
 Journal of Computer & Robotics 7 (1), 2014 37-50

* Corresponding author. Email: Iran.jafarymajid@yahoo.com

37

Design of a Multiplier for Similar Base Numbers Without Converting
Base Using a Data Oriented Memory

Majid Jafari*, Ali Broumandnia, Navid Habibi, Shahab Forgani

Department of Computer, South Tehran Branch, University of Islamic Azad, Iran

Received 1 January 2012; accepted 5 March 2013

Abstract

One the challenging in hardware performance is to designing a high speed calculating unit. The higher of calculations
speeds in a computer system will be pointed out in terms of performance. As a result, designing a high speed calculating
unit is of utmost importance. In this paper, we start design whit this knowledge that one multiplier made of several adder
and one divider made of several sub tractor. Therefore, if the fast adder or fast multiplier designed, performance will be
improved. In this design, a circuit is designed in a manner that without a need for transforming numbers or letters from
the given bases into binary bases, the multiplication of two numbers for the same base is done in that base. Reduction in
the number of conversions in the calculating unit, causes reduction in the consumption power and an increase in the
operating speed of the system. In this design, a very small Data Oriented Memory is used to save numerical and
character data.

Keywords: Data Oriented Memory; same base multiplication; Content Addressable Memory; Sub tractor; Category.

1. Introduction

Each computer system has four chief units
including control, memory, function unit and I/O
units. In this architecture, the memory unit which is
data oriented memory type with reading and writing
capabilities is used to store data type of numbers and
ASCII. The control unit that control word bit and
select line multiplexers in data path, fetches
instructions from memory and performs the
operations sequentially [2]. The function unit
performs the computational operations. Each
information system requires a processor to process the
instructions.CPU is responsible to perform this task in
computers. CPU processes almost all instructions

given by software and hardware by using logical
operations, mathematical computations and
comparisons. This unit computes and compares all
input instructions using ALU or decide based on
logical operations and then returns output, if
necessary. This process is done over the processor's
registers as the CPU's work desk. Mathematical
operations mean a number of simple operations such
as multiply, division, sum and subtract. The
increasing speed of the whole system is determined
according to increasing the speed of the slowest part
of system, namely ALU. The higher the speed of
operations in this unit, the faster processing the CPU
would have and if CPU has high speed in processing,

M. Jafari et al. / Design of a multiplier for similar base numbers without converting base using a data oriented
memory

38

the system would have better speed and efficiency
and lower throughput.

The memory to be useful in this article is a data-
oriented memory (DOM) which has been designed for
data-oriented models according to data-oriented
theory. This theory introduced in recent years uses a
type of data structure, called problem – solution data
structure to solve problems [3]. Data-oriented theory
is based on this fact that if enough and proper data are
used to model the principles, the complexity of the
required algorithms to solve the problem is decreased
and ratio the time required to solve the problem is
decreased. The applied memories to data-oriented
models are a certain type of content addressable
memories(CAM)where they use the data itself instead
of address to search a value. So, they would have
faster in order to access data. Although data oriented
memories are considered as a certain type of CAM,
but they are different in terms of performance. The
CAM’s examine only whether the key exists or not,
but DOM’s make the desired answer available if the
applied key is matched [2-4].

The above mentioned model and architectures have
been designed to work with regular data for integers
and ASCII codes in same base multiplier's
architecture.

2. Related works

Among different data processing in digital
computers, we could point out those functions related

to various types of arithmetic operations. The main
arithmetical operation is to sum up two binary digits.
We know that one multiplier made of several adders
and one divider made of several sub tractor. IF simple
sum in cludes four basic operations, so simple
multiplication also includes four basic, 0 * 0 = 0, 0 *
1 = 0, 1 * 0 = 0 and 1 * 1 = 1. The three first
operations generate 0 digit, but when both
Multiplicative bits are 1, the binary multiplication
generate 1 digit.

2.1 Types of adders

Multiplier plays an very important role in today's
digital circuits. The design of high speed, low power
consumption, less area, and low irregularity in layout
are very important. There are various types of
multipliers concluding Twin-Piped Serial-Parallel
Multiplier, Array Multiplier, Wallace Tree Multiplier,
Modified Booth Multiplier, and Combined Modified
Booth-Wallace Tree Multiplier.

