Journal of Computer & Robotics 1 (2008) 1-8

Computer
& Robotics

Solving linear and nonlinear optimal control problem using modified
adomian decomposition method

Ahmad Fakharian®, Mohammad Taghi Hamidi Beheshti®

“Control Group, Department of Electrical & Computer, Faculty of Engineering, Tarbiat modarres University, Tehran, Iran

Received 2007 November; revised 2008 April; accepted 2008 May

Abstract

First Riccati equation with matrix variable coefficients, arising in optimal and robust control approach, is considered. An analytical
approximation of the solution of nonlinear differential Riccati equation is investigated using the Adomian decomposition method. An
application in optimal control is presented. The solution in different order of approximations and different methods of approximation will
be compared respect to accuracy. Then the Hamilton-Jacobi-Belman (HJB) equation, obtained in nonlinear optimal approach, is considered
and an analytical approximation of the solution of it using the Adomian decomposition method is presented.
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1. Introduction

Riccati equations arise in optimal and robust control
theory and it is a nonlinear, time-variant matrix coefficient
equation. For solving this equation no analytical method
exists. A method for solving this equation numerically is
discretization of it in time domain and substitution of
derivation operator with discrete approximation and finding
solution in each iteration. But this method is very sensitive
to sample time Ar in discretization and may be unstable for
some AT Also, Hamilton-Jacobi-Belman equations
obtained in nonlinear optimal control and for solving them,
two approaches exist. In first approach, we discrete given
system and with using dynamic programming find optimal
control signal. In second approach, we wuse given
continuous system and reach to HJB equation. Then use
approximation for solving this equation and finding optimal
control signal. In this paper we start with linear, time-
invariant system and apply optimal control to this system.
With using calculus of variations, we reach to a Riccati
equation. Then we apply Adomian decomposition method
for analytical solving this equation and compare solution of
this method with different order approximations. Then we

consider a nonlinear system and apply nonlinear optimal
control to this system. With using dynamic programming,
we reach to a HIB equation. Finally, we apply the Adomian
Decomposision method for solving this equation.

Adomian decomposition method is a approximated
approach for solving nonlinear differential equations by
substitution of nonlinear parts of equation with Adomian
polynomials and use a step by step method for finding
solutions [1]. This method is a powerful approach in
nonlinear differential equations and accuracy of it depends
on number of used partial solutions. Also, solution of this
method has a fast convergence to exact solution generally.
In recent years, some modifications on this method have
been presented [5,6]. Modification of method is in quality
of computation of Adomian polynomials. These
modifications affects on convergence of method. In some
papers [2,3], Adomian decomposition method used in
nonlinear optimal control and non-quadratic cost functions
optimal control. In [7,8,9] modified Adomian
Decomposition method has been used in linear optimal
control. In these papers, linear optimal problem formulated
and solved by using modified Adomian Decomposition
method and results show that this method is powerful in
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this field. We expand results of these papers for nonlinear
optimal problem in the presented paper. Structure of paper
is as follows: In section 2, a brief description of optimal
control will be presented. In section 3, a brief description of
nonlinear optimal control will be presented. In section 4,
Adomian decomposition method for solving differential
equations will be described. In section 5, we apply
Adomian method to Riccati equation and find solution.
Then three examples will be presented and method will be
applied to them and solutions will be compared. Also, we
apply Adomian Decomposition method to HJB equation
and find solution. In section 6, we have conclusion and
suggestion of future works.

2. Linear Optimal Control

In this section we have a brief description of optimal
control. First consider the following linear time-invariant
system in state space realization [4]:

X(0) = Ax(t)+ Bu(t) . x(0)=x, |
¥ =C,x(0) M

System has no disturbance input. Suppose that A is a
nxn matrix, x(r) a nxlstate space vector, y(r)output
vector and y(r)is control signal. Our propose is control of

the above system and finding control signals subject to
minimizing the following cost function:

1
J(u,y) = EyT(tf)Hyy(t,,») +
- ()
21 0100,y +u” () Rute))de
In this cost function, Q, Rand H  are positive definite

and symmetric with appropriate dimensions. Now we want
to rewrite J(u,y) according tox(#). Substitution of

y()=C x(t) in (2) results:

J(u,x) = %xr(tf)Hx(tf) +

3)
%L/ (" ()Ox(t) +u” () Ru(?))dt
That in (3) we have:
H=C[H,C,
o= C}T’Q}’Cy
That # and Q are positive semi-definite and

symmetric matrices. Therefore, a constrained optimization
problem is obtained with system dynamic equations
constrains. With using Lagrange coefficients method and
adding a constrained equation to cost function (3), we
convert it to an unconstrained problem as follows:

J,(xatt, p() = J (x,0) +

[ . @
, P &) (Ax(¢) + B u(t) — x(¢))dt

2/

In (4) p(r)is Lagrange coefficient vector or co-state.

