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Abstract 
 

In this study, an optimization algorithm based on the generalized Laguerre polynomials (GLPs) as the basis functions 

and the Lagrange multipliers is presented to obtain approximate solution of nonlinear fractional optimal control problems. 

The Caputo fractional derivatives of GLPs is constructed. The operational matrices of the Caputo and ordinary derivatives 

are introduced. The established scheme transforms obtaining the solution of such problems into finding the solution of 

algebraic systems of equations by approximating the state and control variables using the mentioned basis functions. The 

method is very accurate and is computationally very attractive. Examples are included to provide the capacity of the 

proposal method. 
 

Keywords: Generalized Laguerre polynomials; Nonlinear fractional optimal control problems; Optimization algorithm; 

Operational matrix; Coefficients and parameters. 

1.Introduction 

 

Optimal control problems (OCPs) have recently been 

investigated in few studies. Postavaru and Toma [1] 
presented a computational method based on the 

fractional-order hybrid of block-pulse functions and 

Bernoulli polynomials for solving Fractional optimal 

control problems (FOCPs). Heydari and Razzaghi [2] 

considered the piecewise Chebyshev cardinal 

functions as an appropriate family of basis functions 

to construct a numerical method for solving a 

category of FOCPs. 

Tricaud and Chen [3] introduced rational  

approximation for solving a wide class of FOCPs. Li 

et al. [4] investigated a spectral Petrov-Galerkin 

method for an OCPs governed by a two-sided space-

fractional diffusion-advection-reaction equation. 

Wang et al. [5] used linear conforming finite element 

method in space and piecewise constant 

discontinuous Galerkin method in time for a control 

constrained distributed OCPs subject to a time 

fractional diffusion equation with non-smooth initial 

data. Kheyrinataj and Nazemi [6] described an 

artificial intelligence approach using neural networks 

to solve a class of delay OCPs of fractional order with 

equality and inequality constraints. Hoseini et al. [7] 
applied an approximate technique based on fractional 

shifted Vieta-Fibonacci functions for solving a type 

of FOCPs. Mohammadi and Hassani [8] used 

generalized polynomials for solving two-dimensional 

variable-order FOCPs. Zaky [9] applied 

a Legendre collocation method for distributed-order 

FOCPs. Lima [10] investigated the solution of  

FOCPs by using the orthogonal collocation method 

and the multi-objective optimization stochastic fractal 

search algorithm. Fakharian and Hamidi Beheshti 

[11] used Adomian decomposition method for 

solving linear and nonlinear OCPs. Hadizadeh and 

Amiraslani [12] constructed a numerical algorithm 

based on Adomian decomposition method for the 

nonlinear feedback operators for the time-variant 

optimal control with nonquadratic criteria. Fakharian 

et al. [13] applied Adomian decomposition method to 

solve the Hamilton-Jacobi-Bellman equation arising 

in nonlinear optimal problem. Phuong Dong et al. 

[14] presented a general formulation for the OCPs to 
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a class of fuzzy fractional differential systems relating 

to SIR and SEIR epidemic models. Also, they 

investigated these epidemic models in the uncertain 

environment of fuzzy numbers with the rate of change 

expressed by granular Caputo fuzzy fractional 

derivatives of order βϵ[0, 1]. Li et al. [15] investigated 

a sensitivity analysis of OCPs for a class of systems 

described by nonlinear fractional evolution inclusions 

on Banach spaces. Nemati et al. [16]  applied the Ritz 

spectral method to solve a class of FOCPs. The 

developed numerical procedure is based on the 

function approximation by the Bernstein polynomials 

along with fractional operational matrix usage. 

Ghanbari and Razzaghi [17] introduced an alternative 

numerical method based on fractional-order 

Chebyshev wavelets for solving variable-order 

FOCPs. Marzban [18] provided a new framework 

based on a hybrid of block-pulse functions and 

Legendre polynomials for the numerical examination 

of a special class of scalar nonlinear FOCPs involving 

delay. Rezazadeh and Avazzadeh [19] formulated a 

numerical method based on using shifted discrete 

Legendre polynomials and collocations method to 

approximate the solution of two-dimensional OCPs 

with a fractional parabolic partial differential 

equation constraint in the Caputo type. Hassani et al. 

[20] proposed hybrid method based on the 

transcendental Bernstein series and the generalized 

shifted Chebyshev polynomials for two dimensional 

nonlinear variable order FOCPs. 

The optimization method plays a significant role in 

signal and image processing, control theory, physics, 

engineering, chemistry and mathematics. Heydari and 

Atangana [21] proposed an optimization scheme 

based on the Lagrange multipliers scheme for solving 

variable-order space-time mobile-immobile 

advection-dispersion equation involving derivatives 

with non-singular kernels. Pakdaman et al. [22] 
approximated the solution of fractional differential 

equations by using the fundamental properties of 

artificial neural networks for function approximation. 

Soradi-Zeid [23] introduced an optimization 

algorithm, called King, for solving variable order 

FOCPs. Heydari and Avazzadeh [24] applied an 

optimization method through the Legendre wavelets 

for solving variable-order fractional Poisson 

equation. Dehestani et al. [25] used fractional-Lucas 

optimization method for evaluating the approximate 

solution of the multi-dimensional fractional 

differential equations. S M et al. [26] introduced an 

optimization-based physics-informed neural network 

scheme for solving fractional differential equations. 