2.1.1 Binary multiplier

In grammar school we learned to multiply by
adding a list of shifted multiplicands computed
according to the digits of the multiplier. The same
method can be used to obtain the product of two
unsigned binary numbers. Forming the shifted
multiplicands is trivial in binary multiplication, since
the only possible values of the multiplier digits are 0
and 1. An example is shown below:

 Journal of Computer & Robotics 7 (1), 2014 37-50

39

Fig. 1. Two numbers couplet multiplication with example

In general, when we multiply an n-bit number by
an m-bit number, the resulting product requires at
most n + m bits to express. The shift-and-add
algorithm requires m partial products and additions to
obtain the result, but the first addition is trivial, since
the first partial product is zero. Although the first
partial product has only n significant bits, after each
addition step the partial product gains one more
significant bit, since each addition may produce a
carry.

bits are B1 and B0, the multiplier bits are A1 and
A0, and the product is C3C2C1C0. The first partial
product is formed by multiplying B1B0 by A0. The
multiplication of two bits such as A0 and B0 produces
a 1 if both bits are 1; otherwise, it produces a 0. This
is identical to an AND operation. Therefore, the
partial product can be implemented with AND gates
as shown in the diagram. The second partial product
is formed by multiplyingB1B0 by A1 and shifting one
position to the left. The two partial products are added
with two half-adder (HA) circuits. Usually, there are
more bits in the partial products and it is necessary to
use full adders to produce the sum of the partial
products. Note that the least significant bit of the
product does not have to go through an adder, since it
is formed by the output of the first AND gate. A
combinational circuit binary multiplier with more bits
can be constructed in a similar fashion. A bit of the
multiplier is ANDed with each bit of the multiplicand
in as many levels as there are bits in the multiplier.
The binary output in each level of AND gates is

added with the partial product of the previous level to
form a new partial product. The last level produces
the product. For J multiplier bits and K multiplicand
bits, we need (J* K) AND gates and
(J –1)K -bit adders to produce a product of (J +
K)bits.

2.1.1 Binary parallel multiplier

In this section we outlined an algorithm that uses n
shifts and adds to multiply n-bit binary numbers.
Although the shift-and-add algorithm emulates the
way that we do paper-and-pencil multiplication of
decimal numbers, there is nothing inherently
“sequential” or “time dependent” about
multiplication. That is, given two n-bit input words A
and B, it is possible to write a truth table that
expresses the 2n-bit product P = A.B as a
combinational function of Many approaches to
combinational multiplication are based on the paper-
and-pencil shift-and-add algorithm. Figure 2
illustrates the basic idea for an 5 × 5 multiplier for
two unsigned integers, multiplicand A =a4 a3a2a1a0
and multiplier B= b4b3b2b1b0 we call each row a
product component, a shifted multiplicand that is
multiplied by 0 or 1 depending on the corresponding
multiplier bit. Each small box represents one product-
component bit ypc: the logical AND of multiplier bit
Bi and multiplicand bit Aj. The product P =
P5P3P2P1P0has 6 bits and is obtained by adding
together all the product components. A and B. A

M. Jafari et al. / Design of a multiplier for similar base numbers without converting base using a data oriented
memory

40

combinational multiplier is a logic circuit with such a truth table.

Fig. 2. 5-by-5 Pezar is Array Multiplier [50]

product-component bits have been spread out to
make space, and each “|” box is a full adder. The
carries in each row of full adders are connected to
make an5-bit ripple adder. Thus, the first ripple adder
combines the first two product components to produce
the first partial product, as defined in Subsequent
adders combine each partial product with the next
product component.

It is interesting to study the propagation delay of
the circuit. In the worst case, the inputs to the least
significant adder (A1B0 and A0B1) can affect the
MSB of the product (p5). If we assume for simplicity
that the delays from any input to any output of a full
adder are equal, say tpd, then the worst-case path goes
through 20 adders and its delay is 20fpd. If the delays
are different, then the answer depends on the relative
delays.

