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 Solving linear and nonlinear optimal control problem using modified 
adomian decomposition method 
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Abstract 

   First Riccati equation with matrix variable coefficients, arising in optimal and robust control approach, is considered. An analytical 
approximation of the solution of nonlinear differential Riccati equation is investigated using the Adomian decomposition method. An 
application in optimal control is presented. The solution in different order of approximations and different methods of approximation will 
be compared respect to accuracy. Then the Hamilton-Jacobi-Belman (HJB) equation, obtained in nonlinear optimal approach, is considered 
and an analytical approximation of the solution of it using the Adomian decomposition method is presented.   
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1. Introduction 

Riccati equations arise in optimal and robust control 
theory and it is a nonlinear, time-variant matrix coefficient 
equation. For solving this equation no analytical method 
exists. A method for solving this equation numerically is 
discretization of it in time domain and substitution of 
derivation operator with discrete approximation and finding 
solution in each iteration. But this method is very sensitive 
to sample time T∆ in discretization and may be unstable for 
some T∆  . Also, Hamilton-Jacobi-Belman equations 
obtained in nonlinear optimal control and for solving them, 
two approaches exist. In first approach, we discrete given 
system and with using dynamic programming find optimal 
control signal. In second approach, we use given 
continuous system and reach to HJB equation. Then use 
approximation for solving this equation and finding optimal 
control signal. In this paper we start with linear, time-
invariant system and apply optimal control to this system. 
With using calculus of variations, we reach to a Riccati 
equation. Then we apply Adomian decomposition method 
for analytical solving this equation and compare solution of 
this method  with different order  approximations. Then  we  

consider a nonlinear system and apply nonlinear optimal 
control to this system. With using dynamic programming, 
we reach to a HJB equation. Finally, we apply the Adomian 
Decomposision method for solving this equation.  

Adomian decomposition method is a approximated 
approach for solving nonlinear differential equations by 
substitution of nonlinear parts of equation with Adomian 
polynomials and use a step by step method for finding 
solutions [1]. This method is a powerful approach in 
nonlinear differential equations and accuracy of it depends 
on number of used partial solutions. Also, solution of this 
method has a fast convergence to exact solution generally. 
In recent years, some modifications on this method have 
been presented [5,6]. Modification of method is in quality 
of computation of Adomian polynomials. These 
modifications affects on convergence of method. In some 
papers [2,3], Adomian decomposition method used in 
nonlinear optimal control and non-quadratic cost functions 
optimal control. In [7,8,9] modified Adomian 
Decomposition method has been used in linear optimal 
control. In these papers, linear optimal problem formulated 
and solved by using modified Adomian Decomposition 
method and results show that this method is powerful in 
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this field. We expand results of these papers for nonlinear 
optimal problem in the presented paper.  Structure of paper 
is as follows: In section 2, a brief description of optimal 
control will be presented. In section 3, a brief description of 
nonlinear optimal control will be presented. In section 4, 
Adomian decomposition method for solving differential 
equations will be described. In section 5, we apply 
Adomian method to Riccati equation and find solution. 
Then three examples will be presented and method will be 
applied to them and solutions will be compared. Also, we 
apply Adomian Decomposition method to HJB equation 
and find solution. In section 6, we have conclusion and 
suggestion of future works. 

2. Linear Optimal Control  

In this section we have a brief description of optimal 
control. First consider the following linear time-invariant 
system in state space realization [4]:  
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System has no disturbance input. Suppose that A is a 
nn×  matrix, )(tx  a 1×n state space vector, )(ty output 

vector and )(tu is control signal. Our propose is control of 
the above system and finding control signals subject to 
minimizing the following cost function: 
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In this cost function, RQ, and yH are positive definite 
and symmetric with appropriate dimensions. Now we want 
to rewrite ),( yuJ  according to )(tx . Substitution of 

)()( txCty y=  in (2) results: 
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That in (3) we have: 
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That H  and Q  are positive semi-definite and 
symmetric matrices. Therefore, a constrained optimization 
problem is obtained with system dynamic equations 
constrains. With using Lagrange coefficients method and 
adding a constrained equation to cost function (3), we 
convert it to an unconstrained problem as follows: 
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In (4) )(tp is Lagrange coefficient vector or co-state. 
With using calculus of variations and simplifying the 
problem the following equations result: 
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If delete )(tu in (5), we have: 