Hassani et al. [27] solved the nonlinear systems of 

fractional-order partial differential equations using an 

optimization technique based on generalized 

polynomials. Dahaghin and Hassani [28] proposed an 

optimization method based on the generalized 

polynomials for nonlinear variable-order time 

fractional diffusion-wave equation. Hassani et al. [29] 
proposed an optimization method standing on a basis 

formed by the transcendental Bernstein series for 

solving nonlinear variable-order fractional functional 

boundary value problems. Alam Khan et al. [30] used 

bat optimization algorithm for computing the 

approximate solution of fractional order Helmholtz 

equation, with Dirichlet boundary conditions. Idiri et 

al. [31] used the parametric optimization method to 

find optimal control laws for fractional systems. 

Kheyrinataj and Nazemi [32] applied fractional 

Chebyshev functional link neural network-

optimization method for solving delay FOCPs with 

Atangana-Baleanu derivative. 

In the current paper we focus on a class of FOCPs 

with the Caputo fractional derivative in a dynamical 

system and propose a new direct computational 

method based on the new families of basis functions 

namely Generalized Laguerre polynomials (GLPs) to 

obtain an approximate solution for them. The problem 

formulation is as follows: 
 

min J [𝑤] = ∫ ,
1

∘
F    (𝑡, 𝑣(𝑡), 𝑤(𝑡))𝑑𝑡 (1) 

 

with the fractional dynamical system: 
 

𝐶
0
𝐷
𝜗
𝑡
𝑣(𝑡) = G   (𝑡, 𝑣(𝑡), 𝑤(𝑡)),  (2) 

𝑞 − 1 < 𝜗 < 𝑞 , 𝑡𝜖[0,1],  

 

and the initial conditions: 
 

𝑣(0) = 𝑎0,  

  (3) 
𝑣 َˊ(0) = 𝑎1, … , 𝑣

(𝑞−1)(0) = 𝑎𝑞−1 , 

 

where 𝑞 is a positive integer, 𝑎𝑗 for 𝑗 = 0 , 1 , … , 𝑞 − 1 

are real constants, F and G are continuous functions, 

assuming that the function F (𝑡, 𝑣(𝑡), 𝑤(𝑡)) is considered 

bounded below and 
𝐶
0
𝐷
𝜗
𝑡
𝑣(𝑡) denotes the fractional 

derivative of order ϑ in the Caputo sense. 

The present paper is devoted to proposing an 

optimization algorithm based on new basis functions, 

generalized Laguerre polynomials (GLPs), for 
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solving a family of FOCPs. First, the functions 𝑣(𝑡) 

and 𝑤(𝑡) are approximated based on the GLPs in 

terms of the unknown coefficients and parameters. 

We generate a new operational matrices with the help 

of GLPs and the Caputo derivative. Then, by 

substituting the estimated values of 𝑣(𝑡) and 𝑤(𝑡) into 

the cost functional J, an algebraic equation in terms 

of the unknown coefficients and parameters is 

achieved to be optimized. Imposing the necessary 

condition for optimality on the mentioned equation, a 

system of algebraic equations is obtained. By solving 

this system, the unknown coefficients are calculated. 

The method is illustrated by means of some examples 

and the numerical approximations compared with the 

analytical solutions. The method is simple to 

implement and accurate. 

The rest of the paper is organized as follows. In the 

next section, a brief overview of the fractional 

calculus, some basic definitions of Caputo fractional 

derivative, Laguerre polynomials (LPs), GLPs, 

function approximation and convergence analysis are 

given. In Section 3, an optimization algorithm is 

offered for solving FOCPs. Section 4 is devoted to 

several examples to display the applicability and the 

efficiency the proposed method. Section 5 provides 

the conclusion. 
 
 

2.Fundamental Definition 
 

Here, we provide a brief review of fractional 

calculus, LPs and GLPs which shall be used in the 

proposed scheme. 

2.1.Caputo Fractional Derivative 

 

Definition 2.1. (see [33 − 35] and references there 

in) Let 𝑢(𝑡) be differentiable function, and let 

𝜗𝑖𝜖(𝑛 − 1, 𝑛] be the order of derivative. Then Caputo 

fractional derivative is defined as follows: 

 
 

𝐶
0
𝐷
𝜗
𝑡
𝑢(𝑡) = 

{
 
 

 
 1

Γ(𝑛 − 𝜗𝑖)
∫ (𝑡 − 𝜁)(𝑛−1−𝜗𝑖)𝑢(𝑛)(𝜁)𝑑𝜁,
𝑡

∘

 

𝑑𝑛𝑢(𝑡)

𝑑𝑡𝑛
                                                       

 

 

 
 

𝑛 − 1 < 𝜗𝑖 < 𝑛, 
 
 

 (4) 
𝜗𝑖 = 𝑛, 

 

where Γ(. ) denotes the gamma function. 

Collary 2.2. From the definition above for 𝑘ϵℕ⋃{0}, 

we have 

𝐶
0
𝐷
𝜗
𝑡
 𝑡𝑘 = {

Γ(𝑘 + 1)

Γ(𝑘 − 𝜗𝑖 + 1)
 𝑡𝑘−𝜗𝑖                     𝑛 ≤ 𝑘,

0                                                        𝑛 > 𝑘,

 

 

 (5) 

Where ϑiϵ(n − 1, n]. 
 