3. Disadvantages of the designed multiplier

The designed circuits have the following major
disadvantage:

The above circuits have been designed only for
binary computations. For non-binary and other bases
(for example k base), at first that base must be
converted into base 10, and then it must be converted
to base 2. After obtaining the result, it is converted to
base 10 and then to the given base, where in this case,
to obtain the multiplier and divider of two numbers in
base 10 and non-10 and binary bases, base conversion
is required two times and four times, respectively.
Also, the functional unit requires 10, 40, 2, 3 and 20
hour cycles for each multiply, divide, add, subtract
and exponent operations in normal design but in
advanced design this times is decreased to 5, 15, 2, 3
and 10 [4]. The required time to convert other bases to
base 10 is equal to the number of digits multiply by
10, for exponent 20 and sum of them 2hour cycles in
normal design (where it is required to multiply each
digit in the given base by the exponent of the digit
place). Now, the obtained result must be taken in to
base 2which is obtained by successive divisions of the
obtained decimal number by 2. The time complexity
of each division is 40 hour cycle. So, the required
time to convert a decimal number in two base 2 is

 Journal of Computer & Robotics 7 (1), 2014 37-50

41

equal to the number of division by 40 cycles. After
addition operations (which requires 2 hour cycles) and
obtaining the addition result by the mentioned adders,
again we would have the conversion operations from
base 2 to base 10 and from the base 10 to the given
base. This stages Is shown in Figure 3.Therefore, the
latency of multiplying two same base non binary

numbers by mentioned adders and Multiplications is
high in usual case. As a result, in section 4, a circuit
has been designed that does not require any
conversion and it is able to compute the multiplier of
two same base numbers quickly by using a data-
oriented memory without base conversion.

Fig. 3. Stages of multiplication two numbers in k base

4. Introducing the circuit of the new multiplier and
memory

In this design, a sequential circuit with inputs
(multiplier and divider)connected to the data oriented
memory is considered. The memory has been
embedded in the input and output of the ordinal
circuit in order to take the input and return the result
(as binary or ASCII code for hex base) without
conversion to accelerate the operations. The new
memory being introduced is to manage data with
numerical and letter types. This memory is a data-
oriented memory in which numbers from 0 to 256 and
letters A-F are stored in memory with their binary
values, so that as soon as a number or letter is entered
their binary values become available without
conversion. The base of these memories is content
addressable memories [2-4]. Although data-oriented
memories are a special type of content addressable
memories, but they are different in terms of
performance. The content addressable memories just
examine the existence of the key, but data-oriented
memories make the given result available if the
applied key is matched. In this type of memories a
part of data is considered as an address. When a data

is searched, a part of data is compared with the given
data instead of address. If matched, then the restof
values are entered into bus [3-6]. A key in a binary
format is considered which is compared with all
memory cells in a parallel manner so that if there is a
match, two successive cells where the problem is
placed among them are selected. To perform
matching, at first the applied key is compared with all
the problems in memory bit by bit [7-8]. As a result,
we could conclude the equality of two corresponding
bits by the Boolean function in equation (1):

ai = xi.bj,i + xi
′ .bj,i (1)

1

1

ni

i ij aMatch (2)

jMatchajaaH
kj

j

kj

j

ni

i iit).().(0
0

0
0

1

10

 (3)

Where index j representsa memory cell and index iis
the bit number in each cell. By enabling the matching
signal obtained from equation (2), the results
corresponding to the enabled cells are placed in the
buses as the sub results of 1 and 2 andthe processing unit
sends the final result to the output by using the result

M. Jafari et al. / Design of a multiplier for similar base numbers without converting base using a data oriented
memory

42

within the bus. In equations (2) and (3), j represents the
memory place and i is the bit number relates to the
memory cells. In this design, the input unit has a
keyboard and data-oriented memory where they are
compared in parallel by each pressing the key of the
comparison unit within the data-oriented memory
(control circuit) [4-5]. This memory has consisted of two
parts where in the first part, ASCII codes and in the
other part the binary values related to ASCII codes have
been embedded. Once the searching value matches with
the ASCII code of a memory cell, the ASCII and binary
codes relating the above cell are placed in two buses 1
and 2where they could be used based on the requirement
(in this design, the ASCII code enters into bus 2 has not
been used) [6-7]. The inputs related to the arithmetic unit
are connected to bus 1. So, when some values of
keyboard are entered into the input of the adder to add

two numbers, their binary code is placed within the bus
and the arithmetic unit starts to add two binary numbers
in the desired base.