=
=









=


















−−
−

=






 −

)()(
)0(

;
)(
)(

)(
)(

)(
)(

0

1

ff

T
uu

tHxtp
xx

tp
tx

Z

tp
tx

AQ
BRBA

tp
tx

&

&

 

(6) 

ove system is corresponding Hamiltonian system for (1) 
and (3). Solution of (6) in ftt =  with using state transient 
matrix will be: 




















−−

−−
=









=









 −

)(
)(

)()(

)()(

)(
)(

)(

)(

2221

1211

)(

tp
tx

tttt

tttt

tp
tx

e
tp

tx

ff

ff

ttZ

f

f f

φφ

φφ
        

(7) 

We have: 
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or: 
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If we derive from (9) and substitute from (6) then 
simplify it, we have: 
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This equation called “Riccati Equation” and is a 
nonlinear time-variant differential equation. Because 

0, ≥RQ  and are symmetric, global existence of solutions is 
guaranteed. It has two solutions that positive semi-definite 
solution ( 0)( ≥tP ) is desirable. Optimal control signal 
obtained as follows: 
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2.1. Example 

Consider the following linear scalar time-invariant 
system: 

We want to find )(tu such that minimize the following 
cost Function: 
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1,3,8,10,1,1 ====== RQHtBA fu  
Organize Hamiltonian matrix Z: 
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Using (10), (11) and (12) will result the following 
optimal gain: 
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It is clear that optimal feedback law is a nonlinear time-
variant vector. If time horizon tends to infinity, optimal 
gain will be tending to

9
27  . This is steady state value of 

optimal gain. 

3. Nonlinear Optimal Control 

In this section we have a brief description of nonlinear 
optimal control. First consider the following nonlinear 
system in state space realization:  

 )),(),(()( ttutxatx =&                                      (13) 
In above system, )(tx is state vector, )(tu is control 

signal. Our purpose is control of system and finding control 
signal such that minimize the following cost function: 
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In this cost function, h and g are arbitrary convex 
functions and ft  is final time of system operation. With 
using dynamic programming approach, we introduce a new 
variable as: 
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Suppose that we have: 
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Therefore, we have: 
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According to principle of optimality, we have: 
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Therefore, with using Taylor series we have: 
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If suppose t∆  be small enough then t→τ  and we 
have: 
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By divide both side of (20) by t∆ , we have: 
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This nonlinear time-variant differential equation called 
“H.J.B equation”. We have the following boundary 
condition: 
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By introducing the Hamiltonian function as follows: 
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Therefore by substitution of Hamiltonian function (23) 
in (21), we have: 
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3.1. Example 

Consider the following system:  
)()()( tutxtx +=&  

Suppose that we consider the following cost function for 
this system: 
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Corresponding Hamiltonian function will be: 
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For finding *u , we have: 
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acceptable. Now, by substitution *u  in HJB equation, we 
have the following equation: 
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Our goal in section 6 is solving this equation using the 
Adomian Decomposition method and then finding optimal 
control signal *u . 

4. Adomian Decomposition Method 

In this section we have a brief description of Adomian 
method. Suppose that we have a nonlinear differential 
equation in the form of [1]: 

)(xgNuRuLu =++    (25) 
Where L  is the highest order derivative which assumed 

to be easily invertible, R  the linear differential operator of 
less order than L , Nu  represents the nonlinear parts and g 
is the input part. Using inverse operator 1−L  to both side of 
(25), we obtain: 

)()()( 11 NuLRuLxfu −− −−=                            (26) 
)(xf  will be produced after integration from )(xg  and 

using given initial conditions. In this regard, the nonlinear 
operator )()( uFuN =  is usually represented by an infinite 
series of the so-called Adomian polynomials as follows: 
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The polynomials jA are produced for all of 

nonlinearities so that 0A depends only on 0u , 1A  depends 

on 0u  and 1u , and so on. The modified decomposition 

method defines the solution )(xu  by the series ∑
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And )(xf  can be expressed in the Taylor 
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And so on. 
 

