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Abstract 
 

Graph and hypergraph matching are fundamental problems in pattern analysis problems. They are applied to various tasks 

requiring 2D and 3D feature matching, such as image alignment, 3D reconstruction, and object or action recognition. Graph 

pattern analysis considers pairwise constraints that usually encode geometric and appearance associations between local 

features. On the other hand, hypergraph matching incorporates higher-order relations computed over sets of features, which 

could capture both geometric and appearance information. Therefore, using higher-order constraints enables matching that is 

more robust (or even invariant) to changes in scale, non-rigid deformations, and outliers. Many objects or other entities such 

as gesture recognition and human activities in the spatiotemporal domain can be signified by graphs with local information on 

nodes and more global information on edges or hyperedges. In this research, and essential review have been done on the 

unsupervised methods to explore and communicate meta-analytic data and results with a large number of novel graphs 

proposed quite recently.  
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1.Introduction 

The problem of finding correspondences between 

two graph models arises in many machine vision 

tasks. The types of features could vary significantly 

from one application to the next. We could use graph 

matching for registering shapes, recognizing object 

categories or go to more complex problems such as 

recognizing activities in video. Graph matching is 

ultimately about finding agreements between 

features extracted at the local level and between 

information computed at the higher order of edges or 

hyperedges (in the case of hypergraph matching). 

During the matching process, which is usually 

iterative, messages about possible node 

correspondences are passed through edges or 

hyperedges. Information is eventually spread to the 

whole set of potential node assignments between the 

two graphs, and node-to-node matching convergence 

is eventually reached. Note that by considering 

information at orders beyond the pairwise edges, 

hypergraph matching could be more robust to 

changes in scale, rotations, or other transformations 

in geometry and appearance at the level of groups of 

nodes or cliques. The interest in unsupervised 

learning is steadily increasing in machine learning, 

computer vision, and robotics research. Classical 

works are based on the observation that real-world 

data naturally groups into certain classes based on 

certain core, innate properties related to color, 

texture, form, or shape. Thus, elements that are 

similar based on such properties should belong to the 

same group or cluster, while those that are dissimilar 

should be put in different clusters. While these 
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unsupervised learning principles are not described in 

precise mathematical terms, they are sufficiently 

clear and intuitive. 

Therefore, the very vast research field of clustering 

in machine learning was born, with a plethora of 

algorithms being proposed during the last fifty years 

in [1], which could be grouped into several main 

classes: (1) methods related to K-means algorithm in 

[2] and Expectation-Maximization (EM) in [3], 

which have an explicit probabilistic formulation and 

attempt to maximize the data likelihood conditioned 

on the class assignments; (2) methods that directly 

optimize the density of clusters, such as the Mean 

Shift algorithm [4],[5] and Density-Based Spatial 

Clustering (DBSCAN) in. [6]; (3) hierarchical 

approaches that form clusters from smaller sub-

clusters in a greedy agglomerative fashion Day and 

Edelsbrunner [7-10] or divisive clustering methods 

(DIANA) Kaufman and Rousseeuw [11], which start 

from a large cluster and iteratively divide the larger 

clusters into smaller ones; (4) spectral clustering 

algorithms, which are based on the eigenvectors and 

eigenvalues of the adjacency matrix or the Laplacian 

of the graph associated with the data points Cheeger 

[12-16]. The clustering algorithms discussed in the 

present research and applied to different pattern 

analysis problems are mostly related to the class of 

spectral clustering methods. Until not so long ago, 

most unsupervised learning research focused on 

proposing and studying various kinds of clustering 

algorithms Safari et al. [17-19] and [20-23], and for 

a good reason. Most unsupervised learning tasks 

require, implicitly or explicitly, some clustering. We 

all researchers in machine learning would hope, even 

without saying it, that the complete structure of the 

world, with its entities moving, relating, and acting 

in different ways and being grouped into specific 

classes, should emerge naturally in a pure 

unsupervised learning setup. The discovery of such a 

structure with well-formed entities and relations 

immediately implies some data clustering. 

2.Research Background 

Research focusing on graph matching has been 

increasing in recent years [1–15], with most new 

approaches using or being derived from the initial 

IQP formulation [2, 16]. Not many papers 

investigate the task of learning the parameters of the 

graph matching model. However, interest in the 

topic is increasing [17–21]. Graph matching with 

higher-order constraints, known as hypergraph 

matching, is also receiving increasing attention in 

machine vision [22–29] mainly due to a more 

powerful geometric modeling, often capable of 

similarity or even affine-invariant matching and the 

increased capacity to capture-invariant information 

at the higher level of cliques. Another relevant 

research direction in graph matching is solving the 

task efficiently directly in the original discrete 

domain, in which the final solution should be [6, 27, 

30, 31]. In some papers, such as [6-9], they showed 

in extensive experiments that optimizing sub-

optimally directly in the correct discrete domain 

could often be largely superior to global 

optimization in the relaxed, continuous domain 

followed by a very simplistic binarization step. 