The data-oriented memory in the designed circuit is
as follows. XNOR gates have been used to comparison.
When a key is pressed from the keyboard, its
corresponding ASCII code is searched in the memory
and the binary equivalent of the selected key's ASCII
code is placed in bus 1 and the ASCII code's value itself
is placed in bus 2. Since an arithmetic unit works with
base two in the functional unit, the input values of
arithmetic unit (Ai, BiandCi) are provided by bus 1.
When the sum of two values wantsto be sent to the
screen, bus 2 is used. It means that the obtained value
sends the sum result to the control circuit as an ASCII
code and the control circuit sends the ASCII code
equivalent of that number to the screen.

Fig. 4. Stages of multiplication two numbers in k base whit data oriented memory

Fig. 5. data oriented memory architecture [51]

 Journal of Computer & Robotics 7 (1), 2014 37-50

43

In this memory A shown ASCII and B shown
binary codes. When decimal numbers are applied as
input (key) to the memory, the ASCII code of the
values is searched, if matched the binary values of
that cell is placed in bus 1. The function unit that
including shifter and alu, uses the binary values
within bus 1 as the values of inputs register Ax, Bx and
Cx of function unit. It then applies the binary values of
the output obtained from the functional unit to the
memory as a key, if matched; the ASCII code of the
matched cell is placed in bus 2 in order to be shown in
the output. It is worth noting that the control unit uses
data-oriented memory for each inputs Ax, Bx and Cx
separately. It means than when the input Ax is decoded
by decoder and receives its values from the memory,
the control unit clears the bus and the decoder starts to
decode the input Bx. Input Cx is either zero or one.
This input is also determined by control unit which
becomes zero or one depending on addition or
subtraction. An example is given to better understand
the performance of the data-oriented memory. In this
example, key 9 = (00001001)2 has been pressed from
the keyboard. The system applies its ASCII

equivalent to the data-oriented memory in order to
convert to base two. To perform the matching action,
at first the applied key in binary format is compared
as bit by bit with all the problems in memory. It
means that by applying the ASCII code equivalent of
letter 9 as a problem, the key is compared with all
memory cells in order to find a sub-range including
the key by XNOR gates. According to figure 6, the
matching is occurred only in the A9 cell of memory
and the output of And A9 becomes 1, then signals en1
and en2 are activated and two memory cells, A9 cell
relating to ASCII code A9 and a cell relating to the
binary corresponding to that ASCII code, B9, are
placed in the bus as the sub results of 1 and 2. In this
case, where a matching between the applied key and
one of the problems in the memory has occurred, the
hit signal is activated and the arithmetic unit receives
its inputs by using sub results and according to the
inputs sends the final result to the output. Also, when
the final result is returned from the arithmetic unit to
be represented, this value is applied as a key to the
data-oriented memory so that its ASCII equivalent is
determined in the output to be shown [6-7].

M. Jafari et al. / Design of a multiplier for similar base numbers without converting base using a data oriented
memory

44

Fig. 6. An example of a data-oriented architecture

 Journal of Computer & Robotics 7 (1), 2014 37-50

45

4.1 Design a new arithmetic unit
To design a new multiplier, the way of

mathematical computing is important which is
described in the following. In this design we have
need to data oriented memory, multiplier-divider and
same base adder.

