
Journal of Computer & Robotics 1 (2011) 39-46

39

A Power-Aware Cache and Register File Design Space Exploration

Mehdi Alipour , Mostafa E. Salehi

Department of Electrical & Computer, Islamic Azad University, Qazvin Branch, Qazvin, Iran.

Received 10 December 2010; revised 18 March 2011; accepted 2 April 2011

Abstract

In the near future, embedded processors need to support more network applications, computation-intensive packet-processing tasks will

become heavier, and new performance bottlenecks will be introduced in the embedded system designs. Since memory access delay and

also the number of processor registers significantly affect processor performance, cache and register file are two major parts in designing

embedded processor architectures. Increasing the sizes of cache and register file leads to the performance improvement in packet-

processing tasks in high traffic networks with too many packets, but the increased area, power consumption, and memory access delay are

the overheads of these techniques. Therefore, implementing these components in the optimum size is of great interest in the design of

embedded processors. In this regard, this paper explores the effect of cache and register file size on the performance of processors while

considering power consumption in calculating the optimum size of these components for embedded applications. The results show that

although having bigger caches and register files helps with the performance improvement in embedded processors, increasing the size of

these parameters beyond the threshold level makes the performance improvement saturated and finally decreased. Furthermore, a major

part of the power of embedded processors is consumed in the memory.

Keywords: Embedded processor, design space exploration, cache, register file, performance, power consumption.

1. Introduction

In recent years, embedded applications and internet

traffic have become sophisticated and heavier,

respectively. In this regard, since future embedded

processors will encounter more computation-intensive

embedded applications, designing high performance

processors is recommended. By decreasing the feature

size of applications and having the technology of chip

multiprocessors (CMP) that are usually multi-thread

processors, the user’s performance is somehow

guaranteed. Key components in designing these

processors are cache and register file because the

performance of a processor is closely related to cache

access and having enough registers.

Recently in numerous studies, multi-thread processors

are used to design fast processors especially in network

processors [4], [9], [11], [23], [25], and [26]. In [3] a

Markov model based on fine grain multithreading was

developed. The resulting Analytical Markov model was

faster than the simulation and had dispensable

inaccuracy. In the chain, stalled threads defined as states

and transitions were based on the cache contention

between threads.

Cache memories are usually used to improve the

performance and power consumption of processors by

bridging the gap between the speed and power

consumption of the main memory and CPU. Therefore,

the system performance and power consumption

depends on the average memory access time and power

consumption which make cache an important part in

designing embedded processor architectures.

In [4] cache misses were introduced as a factor for

reducing memory level parallelism between threads. In

[5] thread criticality prediction was used, and for better

performance, resources were given to the threads that

had higher L2 cache misses called the most critical

threads.

To improve packet-processing in network processors,

[6]-[8] used direct cache access (DCA). In [9] the

processor architecture was based on simultaneous

multithreading (SMT) and the cache miss rate was used

to assess the improvement in performance.

M. Alipour et al. / A Power-Aware Cache and Register File Design Space Exploration

40

To find out the effect of cache access delay on

performance, a comparison between multi-core and multi-

thread processors was made in [10]. Likewise, victim cache

was used to improve the performance of a multi-thread

processor [11].

Most of the recent studies are based on comparisons

between single-core single-thread processors and multi-

thread processors. Since multi-thread processors are the

heir to the single-thread processors [23], [25], and [26],

evaluating some effective parameters like cache and

register file size is necessary for designing a multi-thread

processor. The main purpose of this paper is, therefore, to

study the effect of cache size on the performance of

processors because embedded processors process

computation and data intensive applications and larger

cache sizes give a better performance.

Fig. 1. The processor pipeline of Multi2sim simulator [19]

Generally, one of the easiest way to improve the

performance of embedded and network processors is

increasing the cache size [2], [12], [13], [14], and [22]-

[26] but this improvement significantly increases the

occupied area and power consumption of the processor.

Hence, it is necessary to find a cache size that makes

tradeoffs between the performance, power, and area of

the processor.

From another point of view, due to the performance

per area parameter, higher performance in a specified

area budget is one of the most important needs of a high

performance embedded processor. A shortcoming of the

recent researches is that they don’t place any constraints

on the cache size. Thus, because of the limited area

budget in embedded processors, in this paper the

optimum sizes of L1 and L2 cache are computed, and

also because of the longer latency of bigger caches, the

best size of the memory hierarchy in relation to this

parameter is calculated.