With using calculus of variations and simplifying the
problem the following equations result:

Pl =x"(t,)H
py=-x"0-p ()4

- &)
u(ty=-R"B, p(t)
£(£) = Ax(t) + Bu(t)
If delete u(¢)in (5), we have:
i) (4 —B,R"'B" Y x(t)
(p(z)]‘[—g -4 ][p(,)j
(6)

7Z{x(t)]  [x(0)=x,
) ) =Hx())
ove system is corresponding Hamiltonian system for (1)

and (3). Solution of (6) in 7=¢, with using state transient

matrix will be:

xip)) ez(,f,,)[x(t)]
pty) p(0)

B Pty —1) oty =0 Y x(t) )
B [cﬁzl(z =0 by —r)](p(t)j
We have:
P =[pt, ~0) - Hp (1, -] .
(16, =)= 41, - ) 5)
or.
p(t)=P(t)x(t) 9)
That:
P() =, -0 - Hp(t, -] x (10

[H¢|1(tf‘ 7t)7¢21(l/ 7[)]

If we derive from (9) and substitute from (6) then
simplify it, we have:

{— P(t)= P(t)A+ A" P(t)+ O — P()B,R™'B] P(1)

)]

This equation called “Riccati Equation” and is a
nonlinear time-variant differential equation. Because
0,R>0 and are symmetric, global existence of solutions is

P(t;)=H

guaranteed. It has two solutions that positive semi-definite
solution (p()>0) is desirable. Optimal control signal

obtained as follows:
U (1) = =R ™' By P(0)x(t) = =K (1)x(2)
K(t)=R'BTP(r)

(12)

2.1. Example

Consider the following linear scalar time-invariant
system:
We want to find u(¢) such that minimize the following

cost Function:
J= l8x2(10)+1J']0(3x2(t)+u2(z))dz
) 2Jd

First we have:
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A=1,B, =11, =10,H =8,0=3,R =1

Organize Hamiltonian matrix Z:

2", 7))

State transient matrix obtained as:

ieZt +le—2t _1621 +le—2t

oz _| 4 4 4 4
_EeZt +Ee—2t leZz +ie—2t

4 4 4

Using (10), (11) and (12) will result the following
optimal gain:

2762(104) + 5@—2(10—1)

K@) = 0¢2(10-1) _ 5,-2(10-1)

It is clear that optimal feedback law is a nonlinear time-
variant vector. If time horizon tends to infinity, optimal
gain will be tending to27 . This is steady state value of
optimal gain. 9

3. Nonlinear Optimal Control

In this section we have a brief description of nonlinear
optimal control. First consider the following nonlinear
system in state space realization:

x(1) = a(x(0),u(?),1) 13)

In above system, x(f)is state vector, u(?)is control
signal. Our purpose is control of system and finding control
signal such that minimize the following cost function:

= b))+ [ ga@uc), 0dr (14)

In this cost function, h and g are arbitrary convex
functions and 7, is final time of system operation. With

using dynamic programming approach, we introduce a new
variable as:

J(x(0), 1,u(2)) = h(x(t,),1,) +

1ST<ty

ij g(x(7),u(r),7)dr (15)

i<t
Suppose that we have:
V(x(0),0) =J " (x(1),1)

) %’;’? {"(x(z D)+ [ gl u(), T)d‘L’} (16)
Therefore, we have:
V(x(t).0) = Min %(x(tf),z,) +f Y (@) ule), 7)dT +
t<r<t, (17)
[’ g(x(r),um,r)dr}

According to principle of optimality, we have:
V(x(0).1) =

A/{l_? {[ﬁm g(x(0),u(7),7)dt +V (x(t + At),t + At)} (18)
1<T<t+At

Therefore, with using Taylor series we have:

3/

V(s(0.0)= Min {jA 2(x(2),u(2),7)dT + V (x(2), 1) + %/Az +
1STSt+ A1

(19)
%V[x(z + A — x()] + H.O.T}
X

If suppose At be small enough then 7 —>¢ and we
have:

V(x,t)= A/{i)n{gAt +V(x,t)+ %/Az +
(20)

s a(x(®),u(t),t)At + O(At)}
ox

By divide both side of (20) by Af, we have:
—&:ug#umwm@+2}umwm@} 1)

This nonlinear time-variant differential equation called
“H.J.B equation”. We have the following boundary
condition:

T @)t ) =Vttt ) = hx(ep)tp) - (22)
By introducing the Hamiltonian function as follows:

H o) = ) + )
X

We have:

H(x,u' V1) = ]\/{i? H(x,u,V, 1) (23)
u(t

Therefore by substitution of Hamiltonian function (23)
in (21), we have:
_a_V = H(xau*(stxat)anst)

5 24)

3.1. Example

Consider the following system:

x(t) = x(t) +u(t)

Suppose that we consider the following cost function for
this system:

1, Tl ,
J==—x(T +j —u” (t)dt
[ 0
Corresponding Hamiltonian function will be:

H(x,u,V t)= iuz(t) + V. (x,0)[x +u]

For findingu” , we have:

aﬁ=lu +V.(x,1)=0
ou 2

Therefore we obtain:
u' =2V, (x,1)
°H 1 .

Because 5 = >0, u is a
ou

minimum and

acceptable. Now, by substitution #" in HJB equation, we
have the following equation:

—V, =V +V.x ; V(x(T).T)= %xz (T)
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Our goal in section 6 is solving this equation using the
Adomian Decomposition method and then finding optimal
control signal u" .

4. Adomian Decomposition Method

In this section we have a brief description of Adomian
method. Suppose that we have a nonlinear differential
equation in the form of [1]:

Lu+ Ru+ Nu=g(x) (25)

Where L is the highest order derivative which assumed
to be easily invertible, R the linear differential operator of
less order than L , Nu represents the nonlinear parts and g
is the input part. Using inverse operator L' to both side of
(25), we obtain:

u=f(x)— L (Ru)— L (Nu) (26)

f(x) will be produced after integration from g(x) and
using given initial conditions. In this regard, the nonlinear
operator N(u)=F(u) 1S usually represented by an infinite

series of the so-called Adomian polynomials as follows:

Fu)=) 4 27)
j=0
The polynomials 4 are produced for all of

nonlinearities so that A4, depends only onu,, 4, depends

on u, andu;, and so on. The modified decomposition

method defines the solution u(x) by the series,, :iun,

n=0

that components ug,u,,u,,.. are usually determined
recursively from the following equations:
ug = fo(x)
{ . - (28)
Uiy = fin(¥) =L (Ru) =L (4;)
And f(x) can be expressed in the Taylor
series 7y _ sz(x) . We have:
k=0
Ay = f(ug)
4 =1, f ()
1= %1 duo . 0
d ul d?
Ay =u, Tf(uo) + (5= f (ug)
) 2! d”(]
P (29)
Ay =us (T)f ()
u
d? . Podd
() [ (0) + (’;—‘lxﬁ)/wn)
And so on.
4.1. Example

Consider the following nonlinear differential equation

[1]:

4/

——u?=0
dt

We use Adomian method for this problem. It is found
that:

u(0)=1

u= Zun =u(0) +L’IZA"
n=0 n=0

uy =u(0)=1

u =L =1t

Uy =12

uy =1°

and ,, _ i = 1 ! s the exact solution.
-t

n=0
5. Brief Description of Method

In this section we describe the application of Adomian
method for solving Riccati and HJB equations. In 5.1, we
describe method in linear optimal control case and in 5.2;
nonlinear optimal control case will be considered.

