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Abstract 

Image segmentation is an important task in image processing and computer vision which attract many researchers 
attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to 
the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for 
modeling statistical and structural information at the same time. Fuzzy Markov random field (FMRF) is a MRF in fuzzy 
space which handles fuzziness and randomness of data simultaneously. This paper propose a new method called FMRF-
C which is model clustering using FMRF and applying it in application of image segmentation. Due to the similarity of 
FMRF model structure and image neighbourhood structure, exploiting FMRF in image segmentation makes results in 
acceptable levels. One of the important tools is Cellular learning automata (CLA) for suitable initial labelling of FMRF. 
The reason for choosing this tool is the similarity of CLA to FMRF and image structure. We compared the proposed 
method with several approaches such as Kmeans, FCM, and MRF and results demonstratably show the good 
performance of our method in terms of tanimoto, mean square error and energy minimization metrics. 

Keywords: Clustering, Image segmentation, Markov random field, Fuzzy markov random field, Cellular learning automata. 

 

1. Introduction 

Image segmentation is a major step in most image 
processing and computer vision tasks. Image 
segmentation is the process of dividing an image into 
two or more segments in a way that each segment 
should be heterogeneous. Pixels in a segment should 

have maximum similarity and minimum similarity 
with pixels in other segments. This process can be 
used as a feature extraction for pattern recognition, 
object detection, image retrieval, stereo matching, and 
many other tasks.  Among the works which are 
applied well and obtained good results, we can refer 

to mammography image segmentation using cluster-
based Markova random field [1], fast and robust 
image segmentation using FCM with spatial 
information [2], color image segmentation using k-
means clustering and Otsu’s adaptive thresholding 
[3], normalized cuts and image segmentation [4], and 
random walks for image segmentation [5], to name a 

few. 

Cluster analysis or clustering is the task of 
grouping a set of objects together in such a way that 
objects in the same group (called a cluster) are more 
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similar (in some sense or another) to each other than 
to those in other groups (clusters). There are several 
methods to define quantity similarity between data 
points, among them Euclidian distance and Cosines 
distance are more common. The most popular 
methods are k-means [6], FCM [7], spectral [8], 
hierarchical [9], ant colony [10], SOM [11], and 
Evolutionary [12] clustering. 

Image segmentation is one of the most applications 
of clustering in computer vision field (colour, 
medical, grayscale, and etc.). In this case, pixel values 
form the clustering space data. Number of clusters 
indicates number of desired segments; hence, each 

obtained cluster refers to a segment of original image. 
Accuracy of segmentation results depends on 
clustering performance, so higher accuracy clustering 
leads to better segmentation results. 

Fuzzy Markov random field (FMRF) [13] is a 
Markov random field (MRF) in fuzzy space, which 
applies fuzzy random variables in target process. In 
FMRF, a data point only can take one value from 
label set L, which means that each data only should 
belong to one label of L. While, in FMRF, each data 
point belong to all of the labels in L with different 
membership value for each one simultaneously. 
Estimating the optimal labelling of FMRF is similar 
to MRF, and both of them are based on MAP 
framework. Therefore to derive labelling with 
minimum energy, we can utilize energy minimization 
methods such as α-expansion [14], loopy belief 
propagation [15], and min-cut/max-flow [16].  

Cellular Automata (CA) [17], is a mathematical 
model for systems consisting of large number of 
simple identical components with local interactions. 
CA is a non-linear dynamical system in which space 
and time are discrete. The simple components act 
together to produce complicated patterns of 
behaviour. The cells update their states synchronously 
on discrete steps according to a local rule. The new 
state of each cell depends on the previous states of a 
set of cells, including the cell itself, and constitutes its 
neighbourhood. 

Learning Automata (LA) [18], are adaptive 
decision-making devices that operate on unknown 
random environments. A learning automaton has a 
finite set of actions to choose from and at each stage, 
its choice (action) depends upon its action probability 
vector. For each action chosen by the automaton, the 
environment gives a reinforcement signal with fixed 
unknown probability distribution. The automaton then 
updates its action probability vector depending upon 
the reinforcement signal at that stage, and evolves to 
some final desired behaviour. 