As mentioned above, another essential part in

designing embedded processors is register file. Like

cache, size of this parameter has a fundamental effect on

the processor performance. To improve the performance

of an embedded processor, a large register file must be

implemented. However, larger register files occupy

more area and make a worse critical path [18].

Therefore, exploring the optimum size of the register file

is the second purpose of this paper. This issue is highly

important because some parameters encourage designers

to have large register files. Generally, embedded

processors are implemented in multi-issue architectures

and out of order (OOO) instruction execution that has

renaming logic [16]-[18], [23], [25], and [26]. On the

other hand, register files are shared in multi-thread

processors, thus they force the designer to have a larger

register file [1]. This further shows the great importance

of the size of register file. In [15] effects of the size of

register file on SMT processors were studied. However,

high budget for the number of registers was used. As in

recent researches concurrent effects of register file and

cache size are not studied, in this paper this issue is

investigated. In some way, the present paper is an

extended version of [29] that considers the issue of

power consumption too. In [29] only performance

criteria were explored by the authors. Yet in this study,

using the cache and register file range reported in [29]

and using a new tool for power consumption, we present

power aware optimum sizes of cache and register file for

embedded applications.

2. Simulation environment

2.1 Performance Exploration Simulator

For simulation, we use Multi2sim version 2.3.1 [19],

a superscalar multi-thread multi-core simulation

platform which has 5 stages of pipeline named fetch,

decode, dispatch, issue, writeback, and commit, and

executes x86 instruction sets. Figure 1 shows a block

diagram of the processor pipeline modeled in

Multi2Sim. In the fetch stage, instructions are read from

the instruction or the trace cache. Depending on their

origin, the instructions are placed in either the fetch

queue or the trace queue. The former contains raw

macroinstruction bytes while the latter stores pre-

decoded microinstructions (uops). In the decode stage,

the instructions are read from the queues, and decoded if

Journal of Computer & Robotics 1 (2011) 39-46

41

necessary. Then, uops are placed in the program order

into the uop queue. The fetch and decode stages form the

front-end of the pipeline [19]. The dispatch stage takes

the uops from the uop queue, renames their source and

destination registers, and places them into the reorder

buffer (ROB) and the instruction queue (IQ) or the load-

store queue (LSQ). The issue stage is in charge of

searching both the IQ and LSQ for the instructions with

ready source operands, which are scheduled for the

corresponding functional unit or data cache. When a uop

is completed, the writeback stage stores its destination

operand back in the register file. Finally, the completed

uops at the head of the ROB are taken by the commit

stage and their changes are confirmed. Thus the commit

stage is where we can log and count the number of

committed instructions for performance comparison.

This simulation is described in detail in the simulation

method and results section.

To evaluate the requirements of each thread, we use

the single issue model for comparison although

Multi2sim can run programs in multi-issue platforms.

We changed and compiled the source code of the

simulator on a 2.4GHz dual core processor with 4GB of

RAM and 6MB of cache that runs fedora 10 as the

operating system. Using this configuration, the average

time of each simulation is about 20 minutes.

2.2 Power Exploration Tool

Since power is as important as performance in

embedded processors, we explore power parameters

using MCPAT [30] tool, an integrated power, area, and

timing modelling framework that supports

comprehensive design space exploration for multi-core

and many-core processor configurations ranging from

90nm to 22nm and beyond. MCPAT [30] builds both

reservation-station and physical register-file models

based on real architectures.

3. Benchmarks

The aim of this paper is to calculate the optimum size

of cache and register file. Because embedded

applications are too pervasive and homogenous, they

cannot be a good choice for DSE. Hence we apply our

DSE on heterogeneous applications, such that in some of

them the data cache is more important while in the

others the instruction cache is more significant. To this

end, we apply PacketBench [20] and MiBench [27],

respectively. PacketBench is a good platform to evaluate

the workload characteristics of network processors. It

reads and writes packets from and to real packet traces,

manages packet memory, and implements a simple

application programming interface API. This involves

reading and writing trace files and placing packets into

the memory data structures used internally by

PacketBench.