Another interesting direction in graph matching is to 

find node correspondences among several graphs, 

which would enable graph matching across multiple 

images or object models. The multi-graph matching 

task has found some notable approaches in the 

literature [32, 33], including the initial tensor 

formulation [34].  

 

Fig. 1. Correct assignments (shown in green) are likely to form a 

strong cluster by establishing stronger pairwise second-order 

agreements (many thicker edges) and preserving better the local 

appearance of features (larger nodes) [11]. 

On the other hand, the alignments at the level of 

nodes and edges establish strong links in a particular 
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graph of candidate assignments between the nodes of 

the two graphs. The candidate assignments that are 

most likely correct through such strong agreement 

links will naturally form a strong cluster. Therefore, 

finding the correct assignments reduces to a 

clustering problem that often should obey certain 

matching constraints, such that one node from one 

graph could match at most one node in the other. 

Therefore, the connection between graph matching 

and clustering comes naturally, which is why 

algorithms that were designed for one problem (e.g., 

spectral clustering or integer projected fixed point 

for graph matching), could be easily adapted for the 

other problem with minimal modification (usually at 

the level of constraints on the solution vector). Next, 

we present a reliable mathematical formulation for 

graph matching pattern analysis. Then, based on the 

intuitions introduced above, we introduce spectral 

graph matching, and integer projected fixed point 

algorithms. They will be further extended to the 

higher order matching case (hypergraph matching) 

and, adapted to the task of clustering with higher 

order constraints. It is important to remember that all 

methods presented in this section, for inference or 

learning, are fundamentally linked to the general 

concept of clustering, which is at the core of all 

unsupervised learning. 

3.Method and Materials 

The material presented in this section is based on 

previous state-of-the-art works [19, 35]. It consists 

of a set of methods for graph and hypergraph 

matching and learning, generally considered state-

of-the-art in terms of accuracy, computational speed, 

and overall efficiency. The applied approaches to 

unsupervised and semi-supervised learning for graph 

and hypergraph matching are the first such 

algorithms proposed in the machine vision pieces of 

literature. 

3.1. Principles of Unsupervised Learning 

Accidental alignments are rare. They usually 

indicate correct alignments between a model and an 

image when they happen. Alignments, which could 

be geometric or appearance based, rare as they are, 

when they take place, form a strong cluster of 

agreements that re-enforce each other in multiple 

ways. We cannot stress enough how important the 

above principle is for inference and learning in the 

case of graph matching. In the context of this task, 

alignments often refer to agreements in geometry or 

appearance between nodes and edges (or 

hyperedges) of the two graphs. They may also refer 

to similarities at higher levels of semantic 

abstraction. Such agreements, however, do not 

regularly happen accidentally in nature. Accidental 

alignments are indeed rare and very sparse without 

forming strong clusters of agreements in space and 

time. For example, some parts of an object may look 

similar to another unrelated object by accident. It is 

also possible that by chance, a random pattern in the 

continuously moving world may resemble some 

well-known object (e.g., the configuration of clouds 

that may resemble a puppy). However, it is 

improbable that two structures, stable in space and 

time, look-alike at the level of whole objects without 

any meaningful connection. When such agreements, 

at the level of shape, appearance, and full structure, 

are overwhelming, they usually indicate a 

meaningful connection between the two entities. 

Such a relationship could be, for example, at the 

level of identity (e.g., it is the same object seen from 

different viewpoints or seen in two different 

moments in time) or at the level of a semantic 

category (e.g., the objects are of the same kind, have 

a similar purpose or meaning). 

 

 3.2. Graph Matching 

The graph matching problem with pairwise 

constraints consists of solving for the indicator 

vector x∗ that maximizes a quadratic score function 

with certain mapping constraints: 

 ∗         (    )             *   +  (1) 

 