4.1.1 Multiplication of two numbers in the same base
The way of adding two numbers that has been

achieved from multiplier in same base is as follows.
Numbers were obtained include T0T1… T2Tn-1levels
(level means the position of digits such as one,
decimal, hundreds and …), when the multiply of two
numbers in level T0is lower than the base, the
obtained multiplication of among multiplications
value will be the multiply of two numbers in level T0.
But when the multiplications of two numbers in level
T0 is greater than or equal to the base, the obtained
multiplication value will not be the multiplication of
two numbers in level T0. Since the values in base
must be at most one unit less than the base (for
example, in decimal number A= a4a3a2a1a0, as the base

is 8, so
ai<8), so at first the multiplication and sum of them of
two numbers must be subtracted from base, the
remainder of subtraction (division) should be the
multiplication of two numbers in level T0and a carry
digit(The base coefficient) is shifted to level T1.And
this is continued until level n. With that in mind Ai =
B ki + Ri that B is base, k is carry for next Category
and R (that is remains) is the answer of multiplied in
this category to multiplication the new method We
have the two following relations:

The first method:
In this way, at any stage of multiplication referred

into division and data oriented memory unit. After the
refer and Response to the multiplication result
(change to Pf= Ai .Bj position) in this category, the
carrier (that obtained of division quotient Li(Pf = K
Li + Ri)) will be added to the next category and the
remaining would be multiplied answers. Then the first
stage begins again.

Pf = Ai . Bj , i , j , f = 0,1,2,3,…

Pf = K Li + Ri

(Pf+1 + Li)= KLi+1 + Ri+1

(Pf+2 + Li+1)= KLi+2 + Ri+2

.

.

.
(Pn + Ln-1)= KLn+ Rn

×

(34)5

(34)5

P0P1

P2P3

C0C1C2C3

+

P0 = 4 *4 =16
P1 = 3*4 = 12
P2 = 3*4 = 12
P3 = 3*3 = 9

Pi = B Ki + Ci

P0 = 3 *5 + 1

P1 = (3 + 12)= 15

C2 = 4

C3 = 2

C0 = 1

C1 = 2

(2421)5

(2421)5Multiplaction Result

P2 = (15 + 12)= 5*5 + 2

P3 = (5 + 9)= 2*5 + 4

Fig. 7. An example of multiplication

M. Jafari et al. / Design of a multiplier for similar base numbers without converting base using a data oriented
memory

46

The second method:
Due to increase the delay due to many references to

the memory unit and divider unit, the previous
method was not suitable, so other way the we
recommend.

In this method we are using a stack to store values
temporarily, The results of temporary is called Vi. The
results of multiplication of previous steps and stored
in stacks were called Pf. To obtain the mid result, its
necessary to obtain all of addition (in normal form) Pf
that are in a same category.

In figure 8, the multiply of two numbers 34 and 34 has been shown in base 5.

Fig. 8. An example of multiplication

In figure 8, the multiply of two numbers 34 and 34
has been shown in base 5, as it can be seen, numbers
4 and 4 are multiplied in the first level where the
result is 16, but this is not the result in the first level,
because the result would be more than base 5, so 16 is
subtracted (subtraction is k times that k carry for next
category (division)) from base 5, the result is 1, then
the multiply of 3 and 4 is placed in the first level and
a carry digit is shifted to the second level to be added.
In the second level, the carry digit 3 is summed up
with the sum of multiply(4 * 3) + (3*4) and the result

becomes 27, since the result is greater than the base,
so 27 is subtracted from base 5, the result is 2 and
carry is 5 (27 = 5*5 + 2), then the multiply of 5with (4
* 3) + (3*4)is placed in the second level and a carry
digit is shifted to the third level to be added. In the
third level, (3 * 3) and the carry number are summed
up where the result is 4, because the result is lower
than the base, therefore 4 is placed in the third level
and 2 carry for four level.

The architecture of the same base adder is shown in
figure 9 based on the way of adding two same base

 Journal of Computer & Robotics 7 (1), 2014 37-50

47

numbers. In this design, a mentioned arithmetic logic
has been used to add two same base numbers.