Many of these functions are implemented on a network

processor by specialized hardware components and

therefore should not be considered part of the

application. There are three categories of programs in

this tool: 1- IP forwarding, which is corresponding to

current internet standards. 2- Packet classification,

which is commonly used in firewalls and monitoring

systems. 3- Encryption, a function that modifies the

entire payload of the packet. Specific applications that

we use from each category are IPv4-Lctrie, Flow-

Classification and IPSec, respectively. IPv4-trie

performing RFC1812-based packet forwarding is

derived from an implementation for the Intel IXP1200

network processor. This application uses a multi-bit trie

data structure to store the routing table, which is more

efficient in terms of storage space and lookup

complexity [20]. Flow classification, another application

used in the study, is a common part of various

applications such as firewalling, NAT, and network

monitoring. The packets passing through the network

processor are classified into the flows which are defined

by a 5-tuple consisting of the IP source and destination

addresses, source and destination port numbers, and

transport protocol identifier. The 5-tuple is used to

compute a hash index into a hash data structure that uses

link lists to resolve collisions [20]. Fulfilling different

functions, IPSec is an implementation of the IP Security

Protocol [27], where the packet payload is encrypted

using the Rijndael Advanced Encryption Standard

(AES) algorithm [28]. This is the only application where

the packet payload is read and modified.

MiBench is a combination of six different categories.

Three of them are selected here: 1- Dijkstar from the

network category, 2- Susan (corners) from the

automotive and industrial control category, and 3-

String-search from the office category. The Dijkstra

benchmark constructs a large graph in an adjacency

matrix representation and then calculates the shortest

path between every pair of nodes using repeated

executions of Dijkstra’s algorithm [49]. Susan is an

image recognition package. It is developed for

recognizing corners and edges in magnetic resonance

images of the brain [27]. String-search searches for

given words in phrases using a case insensitive

comparison algorithm.

4. Simulation method and results

The main goal of this study is to evaluate the

optimum size of cache and register file. At first, we

describe the methodology for extracting the proper size

M. Alipour et al. / A Power-Aware Cache and Register File Design Space Exploration

42

of cache. To do so, it is necessary to configure the

simulator in a way that the only parameter affecting

performance is the size of cache. Thus, for each

application the execution number of the main function is

calculated in different sizes of L1 and L2 caches. This is

done by making changes to some parts of the simulator

source code to calculate the cycles of sending a packet

(the cycles that are used to execute the main function of

each application).

To calculate the beginning address and the end

address of the main function, we disassemble the

executable code of each benchmark application and

extract these addresses. Then these parameters are back

annotated to the commit.c and processor.h files of the

Multi2sim simulator where a thread is executed.

Having made these changes, we can calculate the

number of x86 instructions and macroinstructions and

the execution cycles for each specific function.

The second step is to run the simulator with different

cache sizes. In this regard it should be pointed out that

while based on some recent studies the cache size should

be doubled to improve the performance of a processor, it

is also important to consider key parameters like area

power and cache access delay during the process of

doubling the cache size. In this study, therefore, we have

used CACTI 5.0 [21], a tool from HP that is a platform

for extracting parameters relevant to cache size in

fabrication technology. Table 1 shows most of the

important parameters used in this research.

To compare the performance based on the cache size,

the results extracted from cacti (L1 and L2 cache access

delay) are back annotated to Multi2sim. This is done by

calculating the simulator cycle time and comparing it to

the results of cache access time obtained from CACTI.

In this way when the cache size is changed, actual cache

access delays are taken into account.

As illustrated by Figure 2, increasing the cache size

leads to more cache access delays. For exploring the

cache size, the other simulator parameters are set to the

default value because the purpose is to find the best

cache size for a single-thread single-core processor for

embedded applications. That is, the width of the pipeline

stages must be one (issue-width =1).

5. Analysis of the simulation results

 5.1 Performance Analysis

Figure 3 shows the results of our simulations. In this

figure, each axis has a label and the vertical axis (per-

pen) shows the performance penalty of the related cache

size configuration. According to these results, by

increasing the cache size, we can achieve more hit rates,

Table 1

The most important parameters used in cacti

L1 cache L2 cache

Cache size Variable Variable

Cache line size Variable Variable

Associatively Variable Variable

Number of banks 1 1

Technology node (nm) 90nm 90nm

Read/write ports 1 1

Exclusive read ports 0 0

Exclusive write ports 0 0

Change tag No No

Type of cache Fast normal/serial

Temperature (K) 300-400 300-400

RAM cell/transistor

type in data array
ITRS-HP Global

RAM cell/transistor

type in tag array
ITRS-HP Global

Fig. 2. Effects of the cache size on cache access delay

but because of the longer cache access time of larger

caches, from a specific point (the best cache size) the

performance improvement is saturated and then even

decreased. In other words, doubling the cache size

cannot always improve the performance. In fact, area

budget is limited and we can't always have a large cache.