2.2. Laguerre Polynomials 

 

Definition 2.3. (see [36 − 38] and references there 

in) The LPs, Ln(t), are the solutions to second order 

linear differential equation of 𝑡𝑦˝ + (1 − t)𝑦ˊ + n𝑦 = 0 , 

nϵℕ. 

Definition 2.4. (see [36 − 38] and references there 

in) The representation of power series for LPs, 𝐿𝑛(𝑡), 
is provided by 

𝐿𝑛(𝑡) = ∑
(−1)𝑘

𝑘!

𝑛

𝑘=0

(𝑛)!

(𝑘)! (𝑛 − 𝑘)!
𝑡𝑘 . 

 

 (6) 

The first LPs are given by: 
𝐿0(𝑡) = 1,  

𝐿1(𝑡) = −𝑡 + 1,                                

𝐿2(𝑡) =
1

2
(𝑡2 − 4𝑡 + 2),                  

𝐿3(𝑡) =
1

6
(−𝑡3 + 9𝑡2 − 18𝑡 + 6). 

In general, the considered function 𝑢(𝑡) with the first 

𝑛 + 1 LPs terms is approximated such that 

 
𝑢(𝑡) ≃ 𝐴𝑇𝐵𝛯𝑛(𝑡),  (7) 

 

where 
 

𝐵 =

(

 
 

 
𝑏0,0
𝑏1,0
⋮
𝑏𝑛,0

 
𝑏0,1
𝑏1,1
⋮
𝑏𝑛,1

 
𝑏0,2
𝑏1,2
⋮
𝑏𝑛,2

 
…
…
⋮
…

 
𝑏0,𝑛
𝑏1,𝑛
⋮
𝑏𝑛,𝑛)

 
 
, 

 

 

(8) 

𝐴𝑇 = [𝑎0   𝑎1   …   𝑎𝑛], 𝛯𝑛(𝑡) = [1  𝑡  𝑡
2   … 𝑡𝑛]𝑇 . 

and 

𝑏𝑖𝑗 = {

(−1)𝑗

𝑗!

(𝑖)!

(𝑗!)(𝑖 − 𝑗)!
,     

0,                                    

 

𝑖 ≥ 𝑗,  
  (9)  

𝑖 < 𝑗. 

2.3. Generalized Laguerre Polynomials 

 

Definition 2.5. The GLPs, ℒm(t), are formed with a 

change of variable. Accordingly, 𝑡𝑖 is changed to 

𝑡𝑖+𝜂𝑖, (𝑖 + 𝜂
𝑖
> 0), on the LPs and defined as 

 

ℒ𝑚(𝑡) = ∑
(−1)𝑘

𝑘!

𝑚

𝑘=0

(𝑚!)

(𝑘!)(𝑚 − 𝑘)!
𝑡𝑘+𝜂𝑘 , 

 

 (10) 

 

where 𝜂𝑘 indicate control parameters. If 𝜂𝑘 = 0, then 

GLPs fully coincide with classical LPs. 

The expansions of the states and controls, 𝑣(𝑡) and 

𝑤(𝑡), in the terms of GLPs are respectively shown in 

the form of matrices 
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𝑣(𝑡) ≃ 𝑃𝑇  R   ϒ(𝑡), 

𝑤(𝑡) ≃ 𝑄𝑇S   ɸ(𝑡), 

 

(11) 

where 

R  = 

(

 
 
 
 

 
1
0
⋮
𝑟𝑞,0
⋮

𝑟𝑚1,0

 
0
1
⋮
𝑟𝑞,1
⋮

𝑟𝑚1,1

 
0
0
⋮
𝑟𝑞,2
⋮

𝑟𝑚1,2

 
…
…
⋮
…
⋮
…

 
0
0
⋮
𝑟𝑞,𝑞
⋮

𝑟𝑚1,𝑞

 
…
…
⋮
…
⋮
…

 
0
0
⋮
0
⋮

𝑟𝑚1,𝑚1)

 
 
 
 

, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(12) 

 

 S   = 

(

  
 

 
𝑠0,0
𝑠1,0
𝑠2,0
⋮

𝑠𝑚2,0

 
0
𝑠1,1
𝑠2,1
⋮

𝑠𝑚2,1

 
0
0
𝑠2,2
⋮

𝑠𝑚2,2

 
0
0
0
⋮

𝑠𝑚2,3

 
…
…
…
⋮
…

 
0
0
0
⋮

𝑠𝑚2,𝑚2)

  
 
, 

 

𝑃𝑇 = [𝑝0   𝑝1   …   𝑝𝑚1
],                          

 
 
 
 
 
 
 
 

(13) 

𝑄𝑇 = [𝑞0   𝑞1   …   𝑞𝑚2
], 

ϒ(𝑡) ≜ [𝑣0(𝑡)   𝑣1(𝑡)  … 𝑣𝑚1  
(𝑡)]

𝑇
 , 

ɸ(𝑡) ≜ [𝜙0(𝑡)   𝜙1(𝑡)  …𝜙𝑚2  
(𝑡)]

𝑇
, 

and 

𝑟𝑖,𝑗  = 
(−1)𝑗

𝑗!

(𝑖)!

(𝑗!)(𝑖−𝑗)!
,        

  
 
 
 
 

(14) 
𝑖 = 2,3,… ,𝑚1 , 𝑗 = 0,1, … ,𝑚1 , 

𝑠𝑖,𝑗  = 
(−1)𝑗

𝑗!