Cellular Learning Automata (CLA) [19], which is a 
combination of CA and LA, is a powerful 

mathematical model for many decentralized problems 
and phenomena. The basic idea of CLA, which is a 
subclass of stochastic CA, is to utilize LA to adjust 
the state transition probability of stochastic CA. A 
CLA is a CA in which a learning automaton is 
assigned to every cell. The learning automaton 
residing in a particular cell determines its action 
(state) on the basis of its action probability vector. 
Like CA, there is a rule that the CLA operates under. 
The local rule of CLA and the Actions selected by the 
neighbouring LAs of any particular LA determine the 
reinforcement signal to the LA residing in a cell. The 
neighbouring LAs of any particular LA constitute the 
local environment of that cell. CLA has found many 
applications such as image processing [20], rumour 
diffusion [21], modelling of commerce networks [26], 
channel assignment in cellular networks [22, 23], and 
VLSI placement [24]. 

This paper aims to provide a cluster-based image 
segmentation framework based on FMRF model. 
Fuzzy attribute of FMRF lead to boundary, noisy, and 
outlier data take correct label, and somehow deal to 
uncertainty. Similar to the MRF, FMRF also need to 
initial labelling. This is a critical stage in problem 
modelling and has an important role in final 
performance. For initial labelling of FMRF we use 
cellular learning automata clustering proposed in [25]. 
The reason for choosing this tool is the similarity of 

CLA to FMRF and image structure. In order to 
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evaluate the proposed method, we compare the 
obtained result with cluster-based image segmentation 
methods like k-means [3], FCM [2], and MRF [1], 
which demonstrate acceptable performance than other 
algorithms. The rest of the paper is organized as 
follows. The proposed model is discussed in section 
2, which includes initial labelling step, define energy 
function, and describe energy minimization method 
for reach to optimal labelling of FMRF, section 3 
presents experimental results and analysis of them, 
and  finally section 4 concludes the paper. 

2. Proposed Method 

This section presents the proposed FMRF 
clustering model. In  the MRF  model,  a  pixel  can  
only  take  one  value from  a  state  space,  which  
means  each  pixel  must  belong  to  one  and  only  
one  region.  Nevertheless  a  fuzzy MRF model  
allows  each  pixel  belonging  to  all  regions  
simultaneously  with  different  variables.  Then  each  
pixel  has  a  vector (u1, u2, …, uK) ,  with u1 + u2 + … 
+ uK = 1 ,  and  the  value ui , i = 1, 2, …, K represents  
the  likelihood  that  the  pixel  belongs  to  region  i.  
If ui = 1, the fuzzy MRF becomes the pure MRF. The 
FMRF model-based image segmentation is still 
performed under the MAP-MRF framework (also 
called MAP-FMRF framework). The main difference 
between MRF and FMRF model is in energy function 
modelling. The function in FMRF should be defined 
based on membership value of each data for any label 
l from L, compute energy for the correspond node in 
FMRF. 

2.1. Initial Labelling 

Similar to MRF, performance of FMRF model 
closely related to initial labelling step. Hence, the role 
of initial labelling in efficiency of results is obvious. 
In this paper we use irregular cellular learning 

automata clustering provided by [25] for this task. 
The clustering approach is applied for data clustering 
which obtained results demonstrate which is more 

powerful than existing clustering methods such as K-
means [6], FCM [7], and SOM [11]. Notable 
characteristics of the mentioned method are using of 
structural and neighbourhood information of data, 
ability for careful separation data points belong to 
each cluster, and avoid of local minimal solution.   