Hence, we should consider smaller sizes for the cache

especially close to the best cache size so that

performance degradations would be negligible (3% on

average).

To calculate the optimum size of register file, we

have applied the parameters used for calculating the best

cache size; however, to find out just the effect of register

file size on the performance, we have used the best

cache size (L1 and L2) concluded in the previous section

for the cache size and run the simulator accordingly.

Figure 4 indicates the findings of this part of analysis,

where the vertical column shows the performance effect

Journal of Computer & Robotics 1 (2011) 39-46

43

(performance penalty) of register file size. Numbers in

the vertical column are relative to the best size of

register file. Accordingly, although for all applications,

on average, the best size of register file is 68 and above

but in sizes near the half of this size performance penalty

is lower that 5%. The figure also shows that reducing the

register file size always decreases the performance but

sometimes by doubling the register file size we don't

have a noticeable performance improvement. As a result,

the first point that the highest performance is reached is

determined as the best size for register file.

Another relevant issue is that based on recent

researches [23, 25, 26], to have a multi-thread

architecture, we need more area budget, and then to run

the architecture in the best performance that can be met,

a multi issue architecture with renaming logic , ROB,

LSQ, IQ and other OOO components which occupy a

large area budget are needed. Base on these simulations,

we calculated 2 points for the sizes of cache and register

file: 1- the best size that has no performance penalty and

occupies a bigger area budget and 2- the optimum size

that has about 3% performance penalty and occupies a

smaller area budget.

Fig. 3. Effects of the cache size on the performance (a):Dijkstra, (b): String_search, (c):Susan.corners, (d):flow_class, (e):ipv4_lctrie, (f): ipsec.

M. Alipour et al. / A Power-Aware Cache and Register File Design Space Exploration

44

Consequently, we can deduce that in the optimum

size of cache and register file we have saved the area

budget of the processors and qualifications to run multi-

threads in the higher issue widths is obtained. In other

words, the lower area in which more performance is

achieved causes the most important parameter of the

embedded applications that is performance per area to

develop.

As mentioned before, given that multi-thread

processors are the heir of single thread processors,

extracting the best size of important parameters like

cache size and register file size is necessary.

 5.2 Power Analysis

We did the back annotation method e.g. we put the

results of performance analysis from multi2sim to the

input of MCPAT [30]. The inputs are the cycle

simulation, number of access to the cache (register file),

hit rate, miss rate, number of committed instructions,

number of dispatched instructions, etc.

Based on Figure 3, we can introduce 12 cache

configurations for the selected embedded application.

For L1 we can use 16, 32, 64 and 128 KB (so four

points), and for L2 we can use 32, 64 and 128 Kb (so

three points). Multiplying 3 by 4, we reach to 12 points

for the cache hierarchy. For example, we can have

L1=16 KB and L2=64 as configuration number 1. In this

way we can reach 12 different cache configurations. By

using MCPAT [30], we explored the power parameter of

these configurations related to an embedded core to find

out how much of power consumption of an embedded

processor will be used in the cache hierarchy.

Figure 4 shows the percentage of the cache hierarchy

total power (leakage + dynamic) consumption related to

the core for all 12 configurations. The best cache

hierarchy configuration is cfg number 1 because it

consumes the lower percentage of the core total power.

According to the results of the total power analysis, in

90nm, up to 32% of the core total power will be

consumed in the cache hierarchy. Performance is also

one of the most important parameters to tune a cache

configuration for embedded applications.

Fig. 4. Analysis of power for different cache hierarchies

Thus the cost functions that consider both power and

performance simultaneously can produce better results.

Below, we explore some important parameters based on

the power and performance of all 12 configurations

which are more effective for embedded applications. To

analyze the power of register file, we used MCPAT [30]

again. We explored the register file sizes shown in

Figure 5. The findings of this part are presented in

Figure 6. Based on this figure, the best size among the

proposed sizes is 80 that delivers the optimum

perfromance per power for register file in the embedded

domain. In other sizes, we can see power penalaties.

This means that in these sizes power cunsumption is

higher that that in the default size (default size=80).