(𝑖)!

(𝑗!)(𝑖 − 𝑗)!
, 

 

𝑖 = 1,2,… ,𝑚2 , 𝑗 = 0,1, … ,𝑚2 , 

 

𝑣𝑗(𝑡) = {
𝑡𝑗 ,     

𝑡𝑗+𝜂𝑗 ,
 

𝑗 = 0,1, … , 𝑞 − 1,  

(15) 
𝑗 = 𝑞, 𝑞 + 1,… , 𝑚1 , 

 

𝜙𝑗(𝑡) =  𝑡
𝑗+ζ𝑗, 𝑗 = 0,1, … , 𝑚2 , 

 

(16) 
 

with 𝜂
𝑗
 and ζ𝑗 denoting the control parameters. 

 
 

2.4. Oprational Matrices 
 

In the literature there are lot of articles in which we 

can see the derivation of OMs of differentiation in the 

Caputo sense. In this section we will derive the OMs 

of fractional derivatives and ordinary derivatives 

based on the GLPs. 

The fractional derivatives of orders 𝑞 − 1 < 𝜗 ≤ 𝑞, of 

ϒ(𝑡) can be written as 

 
𝐶
0
𝐷
𝜗
𝑡
ϒ(𝑡) =D (𝜗)

𝑡
ϒ(𝑡),  

 

(17) 

 

where D 
(𝜗)
𝑡

is the (𝑚1 + 1) ⨉ (𝑚1 + 1) OMs of 

fractional derivatives of order 𝜗 defined by 

D 
(𝜗)
𝑡
=  𝑡−𝜗

(

 
 
 
 
 
 
 
 
 
 
 

0 0 0 ⋯ 0 0 0 ⋯ 0
0 0 0 ⋯ 0 0 0 ⋯ 0
0 0 0 ⋯ 0 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋯ ⋮
0 0 0 ⋯ 0 0 0 ⋯ 0

0 0 0 ⋯ 0
𝛤(𝑞+1+𝜂𝑞)

𝛤(𝑞+1−𝜗+𝜂𝑞)
0 ⋯ 0

0 0 0 ⋯ 0 0
𝛤(𝑞+2+𝜂𝑞+1)

𝛤(𝑞+2−𝜗+𝜂𝑞+1)
⋯ 0

⋮ ⋮ ⋮ ⋯ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 ⋯ 0 0 0 ⋯
𝛤(𝑚1+1+𝜂𝑚1

)

𝛤(𝑚1+1−𝜗+𝜂𝑚1
))

 
 
 
 
 
 
 
 
 
 
 

. 

The first-order derivative of ϒ(𝑡) can be written as: 
 

𝑑ϒ(𝑡)

𝑑𝑡
= D 

(1)
𝑡
ϒ(𝑡), 

 

(19) 

 

where the (𝑚1+1) ⨉ (𝑚1 + 1)  matrix D 
(1)
𝑡

 is called the 

operational matrix of ordinary derivative and its 

elements can be computed as follows: 
 

D (1)
𝑡
=  

(

 
 
 
 
 
 
 
 
 
 

0 0 0 ⋯ 0 0 0 ⋯ 0

0
1

𝑡 0 ⋯ 0 0 0 ⋯ 0

0 0
2

𝑡 ⋯ 0 0 0 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋯ ⋮
0 0 0 ⋯ 0 0 0 ⋯ 0

0 0 0 ⋯ 0
𝑞−1
𝑡

0 ⋯ 0

0 0 0 ⋯ 0 0
𝑞+1+𝜂𝑞

𝑡
⋯ 0

⋮ ⋮ ⋮ ⋯ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 ⋯ 0 0 0 ⋯
𝑚1+𝜂𝑚1

𝑡 )

 
 
 
 
 
 
 
 
 
 

. 

Generally, the r-order derivative operational matrix of 

D can be expressed as follows: 

 
𝑑𝑟ϒ(𝑡)

𝑑𝑡𝑟
= D (𝑟)

𝑡
ϒ(𝑡). 

 

(19) 

 

2.5. Function Approximation 
 

Let 𝐗 = 𝐿2[0,1] and assume that ϒ(𝑡), be the vector 

defined in Eq. (20), 

𝐘𝑚 = 𝑠𝑝𝑎𝑛{𝑣0(𝑡), 𝑣1(𝑡)  … 𝑣𝑚1  
(𝑡)} and �̃� be an 

arbitrary element in 𝐗. Since 𝐘𝑚  is a finite 

dimensional vector subspace of 𝐗, �̃� has a unique best 

approximation out of 𝐘𝑚  such as 𝑣0ϵ𝐘𝑚 , that is 

∀ �̂�ϵ𝐘𝑚 ,  ‖�̃� − 𝑣0‖2 ≤ ‖�̃� − �̂�‖2 . 

Since 𝑣0ϵ𝐘𝑚 , there exist the unique coefficients 𝑃𝑇 =

 [𝑝0   𝑝1   …   𝑝𝑚1
], such that 

 𝑣(𝑡) ≃ 𝑣0(𝑡) = 𝑃
𝑇  R    ϒ(𝑡). 

 
 

2.6. Convergence Analysis 
 

The following theorem will be useful in subsequent 

results. 