In this paper we use CLA clustering method for 
initial image segmentation. CLA is a suitable tool for 
modelling neighbourhood information which has 
some similarity with FMRF. In image segmentation 
problem with CLA, each pixel corresponds to a cell of 
CLA grid. The number of automata actions set to 
desired segments. After that initial segmentation is 

performed, membership value of each data (pixel) to 
all centers in range [0, 1] is calculated via equation 1. 
Then, we assign them as data membership vector to 
each correspond node in FMRF. Finally, energy 
minimization method uses the obtained vector for 
following optimization process. 
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X={x1,x2,…,xn} refer to data set X, C={c1,c2,…,cn} 
is the set of cluster centers, wij  defines membership 
value of data i  for center j, and m determines the 
fuzziness of membership value (m should be set equal 
or greater than one). Higher value of m leading to 
smaller membership values, and in contrary m = 1 
results in membership values with {0, 1} which 
implies to crisp membership. Usually in most 
problems m = 2 is assumed. 

2.2. Energy Function Modelling 

One of the most important issues in FMRF-based 
problems is to define energy function, so defining 
correct form for that leads to final optimized labeling. 
Although this is possible if an efficient energy 
minimization method applied. Another issue is the 
type of neighborhood system which we chosen that is 
4-neighborhood, meaning that four node (top, bottom, 
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left, and right) surrounding node i, are neighbors of 
that. 

  Likelihood energy defined as sum of likelihood 
potentials. In FMRF-C, likelihood energy determined 
based on membership value of each data to labels in 
labels set L, which via equation 2 calculated. 

ixiyw

iiF exyV
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Which yi refer to observed value of data i, xi is 

the label of node i, and ixiyw
presents degree of 

membership of data yi to label xi, by using negative 
exponential, higher membership value results in 
lower energy and vice versa. By defined likelihood 
potential, appropriate label will be selected for the 
observed data. 

In order to eliminate the spatial discriminant of 
labelling, second order clique potential is defined. 
This function checks that whether the two 
neighbour data (pixels) are in a same cluster or not. 
Typically, second order clique potential complies 
with using model which can be defined as equation 
3. 
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Which β is a constant penalty value in range [0, 
1], and xi, xi

’  are labels of two neighbouring nodes 
in FMRF. So as two nodes have same label, 
penalty would be – β, otherwise β be considered as 
penalty that two neighbouring nodes which have 

different label. Clique potential forcing two similar 
neighbours have different label.  

Finally, energy function is defined as sum of the 
likelihood and second order energies, while presented 
in equation 4. 
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Due to the favorable performance of belief 
propagation energy minimization method [15] in 

Markov random field-based applications, also 
inference optimal labeling of FMRF is performed by. 

2.3. Energy Minimization Using Loopy Belief 
Propagation 

Loopy belief propagation (LBP) [15] is a widely 
used method for MRF-based application, which 

achieves labelling with minimum energy. In this 
paper, we applied LBP method to inference optimize 
clusters. Actually, LBP is an iterated algorithm, which 
using propagates messages along nodes in MRF, 
trying to find optimal labelling. In each iteration, 
every node send message to its neighbours, also 
receive incoming message from them. This process 
repeated until all messages will be stable, that’s mean 
not change. Summation of the algorithm described at 
below: 

1. Before a node p sends a message to another node 
q, it must first receive messages from rest of its 
neighbours, and consult with them. During the belief 
propagation, all nodes of FMRF collaborate with each 
other, and about which label which ultimately must 
choose, decide. The partnership between nodes 
reflected by exchange of views (i.e. messages), which 
is done during the algorithm. 

2. Updating messages continued until all of them 
converges. Then, after convergence, a set of beliefs 
for each node p in FMRF will be calculated. Belief, 
represent that how much is possible to node p think 
which label xp should assign to it.  

3. In each iteration once total belief will be 
calculated, then every node assigned with a label 
whose belief is greater. 

Mentioned process will be repeated until 
minimized energy value be stable and in some 
sequential iteration be unchanged. 

3. Experimental Results 

This section investigates the performance of the 
proposed model in image segmentation. For this 
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The proposed method is applied on Berkeley image 

dataset. The obtained results prove the better 

performance of the proposed method against other 

mentioned algorithms. The proposed method achieved 

image segmentations with minimum energy and error 

and reaches maximum tanimoto. Hence, by looking at 

segmented images, the impact of fuzzy in FMRF can 

be realized. This property makes FMRF model more 

robust against noise and random data in comparison 

with MRF which results in homogenous segmentation 

with uniform regions.  
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