Where x is an indicator vector such that       if 

feature i from one image (or graph) is matched to 

feature a from the other image (or graph), and zero 

otherwise; Ax = 1, x   {0, 1}n enforces one-to-one 

constraints on x such that one feature from one 

image can be matched to at most one other feature 

from the other. In this work, M is a matrix with 
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positive elements containing the pairwise score 

functions, such that         measures how well the 

pair of features (   ) from one image agrees in terms 

of geometry and appearance (e.g., difference in local 

appearance descriptors, pairwise distances, angles, 

etc.) with a pair of candidate matches (   ) from the 

other. While the Spectral Matching (SM) algorithm 

requires M to have non-negative elements, the 

Integer Projected Fixed Point (IPFP) method does 

not impose this requirement. Also note that the local, 

unary terms of candidate assignments can be stored 

on the diagonal of M; in practice, we noticed that 

considering such local, unary information in the 

pairwise scores         and leaving zeros on the 

diagonal produce superior results; a slightly different 

form of the matching objective that combines both 

linear and quadratic terms is also possible:    

    . In Figure 2 we show that the geometric 

information could be represented by rotation-

invarian  angle   uch a  βi, rotation-dependent 

angles pairwise distances, which could be scale-

invariant if divided by the perimeter. Appearance 

could be represented by a feature vector encoding 

gradient, color, or texture information. The relative 

importance of each cue is application-dependent and 

should be automatically learned during training. 

 

 

Fig.2. (a): matching the object model to the image by using 

third-order representations (matching scores computed over 

triangles, considering both geometry and appearance). (b): the 

third-order scores can be functions of both geometry and 

appearance [6]. 

Many algorithms, including Integer Projected Fixed 

Point (IPFP), can handle both problems with slight 

modifications. In this section, we present similar 

learning algorithms applicable to both problems, 

graph matching, and MAP Inference, to emphasize 

that the two tasks are closely related and give a 

general, encompassing view of the optimization and 

learning approaches. Coming back to the main 

Quadratic Programming (QAP) for graph matching 

formulation, we mention that         is essentially a 

function that is defined by a certain parameter vector 

w. The type of pairwise scores         that we use, 

also closely related to the type of relationships we 

apply to hypergraph matching, is: 

 

           (  
       ) (2) 

 

where w is a vector of learned parameter weights, 

and gia; jb is a vector that usually contains non-

negative errors and deformations to describe the 

changes in geometry and appearance when we match 

the pair of features (   ) to the pair (   )  

 

3.3. Hypergraph Matching 

Hypergraph matching follows naturally from graph 

matching by extending (1) to a tensor formulation 

that can include higher order constraints. The first 

hypergraph matching approaches in machine vision 

are the probabilistic method [24] and the tensor-

based higher-order power method [22]. The 

formulation we present applies to hypergraph 

models of any order. However, in practice, third-

order constraints offer a good compromise between 

efficiency and the ability to capture the appearance 

and geometry of objects. The classical graph 

matching approach deals with pairwise relationships 

between features that are not invariant under 

similarity, affine, or projective transformations. 

Invariance to such transformations is possible if 

third-order constraints are used [22]. Third-order 

relationships could still be handled efficiently while 

being able to model both higher-order geometry and 

appearance. Objects could be described by 

triangulated meshes, with features located at corners 

and appearance compu ed over  he  riangle ’ 
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interiors. In the rest of the paper, we discuss only 

third-order hypergraph matching, while keeping in 

mind that the same formulation can be extended, in 

principle, to matching using relations of any order. 

In Figure 3, we show the likely structure of the 

matrix M. The correct assignments will form a 

strong block in this matrix with large pairwise 

elements, while the pairwise scores between 

incorrect assignments will be mostly zero. This will 

be reflected in the leading eigenvector of M. 

 

 

Fig.3. The structure of the matrix M: correct assignments will 

form a strong block in M with large pairwise elements, while the 

pairwise scores between incorrect assignments will be mostly 

zero. This statistical property of M will be reflected in its 

principal eigenvector [13]. 

 

Given two sets of features, one from a model image 

   and the other from a test image    , third-order 

(hypergraph) matching consists of finding 

correspondences between the two sets, such that a 

matching score, as a sum over triplets of candidate 

matches, is maximized. The score could consider 

geometric and appearance information over the 

triplets of potential assignments, extending the 

pairwise scores used for graph matching. The 

mapping constraints are written in matrix form 

           *   +   with a binary matrix. The 

third-order matching score is: 

 

  ( )  ∑              
        

               

 

 

( )

 

Here,   a super-symmetric tensor with non-negative 

elements. They are increasing with the quality of the 

match between tuples of features            indicates 

how well features (     ) from the model image 

match, in terms of appearance and geometry, 

features (     ) from the test image. Solving 

hypergraph matching means finding the solution that 

maximizes  ( ), under one-to-one mapping 

constraints: 

 

 

 ∗        ∑              
        

         
( ) 

 
 