Theorem 2.6. Let 𝑓: [0,1]→ℝ be a function, 

𝑓 ∈ 𝐶𝑚+1[0,1] and 𝑠𝑢𝑝
0 𝑡 1

 𝑓(𝑚+1)(𝑡). If there exist 𝑝0 , 𝑝1,

… , 𝑝𝑚 ∈ ℝ and 𝑚 > 0 such that for the function 

𝑣(𝑡) ≃ 𝑃𝑇  R    ϒ(𝑡), 
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we have 
‖𝑓 − 𝑣‖2 = 𝑑𝑖𝑠𝑡 (𝑓, 𝑣), 

Then the error bound is presented as follows: 

∥𝑓 − 𝑃𝑇  R    ϒ(𝑡) ∥2<
𝑀

(𝑚+1)! √2𝑚+3
 , 

where 

∥𝑓 − 𝑃𝑇  R    ϒ(𝑡) ∥2= 𝑖𝑛𝑓{∥𝑓 − 𝑦 ∥2∶ 𝑦 ∈ 𝐘𝑚 }. 

𝑝𝑟𝑜𝑜𝑓. Let 𝑞(𝑡) = ∑
𝑓(𝑖)(0)

𝑖!
𝑡𝑖,𝑚

𝑖=0  in this case: 

∥𝑓 − 𝑃𝑇  R    ϒ(𝑡) ∥2≤ ∥𝑓 − 𝑞 ∥2. 

We   notice that 𝑡𝑘 ∈ 𝐘𝑚 , which implies that 

𝑞(𝑡) ∈ 𝐘𝑚 . Now, by the Taylor theorem for all 0 ≤ 𝑡 ≤

1, we have: 

𝑓(𝑡) = 𝑞(𝑡) +
𝑓(𝑚+1)(𝜂𝑡)

(𝑚 + 1)!
𝑡𝑚+1,     0 ≤ 𝜂𝑡 ≤ 𝑡. 

Therefore 

|𝑓(𝑡) − 𝑞(𝑡)| ≤
𝑀

(𝑚 + 1)! 
𝑡𝑚+1, 

and 
 

∥𝑓 − 𝑞 ∥2≤
𝑀

(𝑚+1)! 
(∫ 𝑡2𝑚+2)

1

0

1

2
 

∥𝑓 − 𝑞 ∥2=
𝑀

(𝑚+1)! 
(

1

2𝑚+3
)
1

2 

∥𝑓 − 𝑞 ∥2=
𝑀

(𝑚+1)!√2𝑚+3 
. 

 

REMARK 1. Note that the same results for 𝑤(𝑡) can be 

investigated. 

 

3.Algorithm of the Solution for FOCPs 
 

Now, we use the above obtained results to solve the 

FOCPs (1) with the fractional dynamical system (2) 

subject to the initial conditions (3). To this end, we 

approximate the state variable, i.e. 𝑣(𝑡) and the 

control variable, i.e. 𝑤(𝑡) by ϒ(𝑡) and ɸ(𝑡), 

respectively as follows: 

 
𝑣(𝑡) ≃ 𝑃𝑇R   ϒ(𝑡), 

 

 

(20) 

𝑤(𝑡) ≃ 𝑄𝑇  S    ɸ(𝑡), 
 

where  
𝑃𝑇 = [𝑝0   𝑝1   …   𝑝𝑚1

],                          𝑄𝑇 = [𝑞0   𝑞1   …   𝑞𝑚2
], 

 

are unknown vectors that called vectors of the free 

coefficients which should be computed and ϒ(𝑡) and 

ɸ(𝑡),  are the vectors which defined in Eqs. (13). 

At this stage, by Eq. (20), we approximate 𝐶
0
𝐷
𝜗
𝑡
𝑣(𝑡) in 

terms of the operational matrix of  fractional 

derivative of GLPs as follows: 

 
𝐶
0
𝐷
𝜗
𝑡
𝑣(𝑡) ≃ 𝑃𝑇R  D (𝜗)

𝑡
 ϒ(𝑡).  

 

(21) 

By substituting Eqs. (20) into Eq. (1), the 

performance index S  is approximated as: 
 

S  [𝑤] = S   [R , S ,  K  ,  L    ]= 
 

∫  
1

∘
F    (𝑡, 𝑃𝑇, R   ϒ(𝑡), 𝑄𝑇S   ɸ(𝑡))𝑑𝑡≜F (R , S ,  K  ,  L    

), 

 

 

(22) 

 

where K  and L   are unknown control parameters 

vectors with elements 𝜂𝑗’s and 𝜁𝑗’s, respectively. 

Also, by substituting Eqs. (20) and (21) into the 

fractional dynamical system (2), we have: 
 

𝑃𝑇R , D (𝜗)
𝑡

 ϒ(𝑡) −G (𝑡, 𝑃𝑇 , R   ϒ(𝑡), 𝑄𝑇S   ɸ(𝑡)) ≜ 
 

G̃ (𝑡, R , S ,  K  ,  L    ) ≃ 0. 

 

 

(23) 

Furthermore, by taking the collocation points 𝑡𝑖 =
𝑖

�̂�−1
 

for 𝑖 = 𝑞, 𝑞 + 1,… , �̂� − 1, where �̂� = min(𝑚1, 𝑚2) into 

Eq. (23), we obtain the following system of algebric 

equations: 

Λ𝑖 ≜ Ĝ (𝑡𝑖, R , S ,  K  ,  L    ) ≃ 0,  
𝑖 = 𝑞, 𝑞 + 1,… , �̂� − 1. 