5.1. Linear Optimal Control Case

According to (11), we have a nonlinear matrix equation
with two solutions. The positive definite solution is

acceptable. First, we introduce variables 7=1,—¢
and B=B,R"'B! . Then we have:
P(r) = P(r)A+ A" P(r) + Q- P(z) BP(r) (30)
P0)=H

Let nowL:i,

dr
is the nonlinear operator. With substitution of mentioned
parameters, (30) becomes:

so we have LP=P and NP=PBP, that N

P=PA+A"P+0- NP (31)
And in terms of inverse operator L™ = IT[.]dx :
0
P=L'(PA+A"P)+ L'0-L"'NP (32)

Now, we can apply the Adomian decomposition method
mentioned in the previous section to (32) and find the

solution. Suppose that solution is p:i p, and writing
n=0

nonlinear part in the form of the below Adomian

polynomials:

NP = Z 4, (33)
n=0
Therefore (32) becomes:
ipn :H+L’l(iPnA+
n=0 n=0 (34)

ATiPnHL*Q—L*Zw:A,,
n=0

n=0
Thus we can find the components of solution ( P,, ) as:
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B=H+L'Q
B=L"(PA+A"R)-L"4,
P=L'(RA+ATR)- L4, (35)
By =L (PA+A4"P,_)-L"4
Now, we shall produce A4, polynomials for completion

n-1

of method. There is a step by step method for finding 4,
as:

A, = RyBF,

4, = RBF, + {,BR

A, = P,BF, + P,BP, + F,BP,

n
‘4n = z 1?13131—i9 nz O
i=0

0.8 T T T

—— Exact Solution e

— — 1st Order Solution e N
07— 2nd Order Solution L7t

—— 3rd Order Solution R

o
0.6/ ¢ Discretization Method /.:_,.' ~
' 3 ) /
2
05 ol .
-
o
2 o 1
0
..'/
0.3} oS E
R
o
0.2 q
0.1 B
0 . . . . . . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

t(Sec)

Fig. 1. Exact and approximated solutions of Riccati equation mentioned
in example 5-1-1

Thus with substitution (36) in (35) we have the
following step by step equations:
Ry =H+L'Q
P =L"(PyA+4"P)-L"P,BP,

Py =L"(PA+A"R)-L"{P,BP, + RBR,} 37)

n—1
P =L'(P_Ad+4"P,_)-L" {ZP,.BPM. } n>1
i=0
Therefore with computing partial solution P and

calculation of the sum of them, we can find approximated
response with a desirable accuracy. It is clear that when we
use more terms of partial solution, the obtained response is
more accurate. Now, we use the mentioned algorithm for a
typical example.

5.1.1. Example
Consider the following Ricatti equation:
P()=—P*(t)+1
{P(O) =0
In this case we have:
A=1,B=-1,0=1H=0
Exact solution of this equation is:

5/

e -1

P(t) =
e +1

If we use Adomian decomposition method for this
equation, we have:
Py=H+L"(Q)=t

P =L"(PyA+ A" P))+ L' PyBPy = L™ (-1?) = —%ﬁ
Py =L'(PA+A"P)+ L (PBP, +POBP]):%t5

. n-l .
Therefore we consider ¢ - z P, nx13s partial
i=0
solution of Riccati equation. So:
O, =t
2 13
D, =t+t"——t
3

(OB =t+12 -¢—lt3 —gt4 +£

3 3 15
We plot exact and approximated solutions of the Riccati
equation in figure 1. Also the approximated solution of this
equation with the discretization method is plotted in this
figure. From fig.1, it is clear that by increasing the number
of Adomian partial solutions, accuracy of solution

increases.

t5

Now we calculate error of solutions in ! = 0.85ec for
comparing them. We have absolute error in different cases
as follows:

- Casel: 0.1360

- Case 2: 0.0347

- Case 3: 0.009

- Case 4(Discretization Method): 0.0443

This confirms  that by increasing the partial sum
of the solution, error reduces. Also it is considered that the
Adomian method is better than the discretization method.
Because, error of approximation in cases 2 and 3 is less
than error of discretization method. Now we consider
another example for this purpose.

5.1.2. Example

Consider the following Ricatti equation:
P(t)=2P(t) - P*(1) +1
{P(O) =0
In this case we have:
A=1,B=-1,0=1,H=0
Exact solution of this equation is:
V2-1
e
If we use Adomian decomposition method for this
equation, we have:

P@i)=1+ \/Etanh(\/at + %Iog(

Py=H+L'(Q)=t
B =L"(PA+A"P)+ L' PBRy = L' 1)+ L' (~+?) = 1? —%ﬁ

5

Py =L (BA+A"B)+ L (PBP, + P,BP) = %P 2442,

3 15
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. n-l .
Therefore we consider ¢ - Z P, n>1as partial
i=0

solution of Riccati equation. So:
O, =t
2 1 3
DO, =t+t"——t
3

3_2

d)3:t+tz+lt 22

t+
3015
We plot exact and approximated solutions of the Riccati
equation in Fig. 2. Also the approximated solution of this

equation with discretization method is plotted in this figure.