6. Conclusion

In this paper we studied the effect of cache and

register file size on the performance of an embedded

processor and extracted the best size of these two

parameters for embedded applications. The simulation

results show that for the selected benchmarks, the best

sizes of L1 and L2 caches are 64KB and 128KB,

respectively, and the best size of register file is 80.

Experiments show that although by increasing the cache

size, performance will improve, but in a specific point

the performance improvement is saturated and then

decreased. Moreover, increasing register file size cannot

always improve performance and in a specific size the

performance improvement will be saturated. From the

area point of view, based on the results of this research,

when we select half of the best size of the cache and

register file, performance penalty is about 3% on

average. In other words, in the sizes smaller than the

best size, the acceptable performance can be met. It

means we can reach performance requirements in the

lower area and also have a better performance/area

parameter.

Employing a comprehensive power tool, we explored

the power criteria for embedded applications.

Considering the power parameters led to reduction in the

search space extracted from the performance analysis.

Therefore, designers can select the optimum size based

on their design criticality from the explored space in this

paper.

Journal of Computer & Robotics 1 (2011) 39-46

45

Fig. 5. Effects of the register file size on the performance

Fig. 6. Power analysis of the explored sizes of register file.

References

[1] David A. Patterson, John L. Hennessy.: Computer organization and

design: the hardware/software interface, Morgan Kaufman 2007.

[2] Davanam, N., Byeong Kil Lee., "Towards Smaller-sized Cache for

Mobile Processors Using Shared Set-Associatively," international

conference on information technology. pp. 1-6. 2010.

[3] Chen, X.E., Aamodt, T.M., "A First-Order Fine-Grained Multithreaded

Throughput Model," International Symposium on High Performance

Computer Architecture (HPCA), pp.329-340.2009.

[4] Shailender, Chaudhry. Robert, Cypher. Magnus, Ekman. Martin,

Karlsson. Anders, Landin. Sherman, Yip. Haakan, Zeffer.

Marc,Tremblay," Simultaneous speculative threading: a novel

pipeline architecture implemented in sun's rock processor,"

international symposium on computer architecture(ISCA 2009). pp.

484-495, 2009.

[5] Abhishek, Bhattacharjee. Margaret, Martonosi. "Thread Criticality

Predictors for Dynamic Performance, Power, and Resource

Management in Chip Multiprocessors," International Symposium on

Computer Architecture (ISCA). pp. 168-176, 2009.

[6] Huggahalli, R. Iyer, R. Tetrick, S.,"Direct cache access for high

bandwidth network I/O," International Symposium on computer

Architecture (ISCA). pp. 50-59, 2005.

[7] Kumar, A. Huggahalli, R.,"Impact of Cache Coherence Protocols on

the Processing of Network Traffic," International symposium on

Microarchitecture. (MICRO), pp. 161-171, 2007

[8] Kumar, A. Huggahalli, R. Makineni, S.,"Characterization of Direct

Cache Access on Multi-core Systems and 10GbE," International

Symposium on High Performance Computer Architecture (HPCA).

pp. 341-352, 2009.

[9] Kyueun, Yi. Gaudiot, J.-L.,"Network Applications on Simultaneous

Multithreading Processors," Journal of IEEE Transaction on

Computer (TCOMPUTER). pp. 1200-1209, 2009

[10] Guz, Z. Bolotin, E. Keidar, I. Kolodny, A. Mendelson, A. Weiser,

U.C.," Many- Core vs. Many-Thread Machines:Stay Away From the

Valley," Journal Computer Architecture Letters (L-CA), pp.25-28,

2009.

[11] Colohan, C.B. Ailamaki, A.C. Steffan, J.G. Mowry, T.C.,"CMP

Support for Large and Dependent Speculative Threads," Journal IEEE

Transaction on Parallel and Distributed systems (TPDS), pp. 1041-

1054, 2007.

[12] Bienia, C. Kumar, S. Kai Li.," PARSEC vs. SPLASH-2: A

quantitative comparison of two multithreaded benchmark suites on

Chip- Multiprocessors," International Symposium on Workload

Characterization (IISWC), pp.47-56, 2008.

[13] Guanjun, Jiang. Du, Chen. Binbin, Wu. Yi, Zhao. Tianzhou, Chen.

