

node) sends the token to Pi by a message. As soon as Pi

receives the token, informs all nodes in its row as

informed-nodes by sends infoMsg(i) to them. So, √� − 1

messages are needed to inform all nodes of a row except

token-holding node itself. Then Pi can enter its CS.

Therefore,

�√� − 1� + 1 + �√� − 1� + 1 + �√� − 1�

= 3√� − 1
(1)

Messages must be exchanged per each CS entrance in

light load situation which are fewer than similar prior

algorithms.

5.2. Heavy Load

Suppose Pj is a token-holding node and situated at row

r. In the heavy load scenario, all nodes want to grab token

for entering their CSs simultaneously. Even, when Pj

leaves its CS, it creates reqMsg again for entering its CS.

Each process Pi create its request message by ReqMsg (i,

Waitingi) and transmits it vertically (upward or

downward) if Pi isn't token-holding node and informed-

node too. Since each process has request for invoking

token itself, when receives a message from other nodes

from next or prior row, it appends the received request

messages to its Waiting and sends only one message

instead of two or more messages. Since there are √�

columns in the given system, and √� messages are

exchanged in each column, therefore √� × √� = �

messages are exchanged. All nodes of row r except Pj

send received messages and their request messages to

token-holding node directly. So, √� − 1 messages are

passed in this step. Due to starvation-free property of

proposed algorithm, Pj after leaving its CS should send

the token to another process. Therefore, Pj must send

RelMsg(j) to all nodes in row r which means that Pj isn't

token-holding node more. In this step, √� messages are

passed. Further Pj finds the next applicant node (suppose

Pk) and sends the token to it by a message. After the

receiving token by Pk, it sends infoMsg(k) to all nodes in

its row to inform them based on Pk is token-holding node

now. The number of total messages which are exchanged

O.K. Shahryari et al. / An Improved Token-Based and Starvation Free Distributed Mutual Exclusion Algorithm.

56

in heavy load case is � + 3√� − 2. The number of

message exchange per each CS request is:

� + 3√� − 2

�
= 1 +

3

√�
−

2

�
 (2)

The number of messages which should be exchanged

in the proposed algorithm are compared with similar

algorithm which presented at [12] and are summarized in

Table 4, under these two kinds of loads.

As mention above, the number of message exchanges

in proposed algorithm is lower than similar info-based

algorithm [12] whilst the number of message types which

used by proposed algorithm is fewer than [12]. Also,

proposed algorithm uses simple data structures and

messages.

Fig. 5. A pseudo code for Process Pi.

Fig. 6. Process Pj receives ReqMsg from Pi

 Journal of Computer & Robotics 11 (2), 2018 49-58

57

Fig. 7. Pk Enters to its CS Fig. 8. Pk leaves its CS

Fig. 9. Token-holding node run find_Node_To_Send_Token to find next

node.

 Fig. 10. Token-holding node updates pending-requests when receives

a new ReqMsg.

Fig. 11. Circular search Pending_requests array to fine next node to

send token.

Table. 4. A comparison based on message complexity.

Algorithms Message Complexity (per each CS

invocation)

Light Load Heavy Load

Info-based algorithm

presented at [12]
4√� + 1 2 +

4

√�
−

1

�

Proposed Algorithm
3√� − 1 1 +

3

√�
−

2

�

6. Conclusion and Future Work

A token-based algorithm for solving distributed

mutual exclusion problems are proposed in this paper.

The process which owing the token can run CS. Also, the

proposed algorithm called info-based because of some

nodes know the token-holding node. We assumed a

O.K. Shahryari et al. / An Improved Token-Based and Starvation Free Distributed Mutual Exclusion Algorithm.

58

logical topology in the form of wraparound two-

dimensional array, which token is getting around between

all processes. To guarantee mutual exclusion to access to

shred resource, some message types are used. Request

messages move vertically until arrive to informed-nodes.

As informed-nodes know the token, they send request to

token-holding node directly. By this way, we can reduce

the number of message exchanges in the system. Since

there is only a token in the whole of system and only a

process can grab the token at any given time: So, the

safety is assured. In the proposed algorithm, a process can

not run CS more than once successively. So, liveness is

assured too and the proposed algorithm is starvation-free.