[5

15

T T
—— Exact Solution
— — 1st Order Solution
—— 2nd Order Solution
—— 3rd Solution

« Discretization Method

P(®)

0.5

0.5 0.6 0.7

0 I I I
0.3

.
0.4
t(Sec)

0.8

Fig. 2. Exact and approximated solutions of Riccati equation mentioned
in example 5-1-2

From Fig. 2 it is clear that accuracy of the solution
increases with using more number of Adomian partial
solutions in our response. Now, we calculate absolute error
of solution in ¢=0.8Sec for comparing them. We have
absolute error in different cases as follows:

- Casel: 0.5464

- Case 2: 0.0771

- Case 3: 0.0349

- Case 4(Discretization Method): 0.1402

This confirms that by increasing partial sum of solution,
error reduces. Also error in cases 2 and 3 is less than
relative error in the discretization method. Therefore the
Adomian method has a better accuracy than discretization
method.

Therefore, we used introduced method for solving the
Riccati equation and considered application of it. Also the
effect of the number of partial solutions is considered in
accuracy of the solution.

5.1.3. Example
Consider the following state space system:

s,

Suppose that relevant weight matrixes in riccati equation
are:

6/

H_o 0 _R_1 0
o o’Q_ o1

Therefore with using proposed method in section 5, we
have the following results:

. t 0
R=H+LQ=|

-1 T -1 0 2
B =L"(PyA+A"P))+L"'PBP, =
270
P,=L'(P A+ A" P)+L"'(PBP,+ P,BP)
4¢3 05,30
_ 3 4
Dp, 30 42 2
30 4 15
And so on.
n—1

Therefore we consider @, :ZE
i=0

n>1as partial

solution of Riccati equation. So:

d)—P—t 0
0=, [

t 2t
D, =P +P = |
R [ YER Y P L
3
O, =FKRL+A+hH

10, 3,

t+47 200+ — 42y
3 4

2w+ 0,30 o Bt 2
3 4 3 3 15
We plot exact and approximated solution of riccati

equation ( P, (¢) ) in Fig. 3. Also eigen values of exact and

approximated solution are plotted in Fig. 4 and 5. From
Fig. 3, it is clear that accuracy of solution increased by
adding more terms of adomian’s polynomials. Also from
Fig4 and 5, it is considered that eigen values of
approximated solution of Riccati equation tend to eigen
values of exact solution of this equation by increasing
terms of adomian’s polynomials in solution. The values of
exact and approximated solutions of Riccati equation in
t =0.28ec are:

P _ (0.2484 0.1230]
=0.2 Sec 0.1230 0.3326
Y _ [0.2000 0.0800)
1=0.28ec | 0.0800 0.2827
o] _ (0.2320 0.1079}
t=028ec | 0.1079 0.3168

And values of eigen values of exact and approximated
solutions of Riccati equation in ¢=0.2Sec are:
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0.35

—— Exact Solution
— — 2nd Order Solution
0.3F | — 3rd Order Solution

0.25¢

021 z 4

P22(t)
\

0.15r

0.1r = 1

0 I I I I I I I I I
0 0.02 004 0.06 008 01 012 014 016 018 02

t(Sec)

Fig. 3. Exact and approximated solutions of Riccati equation mentioned in
example 5-1-3

0.18

—— Exact Solution
— — 2nd Order Solution
—— 3rd Order Solution

0.16 -

0.14 1

0.12r 2 4

Lambdal(t)
o o
o o o
(2] o =
AY
. . .

o

o

b
L

Ve

o

Q

[N}
L

7
0 I I I I I
0 0.02 0.04 006 0.08 0.1
t (Sec)

I I I I
0.12 014 016 018 0.2

Fig. 4. Exact and approximated 1st eigen value of Riccati equation
solution mentioned in example 5-1-3

0.1609
0.4209

0.1513]

/,L(P(t))‘t:O.ZSeC :(

/1((1)1 (t))‘f: 0.2 Sec = (033 14

2@, 0) (01585
(@, (1) =025 ~ | (0.3903
This is clear that by increasing the order of

approximation, we have a more accurate solution.
5.2. Nonlinear Optimal Control Case