Jingwei, Liu.," CMP Thread Assignment Based on Group sharing L2

Cache," International Conference on Embedded Computing, pp. 298-

303, 2009.

http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=5501464&queryText%3DToward+Smaller-sized+Cache+for+Mobile+Processors+using+shared+Set-associativity%26openedRefinements%3D*%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=5501464&queryText%3DToward+Smaller-sized+Cache+for+Mobile+Processors+using+shared+Set-associativity%26openedRefinements%3D*%26searchField%3DSearch+All
http://www.citeulike.org/user/yeminjiao/author/Chaudhry:S
http://www.citeulike.org/user/yeminjiao/author/Cypher:R
http://www.citeulike.org/user/yeminjiao/author/Ekman:M
http://www.citeulike.org/user/yeminjiao/author/Karlsson:M
http://www.citeulike.org/user/yeminjiao/author/Karlsson:M
http://www.citeulike.org/user/yeminjiao/author/Landin:A
http://www.citeulike.org/user/yeminjiao/author/Yip:S
http://www.citeulike.org/user/yeminjiao/author/Zeffer:H
http://www.citeulike.org/user/yeminjiao/author/Tremblay:M
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=1431545&queryText%3DDirect+Cache+Access+for+High+Bandwidth+Network+I%2FO%26openedRefinements%3D*%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=1431545&queryText%3DDirect+Cache+Access+for+High+Bandwidth+Network+I%2FO%26openedRefinements%3D*%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=4408253&queryText%3DImpact+of+Cache+Coherence+Protocols+on+the+Processing+of+Network+Traffic%26openedRefinements%3D*%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=4408253&queryText%3DImpact+of+Cache+Coherence+Protocols+on+the+Processing+of+Network+Traffic%26openedRefinements%3D*%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=5374374&queryText%3DNetwork+Applications+on+Simultaneous+Multithreading+Processors%26openedRefinements%3D*%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=5374374&queryText%3DNetwork+Applications+on+Simultaneous+Multithreading+Processors%26openedRefinements%3D*%26searchField%3DSearch+All
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=10208
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=4636090&queryText%3DPARSEC+vs+SPLASH-2%3A+A+Quantitative+Comparison+of+Two+Multithreaded+Benchmark+Suites+on+Chip+Multiprocessors.%26openedRefinements%3D*%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=4636090&queryText%3DPARSEC+vs+SPLASH-2%3A+A+Quantitative+Comparison+of+Two+Multithreaded+Benchmark+Suites+on+Chip+Multiprocessors.%26openedRefinements%3D*%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=4636090&queryText%3DPARSEC+vs+SPLASH-2%3A+A+Quantitative+Comparison+of+Two+Multithreaded+Benchmark+Suites+on+Chip+Multiprocessors.%26openedRefinements%3D*%26searchField%3DSearch+All

M. Alipour et al. / A Power-Aware Cache and Register File Design Space Exploration

46

[14] McNairy, C. Bhatia, R.," Montecito: a dual core dual thread Itanium

processor," IEEE Journal MICRO, pp.10-20, 2005.

[15] Alastruey, J. Monreal, T. Cazorla, F. Vinals, V. Valero, M.,"Selection

of the Register File Size and the Resource Allocation Policy on SMT

Processors Policy on SMT Processors," International Symposium on

Computer Architecture and High Performance Computing (SBAC-

PAD), pp.63-70, 2008.

[16] A, Yamamoto. Y, Tanaka. H, Ando. T, Shimada.," Data prefetching

and address pre-calculation through instruction pre-execution with

two-step physical register deallocation," in MEDEA-8, pp. 41–48,

2007.

[17] Yamamoto. Y, Tanaka. H, Ando. T, Shimada.,"Two-step physical

register deallocation for data prefetching and address precalculation,"

IPSJ Trans. on Advanced Computing Systems. vol. 1, no. 2, pp. 34–

46, 2008.

[18] Tanaka, Y. Ando, H.,"Reducing register file size through instruction

pre execution enhanced by value prediction,"IEEE International

Conference on Computer Design, pp. 238 – 245. 2009.

[19] R, Ubal. J, Sahuquillo. S, Petit. P, L'opez.," Multi2Sim: A Simulation

Framework to Evaluate Multicore-Multithreaded Processors," journal

Proc. of the 19th Int'l Symposium on Computer Architecture and High

Performance Computing. Oct 2007.

[20] Ramaswamy, Ramaswamy. Tilman, Wolf.," PacketBench: A tool for

workload characterization of network processing," in Proc. of IEEE

6th Annual Workshop on Workload Characterization (WWC-6),

Austin, TX. pp. 42-50, Oct. 2003.