4.1. Example 

Consider the following nonlinear differential equation 
[1]: 

1)0(,02 ==− uu
dt
du  

We use Adomian method for this problem. It is found 
that: 

3
3

2
2

1
1

0

0

1

0

)1(

1)0(

)0(

tu

tu

tLu

uu

ALuuu
n

n
n

n

=

=

==

==

+==

−

∞

=

−
∞

=
∑∑

  
and 

t
tu

n

n

−
== ∑

∞

= 1
1

0

 is the exact solution.  

5. Brief Description of Method 

In this section we describe the application of Adomian 
method for solving Riccati and HJB equations. In 5.1, we 
describe method in linear optimal control case and in 5.2; 
nonlinear optimal control case will be considered. 

5.1. Linear Optimal Control Case 

According to (11), we have a nonlinear matrix equation 
with two solutions. The positive definite solution is 
acceptable. First, we introduce variables tt f −=τ  

and T
uu BRBB 1−=  . Then we have: 
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Now, we can apply the Adomian decomposition method 

mentioned in the previous section to (32) and find the 

solution. Suppose that solution is ∑
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nonlinear part in the form of the below Adomian 
polynomials: 
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Thus we can find the components of solution ( nP ) as: 
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Now, we shall produce nA polynomials for completion 
of method. There is a step by step method for finding  nA  
as: 
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Fig. 1.  Exact and approximated solutions of Riccati equation mentioned 

in example 5-1-1 
 
Thus with substitution (36) in (35) we have the 

following step by step equations: 
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Therefore with computing partial solution nP  and 
calculation of the sum of them, we can find approximated 
response with a desirable accuracy. It is clear that when we 
use more terms of partial solution, the obtained response is 
more accurate. Now, we use the mentioned algorithm for a 
typical example. 

5.1.1. Example 
Consider the following Ricatti equation: 
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If we use Adomian decomposition method for this 
equation, we have: 
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We plot exact and approximated solutions of the Riccati 
equation in figure 1. Also the approximated solution of this 
equation with the discretization method is plotted in this 
figure. From fig.1, it is clear that by increasing the number 
of Adomian partial solutions, accuracy of solution 
increases.  

Now we calculate error of solutions in Sect 8.0= for 
comparing them. We have absolute error in different cases 
as follows:  

- Case1: 0.1360 
- Case 2: 0.0347 
- Case 3: 0.009 
- Case 4(Discretization Method): 0.0443 
This confirms     that    by increasing   the partial     sum   

of the solution, error reduces. Also it is considered that the 
Adomian method is better than the discretization method. 
Because, error of approximation in cases 2 and 3 is less 
than error of discretization method. Now we consider 
another example for this purpose. 
 

5.1.2. Example 
 
Consider the following Ricatti equation: 
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Therefore we consider 1,
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We plot exact and approximated solutions of the Riccati 
equation in Fig. 2. Also the approximated solution of this 
equation with discretization method is plotted in this figure. 

 
Fig. 2.  Exact and approximated solutions of Riccati equation mentioned 

in example 5-1-2 
 
From Fig. 2 it is clear that accuracy of the solution 

increases with using more number of Adomian partial 
solutions in our response. Now, we calculate absolute error 
of solution in Sect 8.0= for comparing them. We have 
absolute error in different cases as follows: 

- Case1: 0.5464 
- Case 2: 0.0771 
- Case 3: 0.0349 
- Case 4(Discretization Method): 0.1402 
This confirms that by increasing partial sum of solution, 

error reduces. Also error in cases 2 and 3 is less than 
relative error in the discretization method. Therefore the 
Adomian method has a better accuracy than discretization 
method. 

Therefore, we used introduced method for solving the 
Riccati equation and considered application of it. Also the 
effect of the number of partial solutions is considered in 
accuracy of the solution. 

 

5.1.3. Example 
 
 Consider the following state space system: 
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Suppose that relevant weight matrixes in riccati equation 
are: 
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Therefore with using proposed method in section 5, we 
have the following results: 
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And so on. 