Fig. 9.General architecture of same base adder [51]

In the above architecture, two same base numbers
are able to be multiplied (added) without converting
to another base at the same base. It means that a
number in base k can be multiplied (summed) up with
another number in base k without converting into base
10 (for numbers other than base 10) and binary base.
A data-oriented memory has been used in this
architecture. In this memory, the values relating to
numbers and letters have been embedded. As soon as
a key is pressed from the keyboard, its ASCII code is
compared with the values within the memory in
parallel manner, both ASCII code (to take the final
result) and binary code are placed in one of the
memory cells, if they matched. The input of the
multipliers connected to the buses receives their input
values from the bus. Binary or decimal multipliers
multiply two input values including n levels. When
the multiply of two numbers in the first level is
greater than the data base, then it subtracts (division)
the obtained result from the base and sends one as a
carry bit to the second level and this is continued until
the last level in the multipliers. The final carry bit is
applied to the data-oriented memory with the value of
the final result and its ASCII code is placed in the
output bus to be shown.

4.1.2 Function unit's architecture
The new Function unit (Shifter + ALU) is similar

to the decimal numbers' arithmetic unit, however with

this difference that the adder-sub tractor (multiplier-
divider), a data-oriented memory in the input of the
arithmetic unit and the numbers' base itself are used to
division (subtract) and compare in the circuit. The
comparator unit is compared with number's base after
multiplying two numbers. If the result is greater than
or equal to the number's base, then the obtained result
is added to the base's two complement (the obtained
result is divided with the base) and if it is smaller than
the base, then the obtained result is shifted to the
output from the zero input of multiplexer without any
change. A multiplexer (this multiplexer has been built
by using two three-state buffer for speeding up) is
used to differentiate the obtained results. This means
that if either the carry number or the addition result is
greater than the base (the carry number or the addition
result is greater than the base of the selection line of
multiplexer), the subtraction result is sent to the
output because the selection line of the multiplexer
becomes one and the input of a multiplexer which is
the division (subtraction) result is sent to the output.
After obtaining the result, the carry number and the
value of the obtained result are applied to the data-
oriented memory as a key so that the result is placed
in the bus as an ASCII code and is shown in the
output equivalent to the ASCII code. If the selection
line of the multiplexer becomes zero, means that the
multiply of the numbers becomes less than the base,

M. Jafari et al. / Design of a multiplier for similar base numbers without converting base using a data oriented
memory

48

in this case, the obtained result which is in the zero input of the multiplexer is sent to the output.

Fig. 10. Architecture of the same base multiplier's arithmetic unit

According to this fact that the above architecture
does not have base conversion, but as all adders, it has
a delay about two XOR gates for addition and two
AND-OR gates for the carry bit in normal case. If the

addition result is greater than the base, this delay
become two times. In table 1, delay, PDP and power
of the adders have been shown with different
architectures.

Table 1

Delay, PDP and power

PDP Delay Power

4.17E-17 7.97E-11 5.23E-07 Full adder-1[9]

4.15E-17 8.82E-11 4.71E-07 Full adder-2[10]

5.35E-17 7.51E-11 7.12E-07 Full adder-3[11]

According to the above table, we could use adder architecture with lower power in this design.

Table 2

Dividing methods, Operation, Delay

Delay Operation Dividing methods

2*n+1* = 5 N comparison , Subtraction
Comparison

1*n+1* = 3 N Subtraction , Addition
Restored

1* +1* = n Subtraction , Addition
Nonrestored

 Journal of Computer & Robotics 7 (1), 2014 37-50

49

In table 2, Complexity and Operation of the
dividers have been shown with different architectures.
According to the above table, in the new method of
the design have used of divider (Non
restored).Therefore kinds of divider with the delay
was investigated.

5. Conclusion

Today, due to the great importance of time
efficiency parameter in problem solving and also due
to this fact that memories with so high data storage
capability and low cost are available, so we could use
data-oriented memories in function unit itself.

The new multiplier's structure introduced in this
paper is a type of multiplier- divider which has been

designed by adding a data-oriented memory,
subtractor and number base for comparison (and one
of the inputs of the subtractor (division)) to the
multiplier-divider. According to figure11, firstly this
design has removed the weakness of the multipliers;
secondly it is applicable to the same base numbers.
Third, it has led to reduce the number of computations
related to base conversion for multiplaction. By
reducing the number of computations, the exponent
and delay of the arithmetic unit is also reduced and
consequently the speed of the system increases (Well
as in this design, we were able to reduce number
adders to (j-1)k -1 for r bit that in normal mod r = j+k
but in new architecture j and k are numbers that could
have any bits).