[21] Shyamkumar Thoziyoor, Naveen Muralimanohar, and Norman P.

Jouppi, "CACTI 5.0 technical report", form Advanced Architecture

Laboratory, HP Laboratories HPL-2007. [Online].

Available:www.hpl.hp.com/research/cacti/

[22] Hyunjin, Lee. Sangyeun, Cho. Childers, B.R.," StimulusCache:

Boosting Performance of Chip Multi-processors with Excess Cache,"

IEEE 16th International Symposium on High Performance Computer

Architecture (HPCA), pp, 1 – 12, 2010.

[23] Chung, E.S. Hoe, J.C.," High-Level Design and Validation of the

BlueSPARC Multithreaded Processor," IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems (TCAD).

vol. 29, no. 10, pp. 1459– 1470, 2010.

[24] Davanam, N. Byeong, Kil. Lee.," Towards Smaller-sized Cache for

Mobile Processors Using Shared Set-Associativity," international

conference on information technology, pp. 1-6, 2010.

[25] Kyueun Yi, and Gaudiot J. L, "Network Applications on

Simultaneous Multithreading Processors," IEEE Transaction on

Computer (TCOMPUTER).vol. 59, no. 9, pp. 1200-1209,

SEPTEMBER 2010.

 [26]Wang, H. Koren, I. Krishna, C.," Utilization-Based Resource

Partitioning for Power-Performance Efficiency in SMT Processors,"

IEEE Transactions on Parallel and Distributed Systems, (TPDS) vol.

22, no. 99, pp. 191-216, 2010.

[27]M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T.Mudge,

and R. B. Brown, “MiBench: a free, commercially representative

embedded benchmark suite,” in Proceedings of the IEEE

InternationalWorkshop onWorkload Characterization, pp. 3-14,2001.

 [28] S.K. Dash, T. Srikanthan, "Instruction Cache Tuning for Embedded

Multitasking Applications," IEEE/IFIP International Symposium on

Rapid System Prototyping, pp. 152-158, 2009.

[29] Mehdi Alipour and Mostafa E. Salehi "Design Space Exploration to

Find the Optimum Cache and Register File Size for Embedded

Applications", 9th Int'l Conf. Embedded Systems and Applications, Pp.

214-219, ESA'11, las vegas, USA, July 18-21, 2011.

[30] Sheng Li, Jung Ho Ahn, Jay B. Brockman,and Norman P. Jouppi,

"McPAT 1.0: An integrated power, area, and timing modeling

framework for multicore architectures," available online at:

http://www.hpl.hp.com/research/mcpat/McPATAlpha_TechRep.pdf.

http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=1453484&queryText%3DMONTECITO%3A+A+DUAL-CORE%2CDUAL-THREAD+ITANIUM+PROCESSOR%26openedRefinements%3D*%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=1453484&queryText%3DMONTECITO%3A+A+DUAL-CORE%2CDUAL-THREAD+ITANIUM+PROCESSOR%26openedRefinements%3D*%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=5413149&queryText%3DReducing+Register+File+Size+through+Instruction+Pre-Execution+Enhanced+by+Value+Prediction%26openedRefinements%3D*%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=5413149&queryText%3DReducing+Register+File+Size+through+Instruction+Pre-Execution+Enhanced+by+Value+Prediction%26openedRefinements%3D*%26searchField%3DSearch+All
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5406656
http://www.ecs.umass.edu/ece/wolf/pubs/2003/wwc.html
http://www.ecs.umass.edu/ece/wolf/pubs/2003/wwc.html
http://www.hpl.hp.com/research/cacti/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5410726
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5410726
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=5580212
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=5501464&queryText%3DToward+Smaller-sized+Cache+for+Mobile+Processors+using+shared+Set-associativity%26openedRefinements%3D*%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=5501464&queryText%3DToward+Smaller-sized+Cache+for+Mobile+Processors+using+shared+Set-associativity%26openedRefinements%3D*%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=5374374&queryText%3DNetwork+Applications+on+Simultaneous+Multithreading+Processors%26openedRefinements%3D*%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=5374374&queryText%3DNetwork+Applications+on+Simultaneous+Multithreading+Processors%26openedRefinements%3D*%26searchField%3DSearch+All
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=71
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=4359390
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5158481
http://www.hpl.hp.com/research/mcpat/McPATAlpha_TechRep.pdf