Therefore we consider 1,
1

0

≥=Φ ∑
−

=

nP
n

i
in as partial 

solution of Riccati equation. So: 
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We plot exact and approximated solution of riccati 
equation ( )(22 tP ) in Fig. 3. Also eigen values of exact and 
approximated solution are plotted in Fig. 4 and 5. From 
Fig. 3, it is clear that accuracy of solution increased by 
adding more terms of adomian’s polynomials. Also from 
Fig.4 and 5, it is considered that eigen values of 
approximated solution of Riccati equation tend to eigen 
values of exact solution of this equation by increasing 
terms of adomian’s polynomials in solution. The values of 
exact and approximated solutions of Riccati equation in 

Sect 2.0= are: 
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And values of eigen values of exact and approximated 
solutions of Riccati equation in Sect 2.0=  are: 
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Fig. 3. Exact and approximated solutions of Riccati equation mentioned in 

example 5-1-3 
 

 
Fig. 4. Exact and approximated 1st eigen value of Riccati equation 

solution mentioned in example 5-1-3 
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This is clear that by increasing the order of 
approximation, we have a more accurate solution. 

5.2. Nonlinear Optimal Control Case 

According to (24) we have a nonlinear, time variant 
differential equation regard to ),( txV . First, we introduce 
variable tt f −=τ . Therefore, we have: 

),),,,(,( * ττ
τ xx VVxuxHV
=

∂
∂                        (38) 

and consequently, initial condition will be as follows: 
)0),0(()0),0(()0),0((* xhxVxJ ==                   (39) 

Let now
ττ ∂
∂

=L , so we have:  

),),,,(,( * τττ xx VVxuxHVL =                       (40) 

If we find *u from (23), we can suppose that: 
),,(),,(* ττ xVfVxu xx =                                (41) 

With substitution (41) to (40), we have: 
),),,,(,( τττ xx VVxfxHVL =                          (42) 

Therefore, we can rewrite (42) as follows: 
)()( xx VNVRVL +=τ                                      (43) 

 
Fig. 5. Exact and approximated 2nd eigen value of Riccati equation solution 

mentioned in example 5-1-3 
 
That )( xVR is linear part and )( xVN is nonlinear part 

of ),),,,(,( ττ xx VVxfxH . We apply inverse operator 

τ
τ

τ dL ∫=−

0

1 [.] to both side of (43). Therefore, we have: 

)()( 111
xx VNLVRLVLL −−− += ττττ                     (44) 

Then, we consider ),( τxV as follows: 

∑
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),( nVxV τ                                              (45) 

Also, the nonlinear term of (44) will be equate to∑
∞

0
nA , 

that nA are Adomian polynomial and shall be computed 
according to nonlinear part format. By substitution of 
mentioned terms in (44), we have: 
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In (46), 0V identified as follows: 
)0),0((0 xhV =                                                (47) 

By using (28), we can compute iV as follows: 
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And Adomian polynomial nA can be compute as 
follows: 
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(49) 

And so on. 
Therefore, ∑

=

=
n

i
in VxV

0
),( τ is partial solution of HJB 

equation and we can improve accuracy of solution by 
increasing the number of partial solution. 

5.2.1. Example 
Suppose that we have the following HJB equation: 
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 If we use mentioned method for this equation, we have: 
22 ))(4/1( xt VxVL −=  

And then, we have: 
21211 ))(4/1( xtttt VLxLVLL −−− −=  

Since the left side is ),()0,(),( txVxVtxV =− , we have: 
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We let ∑
=

=
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i
in VtxV

0

),( , that txxLV t
221

0 == − . It is clear 

that nonlinear part is 2)( xV . Therefore, we can compute 
Adomian polynomials using (49) as follows: 
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And so on. Consequently, we have: 
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So that 

we can compute closed form for solution as follows: 

2/,tanh),(

...)15/23/(),(
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ttxtxV
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And therefore we calculated solution of HJB equation 
with using mentioned method. 

6. Conclusion 

We introduced a new method for solving Riccati and 
HJB equations using Adomian Decomposition method. It 
was considered that increasing in number of partial 

solutions causes decreasing in error of approximated 
solution. For future works, we can use this method with 
some modification for solving HJI equations. Also we can 
use this method for analyzing singular perturbation 
systems. 
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