Fig. 11. the amount of conversions and the required time for these conversions.

6. Future works

This multiplier could be use in Embedded Systems,
the processing unit of data-oriented memories and also
special systems which work with different bases in
order to accelerate the computations for example RNS.
Also, this multiplier could be applied for speed up

exponent operations, logarithmic functions computing
to accelerate the computations. Applying this
multiplier's algorithm in the software programming
libraries, such as Cuda, Java and C++, VHDL, Matlab,
and ... leads to reducing the number of programming
lines and accelerating the speed of producing output.

M. Jafari et al. / Design of a multiplier for similar base numbers without converting base using a data oriented
memory

50

References

[1] M. Jafari, et. al (2014). Design of a adderr for similar base numbers
without any need for converting base using a data oriented memory. In
proceeding of the 21thJulyscientific committee in the frist International
Conference on Research in Engineering, Science and
Technology.Turkey, Istabnul.

[2] M. Jafari, et. al (2014). Data-oriented memory for storing data
irregularly float. In proceeding of the 6thFebruaryEleventh National
Conference of Computer and Intelligent Systems. Iran, pp:11\A 5320,
Kish.

[3] M. Jafari, et. al (2014). Data-oriented memory for storing data regularly
float. In proceeding of the 22thSeptemberTenth National Conference of
Computer and Intelligent Systems. Iran, pp:101\A, Kish.

[4] M. Jafari, et. al (2013). Designdata-oriented memory for real values. In
proceeding of the 7th october RBPJ2013. Iran, pp:04908, Roudsar.

[5] M. Jafari, et. al (2013). Data-oriented memory for storing data regularly
float. In proceeding of the 7th octoberEleventh National Conference of
Computer and Intelligent Systems. Iran, pp:11\A 5320, Kish.

[6] M. Morris (2007). Digital Design(Fourth Edition), Tehran, Khorasan.
[7] M. Morris (2010). Computer Architecture(twenty-seventh edition),

Tehran, garden.
[8] A.Habibi, et. al (2003). Alternative view of the shortest path problem.

In proceeding of the 30th International Mathematical Conference. Iran
1999, pp:122-124. OMG Press, Wily Publishing.

[9] A. Habibi, T. Oladghaffari, M. Mirnia, H. Es-hagi (2010). Data-
Oriented Architecture of Sine. International Conforence on Education
Technology and Computer.

[10] A. Habibi, T. Oladghaffari, M. Mirnia, Gh. Yaghoubi (2010). Data-
Oriented Architecture of Ln function., International Conference on
Advanced Computer Control - ICACC.

[11] M. Hosseinzadeh, S. RasouliHeikalabad, A. HabibizadNavin, T.
Oladghaffari (2013). MidPoint Memory: A Special Memory Structure
For Data Oriented Models Implementation. Journal of Circuits,
Systems, and Computers.

[12] M. Hosseinzadeh, S. RasouliHeikalabad, A. HabibizadNavin, T.
Oladghaffari (2013). Universal Midpoint Memory: A Special Memory
Structure for Data Oriented Models Implementation. Journal of
Circuits, Systems, and Computers.

[13] en.wikipedia.org/wiki/Scoreboarding
[14] S. Goel, A. Kumar and M.A. Bayoumi (2006) “Design of robust,

energy efficient full adders for deep sub micrometer design using
hybrid-CMOS logic style”, IEEE Trans. on VLSI Systems, vol. 14, no.
12, pp.1309-1321.

[15] J. F. Lin, Y. T. Hwang, M. H. Sheu, and C. C. Ho (2007) “A novel
high-speed and energy efficient 10-transistor full adder design," IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 5, pp. 1050- 1059.

[16] Y. Jiang, A. Al-Sheraidah, Y. Wang, E. Sha and J.G. Chung (2004)
“A novel multiplexer-based low power

[17] full adder,” IEEE Trans. on Circuits and Systems – II: Express Briefs,
vol. 51, no. 7, pp. 345-348.