According to (24) we have a nonlinear, time variant
differential equation regard toV (x,¢). First, we introduce

variable T =1¢ =t Therefore, we have:

o _ H(x,u' (x,V,,7),V,.,7)
or

and consequently, initial condition will be as follows:
J" (x(0).0) =V (x(0),0) = h(x(0).0) (39)

(38)

Letnow [ = ai , So we have:
T

71

LV =H(@x,u (x,V,,7),V,,7) (40)
If we find " from (23), we can suppose that:
u (6,Vy,7) = f(Vy,x,7) (41)
With substitution (41) to (40), we have:
LV=H(x,f(x,V,,1),V,,7) (42)
Therefore, we can rewrite (42) as follows:
LV=RV,)+N¥,) 43)
0.45
—— Exact Solution
0.4 | — — 2nd Order Solution ]
—— 3rd Order Solution /
0.35F 74
s
0.3f A
e 7 e ’
< o02s) 7 B
2 7.7
E 0.2} e ,
3 S
0.15f 27 N
0.1t -~ ,
0.05F T
0O 0.62 0.64 0.‘06 0.‘08 O.‘l O.‘].Z O.‘l4 O.‘lG O.‘lB 0.2

t (Sec)

Fig. 5. Exact and approximated 2™ eigen value of Riccati equation solution
mentioned in example 5-1-3

That R(v,)is linear part and n(,)is nonlinear part

of H(x, f(x,V,,7),V,,7). We apply inverse operator

L= I T[.]dr to both side of (43). Therefore, we have:
0

L'LV=L'RV)+L'NV,) (44)
Then, we consider V(x,7) as follows:
Vnn)=Y v, (45)
0

Also, the nonlinear term of (44) will be equate to Z A4, ,
0

that A, are Adomian polynomial and shall be computed

according to nonlinear part format. By substitution of
mentioned terms in (44), we have:

iV,, =V, +L;]LXR(i V)+L; (iAn) (46)
0 0 0

In (46), V,identified as follows:

Vo = h(x(0),0) 47)
By using (28), we can compute Vl as follows:
N=L'LRVy+ L4
V,=L'L_RV, + L4
-l -1
Vy=L'L.RV, +L;' 4 48)

Vn+1 = L;]LVRVn +L;1Ar

n
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And Adomian polynomial A4,can be compute as

follows:
4y =NV,)
d
4= KX(M)N(VOX)
d W d
4 :I/ZxdT/()XN(V()x)‘*'(j)(T%)N(%X) (49)
d
&= st(ﬁm)N(Vox)+
d2 V3 d3
KX%X(T%)N(%XH(ﬁ)(TV&)N(%x)
And so on.

Therefore, vV (x, T):ZVi is partial solution of HJB
equation and we can improve accuracy of solution by
increasing the number of partial solution.

5.2.1. Example
Suppose that we have the following HIB equation:
{V, =2 =14V,
V(x,0)=0
If we use mentioned method for this equation, we have:
LV =x*-1/4),)*
And then, we have:
L'LY =L'x* - L' 1/4)(V,)*
Since the left side is V' (x,#)—V (x,0) =V (x,t) , we have:

>,
n=0

n
We letVn(x,t):sz, thatv, = L;'x* =x%. It is clear
i=0

=V -(UHL'Y " 4,
i=0

that nonlinear part is (Vx)2 . Therefore, we can compute
Adomian polynomials using (49) as follows:
Ay = V02
A =2V,
Ay =V 42V,
And so on. Consequently, we have:
V, ==L (Vo) = -1/ 4L (4x*t?) = —x*1* /3
V, =—(1/HL' 2V W) = (2/15)x%
Vy==( L Vi +20.05,)
we can compute closed form for solution as follows:
Vx,t)=x*(t—13/3+262/15—..)
|t| <m/2
And therefore we calculated solution of HIB equation
with using mentioned method.

So that

V(x,t)=x*tanht,

6. Conclusion

We introduced a new method for solving Riccati and
HJB equations using Adomian Decomposition method. It
was considered that increasing in number of partial
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solutions causes decreasing in error of approximated
solution. For future works, we can use this method with
some modification for solving HJI equations. Also we can
use this method for analyzing singular perturbation
systems.
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