 

(24) 

In addition by the initial conditions (3) and 

considering Eq. (19), we obtain the following system 

of algebraic equations: 

 

Λ𝑖 ≜ 𝑃𝑇R , D (𝜗)
𝑡

 ϒ(𝑡) − a𝑖 = 0,  

𝑖 = 0, 1,… , 𝑞 − 1. 

 

(25) 

Now, assume that 
 

J*= S   [R , S ,  K  ,  L   , 𝜆 ]= J [R , S ,  K  ,  L    ] +Λ𝜆, 
 

(26) 

 

where Λ = [Λ0 Λ1… Λ�̂�−1] and 𝜆 = [𝜆0 𝜆1… 𝜆�̂�−1]
𝑇, 

is the unknown Lagrange multiplier. 

Finally, the necessary conditions for the extermum 

are given by the following system of nonlinear 

algebraic equations: 
 

∂J*ϒ ∂R  = 0,      ∂J*ϒ∂S   = 0,     ∂J*ϒ∂K   = 0, 

∂J*ϒ∂L   = 0,      ∂J*ϒ∂𝜆 = 0. 

 

(27) 

  

The above system of nonlinear algebraic equations 

can be solved using Maple or Matlab software 

packages. Finally, by determining the free 

coefficients and control parameters, we can determine 

a good approximate solutions for 𝑣(𝑡) and 𝑤(𝑡) using 

Eq. (20). 

The algorithm of the proposed method is as follows: 
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Algorithm 
Input: 𝑚1, 𝑚2, 𝑞 − 1 < 𝜗 ≤ 𝑞, 𝑎𝑗  (𝑗 = 0,1,… , 𝑞 − 1) and the 

functions F   and  G 

Step 1: Define the basis functions 𝑣𝑗(𝑡) and 𝜙𝑗(𝑡) by Eqs. (15) 

and (16). 
Step 2: Construct GLPs vectors ϒ(𝑡) and ɸ(𝑡) using Eqs. (13). 
Step 3: Define the unknown matrices 𝑃𝑇 = [𝑝𝑖]1×𝑚1

+ 1 and 𝑄𝑇 

= [𝑞𝑖]1×𝑚2
+ 1. 

Step 4: Compute the fractional and ordinary operational 

matrices D (𝜗)
𝑡

and D (𝑖)
𝑡

 using Eqs. (17) and (18). 

Step 5: 
Compute the equation J [𝑤] ≜ F̂ (𝑡𝑖, R , S ,  K  ,  L    ) 

using (22). 
Step 6: Compute the system of nonlinear algebraic equations 

using Eq. (23). 
Step 7: Determine the free coefficients and control parameters 

using Eq. (27). 
Output: The approximate solution: 𝑣(𝑡) ≃ 𝑃𝑇R   ϒ(𝑡) 

and 𝑤(𝑡) ≃ 𝑄𝑇S    ɸ(𝑡). 
 

4.Illustrative Test Problems 
 

In this section, we show the performance of the 

proposed method. We compute the error by 
𝐸𝑣(𝑡𝑗) =  𝑃𝑇R   ϒ(𝑡) − 𝑣(𝑡𝑗),            𝑡𝑗 ∈ [0,1], 

and 
𝐸𝑤(𝑡𝑗) =  𝑄𝑇S    ɸ(𝑡) − 𝑤(𝑡𝑗),          𝑡𝑗 ∈ [0,1]. 

During this part, in order to show the efficiency and 

validity of the suggested numerical method, we solve 

two test problems. 
 

Example 1. Consider the following FOCPs: 

min J[𝑤] = ∫ [𝑣2(𝑡) + 𝑤2(𝑡) + 2𝑡
3
2𝑣(𝑡) − 2(1 − 𝑡

3
2)𝑤(𝑡)]𝑑𝑡 

1

∘
 

subject to the fractional dynamical system: 
𝐶
0
𝐷

3
2

𝑡
𝑣(𝑡) =

3√𝜋

4
(𝑣(𝑡) − 𝑤(𝑡)),           1 < 𝜗 ≤ 2, 

and the initial conditions v(0) = vˊ(0) = 0. 

The problem’s analytical solution is given by 

𝑣(𝑡) = −𝑡
3
2 and 𝑤(𝑡) = 1 − 𝑡

3
2. The minimum value of 

the objective index J is attained at J = −0.7. To solve 

this problem, we use the proposed method with 

different values of 𝑚1 and 𝑚2. The approximate 

values for the performance index J are summarized in 

Table 1. The runtime for the proposed method at 

different values of 𝑚1 and 𝑚2 are reported in Table 2. 

The absolute error values for the states and controls 

are reported in Table 3 with 𝑚1 = 𝑚2 = 3. Plots of the 

absolute errors are shown in Fig. 1 and 2 for the states 

and controls with 𝑚1 = 𝑚2 = 3. 