The Performance analysis done shows that, the

proposed algorithm needs 3√� − 1 message exchange in

light load situation, which outperforms other algorithms.

When the number of process goes to infinity and all of

them want to run CS, the number of message exchange

per each CS entry will be close to 1 at heavy load

situation.

In future research, it will be necessary to propose a

distributed mutual exclusion algorithm for other network

topology such as tree, mesh, ring and hyper-cube.

References

[1] Velazquez, M., "A survey of distributed mutual exclusion
algorithms", Technical Report CS-93-116, Colorado State University,
(1993).

[2] Kshemkalyani, A. D.; Singhal, M., "Distributed mutual exclusion
algorithms, in Distributed Computing: Principles, Algorithms, and
Systems", 1st ed. Cambridge University Press (2008).

[3] Raynal, M.; Beeson, D., "Algorithms for mutual exclusion
Cambridge, MA, USA: MIT Press (1986).

[4] Le Lann, G., "Distributed systems - towards a formal approach", in
IFIP Congress, pp. 155–160 (1977).

[5] Suzuki, I.; Kasami, T., "A distributed mutual exclusion algorithm,
ACM Trans. Comput. Syst., vol. 3, pp. 344–349 (1985).

[6] Raymond, K., "A tree-based algorithm for distributed mutual
exclusion", ACM Trans. Comput. Syst., vol. 7, pp. 61–77 (1989).

[7] Naimi, M.; Trehel, M.; Arnold, A., "A log (n) distributed mutual
exclusion algorithm based on path reversal", J. Parallel Distrib.
Comput, vol. 34, pp. 1–13 (1996).

[8] Sanders, B. A., "The information structure of distributed mutual
exclusion algorithms", ACM Trans. Comput. Syst., vol. 5, pp. 284–
299 (1987).

[9] Velazquez, M. G., "A Survey of Distributed Mutual Exclusion
Algorithms", Velazquez Technical Report CS-93-116 September 6,
(1993).

[10] Czyzowicz, J.; Gasieniec, L.; Kowalski, D. R.; Pec, A., "Consensus
and Mutual Exclusion in a Multiple Access Channel", IEEE
Transactions on Parallel and Distributed Systems, vol. 22, pp. 1092-
1104 (2011).

[11] Wu, W.; Zhang, J.; Luo, A.; Cao, J., "Distributed Mutual Exclusion
Algorithms for Intersection Traffic Control", IEEE Transactions on
Parallel and Distributed Systems, vol. 26, pp. 65-74 (2015).

[12] Lejeune, J.; Arantes, L.; Sopena, J.; Sens, P., "A fair starvation-free
prioritized mutual exclusion algorithm for distributed systems", J.
Parallel Distrib. Comput., vol. 83, pp. 13–29 (2015).

[13] Kakugawa, H.; Kamei, S.; Masuzawa, T., "A Token-Based
Distributed Group Mutual Exclusion Algorithm with Quorums", IEEE
Trans. Parallel Distrib. Syst., vol. 19, no. 9, pp. 1153–1166 (2008).

[14] Tamhane, S. A.; Kumar, M., "A token based distributed algorithm for
supporting mutual exclusion in opportunistic networks", Pervasive
Mob. Comput, vol. 8, no. 5, pp. 795–809 (2012).

[15] Bagchi, S., "Design and topological analysis of probabilistic
distributed mutual exclusion algorithm with unbiased refined
ordering", Future Generation Computer System, vol. 95, pp. 175–186
(2019).

[16] Rodrigues, L. A.; Duarte, E. P.; Arantes, L., "A distributed k-mutual
exclusion algorithm based on autonomic spanning trees", J. Parallel
Distrib. Comput., vol. 115, pp. 41–55 (2018).

[17] Gupta, A.; Saini, P.; Krishna, C. R., "An efficient permission-cum-
cluster based distributed mutual exclusion algorithm for mobile adhoc
networks", in 2014 International Conference on Parallel, Distributed
and Grid Computing, pp. 141–146 (2014).

[18] Taheri, H.; Neamatollahi, P.; Naghibzadeh, M., "Info-based approach
in distributed mutual exclusion algorithms", Journal of Parallel
Distribution and Computation vol.25, no. 2 , pp. 650–665 (2012).