 

Example 2. Consider the following FOCPs: 
 

min J[𝑤] = 

∫ [(𝑣(𝑡) − 𝑡
5
2)
4
(1 + 𝑡2) (𝑤(𝑡) + 𝑡6 −

15√𝜋

8𝛤(
7

2
−𝜗)
 𝑡

5
2
−𝜗)

2

] 𝑑𝑡
1

∘
, 

 

subject to the fractional dynamical system: 
𝐶
0
𝐷
𝜗
𝑡
𝑣(𝑡) = 𝑡𝑣2(𝑡) + 𝑤(𝑡),             1 < 𝜗 ≤ 2. 

and the initial conditions 𝑣(0) = 𝑣ˊ(0) = 0. 

For this problem, the values 𝑣(𝑡) = 𝑡
5
2 and 𝑤(𝑡) =

15√𝜋

8𝛤(
7

2
−𝜗)
 𝑡
5
2
−𝜗 − 𝑡6 are the minimizing solutions for the 

state and 
 
 

Table 1 

The values of J at different alternatives of 𝑚𝑖 , 𝑖 = 1,2 for 

Example 1. 

J 𝑚𝑖 ,  𝑖 = 1,2 

−0.70000000 𝑚1 = 𝑚2 = 2 

−0.70000000 𝑚1 = 𝑚2 = 3 

−0.70000000 𝑚1 = 4, 𝑚2 = 3 

−0.70000000 𝑚1 = 𝑚2 = 4 

 

Table 2 

The runtime (in seconds) of the proposed method for different 

values of 𝑚1 and 𝑚2. 

𝑚1 = 𝑚2 

= 5 

𝑚1 = 4,
𝑚2 = 3 

𝑚1 = 𝑚2 

= 3 

𝑚1 = 𝑚2 

= 2 
parameters 

7.61 4.27 2.74 1.16 CPU time 

 

 

Table 3 

The 𝐸𝑣 (𝑡𝑖), 𝐸𝑤 (𝑡𝑖) with 𝑚1 = 𝑚2 = 3 for Example 1. 

𝐸𝑤 (𝑡𝑖) 𝐸𝑣 (𝑡𝑖) 
𝑡𝑖 

1.3725E − 10 2.2926E − 12 0.1 

2.6323E − 11 7.0964E − 12 0.2 

4.4701E − 11 1.0087E − 11 0.3 

6.6935E − 11 1.0386E − 11 0.4 

5.1324E − 11 8.1560E − 12 0.5 

1.2594E − 11 4.1211E − 12 0.6 

3.1783E − 11 6.0814E − 13 0.7 

6.1710E − 11 4.6274E − 12 0.8 

5.4425E − 11 6.2730E − 12 0.9 

 

 

Fig. 1. The absolute error function using the GLPs for the 

state variable, 𝑣(𝑡), with 

𝑚1 = 𝑚2 = 3 in Example 1. 
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Fig. 2. The absolute error function using the GLPs for the 

control variable, 𝑤(𝑡), with 

𝑚1 = 𝑚2 = 3 in Example 1. 

 

control variables, respectively, and the performance 

index J has the minimum value of 0. To solve this 

problem, we use the proposed method with different 

values of 𝑚1 and 𝑚2 for some different 𝜗. The 

approximate values for the performance 

index J are summarized in Table 4. The runtime for 

the proposed method at different values of 𝑚1 and 𝑚2 

with 𝜗 = 1.25 are reported in Table 5. The absolute 

error values for the states and controls are reported in 

Table 6 with 𝑚1 = 𝑚2 = 3 and 𝜗 = 1.25. Plots of the 

absolute errors are shown in Fig. 3 and 4 for the states 

and controls with 𝑚1 = 𝑚2 = 3  and 𝜗 = 1.25. 

According to the obtained numerical results as 

reported in the related tables and figures, it can be 

observed that the numerical and exact solutions are in 

close agreement where the accuracy of the 

approximate solutions is enhanced as the number of 

basis functions increases. 
 

Table 4 

The values of J at different alternatives of 𝑚𝑖 , 𝑖 = 1,2  and 𝜗 

(the exact optimal value is zero), for Example 2.  

 𝜗 = 1.85  𝜗 = 1.25 

J 𝑚𝑖 , 𝑖 = 1,2 J 𝑚𝑖 , 𝑖 = 1,2   

2.5148E − 09 𝑚1 = 𝑚2 = 2 8.7598E − 09 
𝑚1 = 2, 
𝑚2 = 3  

7.2537E − 10 
𝑚1 = 2, 
𝑚2 = 3 

3.5738E − 09 
𝑚1 = 𝑚2 = 3 

1.9416E − 10 
𝑚1 = 4, 
𝑚2 = 3 

9.1533E − 10 
𝑚1 = 3, 
𝑚2 = 4 

7.5486E − 11 𝑚1 = 𝑚2 = 5 2.4420E − 10 𝑚1 = 𝑚2 = 5 

 
Table 5 

The runtime (in seconds) of the proposed method with  

𝜗 = 1.25 for different values of 𝑚1 and 𝑚2. 

𝑚1 = 𝑚2 

= 5 

𝑚1 = 3,
𝑚2 = 4 

𝑚1 = 𝑚2 

= 3 

𝑚1 = 2,
𝑚2 = 3 

parameters 

8.64 5.31 3.48 2.26 CPU time 

 

 

 

Table 6 

The 𝐸𝑣 (𝑡𝑖), 𝐸𝑤 (𝑡𝑖) with 𝑚1 = 𝑚2 = 3 and 𝜗 = 1.25 for 

Example 2. 

𝐸𝑤 (𝑡𝑖) 𝐸𝑣 (𝑡𝑖) 
𝑡𝑖 

2.1321E − 09 5.3557E − 10 0.1 

2.5265E − 09 1.1547E − 09 0.2 

7.7580E − 11 1.2926E − 09 0.3 

2.1829E − 09 9.6869E − 10 0.4 

2.1393E − 09 4.0390E − 10 0.5 

2.7203E − 10 1.4497E − 10 0.6 

1.5762E − 09 4.7787E − 10 0.7 

1.3657E − 09 5.0945E − 10 0.8 

8.0321E − 10 3.0888E − 10 0.9 

 

Example 3. Consider the following FOCPs [39]: 
min J[𝑤] = 

∫ [(𝑣(𝑡) − 𝑡2)2(1 + 𝑡2) (𝑤(𝑡) + 𝑡4 −
2𝑡2−𝜗

𝛤(3−𝜗)
 )
2

] 𝑑𝑡
1

∘
, 

subject to the fractional dynamical system: 
𝐶
0
𝐷
𝜗
𝑡
𝑣(𝑡) = 𝑡2𝑣(𝑡) + 𝑤(𝑡),             1 < 𝜗 ≤ 2, 

 

Fig. 3. The absolute error function using the GLPs for the 

state variable, 𝑣(𝑡), with 

𝑚1 = 𝑚2 = 3 and 𝜗 = 1.25, in Example 2. 
 

 

Fig. 4. The absolute error function using the GLPs for the 

control variable, 𝑤(𝑡), with 

𝑚1 = 𝑚2 = 3 and 𝜗 = 1.25, in Example 2. 

 

and the initial conditions 𝑣(0) = 𝑣ˊ(0) = 0. 

For this problem, the values 𝑣(𝑡) = 𝑡2 and 𝑤(𝑡) =
2𝑡2−𝜗

𝛤(3−𝜗)
− 𝑡4  are the minimizing solutions for the state 

and control variables, respectively, and the 

performance index J has the minimum value of 0. In 
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[39], a numerical method based on the fractional 

shifted Vieta-Fibonacci functions is applied to find 

the numerical solution of this problem. The absolute 

errors with 𝜗 = 1.1 and different values for 𝑚1and 𝑚2 

obtained from the GLPs method are shown in Table 7 

and compared with those previously reported in [39]. 

Plots of the approximate solution and absolute errors 

are shown in Fig. 5, 6, 7 and 8 for the states and 

controls with 𝑚1 = 𝑚2 = 6 and 𝜗 = 1.1, respectively. 

Table 7 and Figs. 5, 6, 7 and 8 indicate that highly 

accurate approximate solutions are provided by the 

GLPs method. 

 

 

 

5. Conclusion 

This study introduces a novel approach that combines 

the GLPs as a basis and Lagrange multipliers to solve 

FOCPs with the fractional dynamical system. By 

adopting the GLPs basis and operational matrices of 

fractional derivatives, the main problem was reduced 

to the solution of a system of algebraic equations. 

Two numerical examples are presented to 

demonstrate the effectiveness and validity of the 

algorithm. This method shows that with fewer 

number of basis functions we can obtain the 

approximate the solutions. The presented tables and 

graphs show comparisons of exact solutions and 

approximate solutions with errors. 
 

 

Fig. 5. The approximate solution using the GLPs for the state 

variable, 𝑣(𝑡), with 𝑚1 = 𝑚2 = 6  and 𝑣 = 1.1 in Example 

3. 

 

Fig. 6. The approximate solution using the GLPs for the 

control variable, 𝑤(𝑡), with 𝑚1 = 𝑚2 = 6  and 𝑣 = 1.1 in 

Example 3. 
 

 

Fig. 7. The absolute error function using the GLPs for the 

state variable, 𝑣(𝑡), with 𝑚1 = 𝑚2 = 6  and 𝑣 = 1.1 in 

Example 3. 

 

 

Fig. 8. The absolute error  function using the GLPs for the 

control variable, 𝑤(𝑡), with 𝑚1 = 𝑚2 = 6  and 𝑣 = 1.1 in 

Example 3. 

 

 

 

 

 Table 7 

The values of absolute error using the GLPs method with 𝑣 = 1.1 and the proposed method in [39] for Example 3. 

 

 𝐸𝑤 (𝑡𝑖) (GLPs method) 𝐸𝑣 (𝑡𝑖) (GLPs method) 𝐸𝑤 (𝑡𝑖) (method in [39]) Ev (ti) (method in [39]) 𝑡𝑖  

 𝑚1 = 𝑚2 = 6 𝑚1 = 𝑚2 = 6 𝑁 = 6 𝑁 = 6 

 5.3𝑒 − 13 9.8𝑒 − 11 3.1𝑒 − 03 1.1𝑒 − 03 0.1  

 2.1𝑒 − 12 1.4𝑒 − 10 7.5𝑒 − 03 8.8𝑒 − 04 0.3  

 8.6𝑒 − 12 5.2𝑒 − 12 9.5𝑒 − 03 6.3𝑒 − 04 0.5  
 1.8𝑒 − 11 6.5𝑒 − 11 7.7𝑒 − 03 2.5𝑒 − 03 0.7  
 1.0𝑒 − 12 1.0𝑒 − 11 1.2𝑒 − 02 3.0𝑒 − 03 0.9  
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