4.Experiments 

In this section we describe the experimental results 

on methods for representing web documents using 

graphs instead of the traditional vector 

representations. All representations are based on the 

adjacency of terms in a web document. These 

representations are named: standard, simple, n-

distance, n-simple distance, raw frequency and 

normalized frequency. Under the standard method 

each unique term (word) appearing in the document, 

excep  for   op word   uch a  “ he,” “of,” and “and” 

which convey little information, becomes a node in 

the graph representing that document. Each node is 

labeled with the term it represents. Note that we 

create only a single node for each word even if a 

word appears more than once in the text. Second, if 

word a immediately precedes word b somewhere in 

a “ ec ion”   of  he documen ,  hen  here i  a 

directed edge from the node corresponding to term a 

to the node corresponding to term b with an edge 

label s. We take into account certain punctuation 

(such as periods) and do not create an edge when 

these are present between two words. Sections we 

have defined for web documents are: title, which 
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con ain   he  ex  rela ed  o  he documen ’   i le and 

any provided keywords (meta-data); link, which is 

text that appears in hyperlinks on the document; and 

text, which comprises any of the readable text in the 

document (this includes link text but not title and 

keyword text). Next we remove the most 

infrequently occurring words on each document, 

leaving at most m nodes per graph (m being a user 

provided parameter). 

4.1. Dataset of the Study 

In order to evaluate the performance of the graph 

based k-means algorithm as compared with the 

traditional vector methods, we performed 

experiments on three different collections of web 

documents, called the F-series, the J-series, and the 

K-series. These data sets were selected because of 

two major reasons. First, all of the original HTML 

documents are available, which is necessary if we 

are to represent the documents as graphs; many other 

document collections only provide a preprocessed 

vector representation, which is unsuitable for use 

with our method. Second, ground truth assignments 

are provided for each data set, and there are multiple 

classes epresenting easily understandabl groupings 

that relate to the content of the documents. Some 

web document collections are not labeled or are 

presented with some other task in mind than 

contentrelated clustering. The F-series originally 

contained 98 documents belonging to one or more of 

20 subcategories of four major category areas: 

manufacturing, labor, business and finance, and 

electronic communication and networking. Because 

there are multiple subcategory classifications for 

many of these documents, we have reduced the 

categories to just the four major categories 

mentioned above in order to simplify the problem. 

There were five documents that had conflicting 

classifications  were classified to belong to two or 

more of the four major categories) which we 

removed, leaving 93 total documents. 

4.2. Performance Analysis 

In the last step of this section, an ROC curve 

analysis was conducted to have a reliable estimate of 

the performance of the proposed model, and the 

results were statistically verified as follows [32-36]:  

 

 

 reci ion  
  

(     )
      

( ) 

 

 ecall  
  

(     )
                       

( ) 

 

   ea ure  
    reci ion 

∗
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(     )

(           )
 

( ) 

 

    
 

  
∑    

  

   

 

( ) 

where    is the means of the accuracy of the ROC 

curve for the 10-fold cross-validation. A 10-fold 

cross-validation technique was applied, randomly 

partitions the original sample into k equal sized 

subsamples. A single subsample is retained as the 

validation data for testing the model from the ten 

sub-samples. The remaining nine are used as training 

data. 

Table-1  

Obtained results of unsupervised methods. 

Type AUC% Recall Precision F-1 

Graph (House) 79.23 78.52% 79.67% 80.33% 

Graph (Hotel)  82.07 81.23% 82.41% 82.77% 

Hyper Graph 

(House) 
90.92 91.79% 92.24% 90.33% 

Hyper Graph 

(Hotel) 
92.05 91.76% 92.27% 91.17% 

Web Docs (Yahoo) 91.03 90.89 91.13 90.79 

Web Docs (reuters) 92.07 91.98 92.11 91.87 

 

Also, a two-sample t-test (left tailed) has been 

conducted. The null hypothesis was defined as H0= 
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        and, H1:       , where    and    are the 

means of the area under the ROC curve (AUC) of 

Graph matching and Hyper-Graph matching for ten 

different iterations of 10-fold cross-validation 

assessment [20-21]. The results that validate the 

theoretical claims are shown in Figure 4 on the On 

the other hand, the details of these experiments are 

given below. There are a few relevant results to 

consider. House and Hotel dataset experiments, 

respectively. 

5.Discussion 

On all four experiments, the correlation between v 

and the ground truth t increases at every gradient 

step even though the ground truth is unknown to the 

learning algorithm. The matching rate improves at 

the same time and at a similar rate with the 

correlation, showing that maximizing this correlation 

also maximizes the final performance. We display a 

representative example of the eigenvector for one 

pair of faces as it becomes more and more binary 

during training. Suppose the eigenvector is almost 

flat at the last iteration after the first iteration. In that 

case, it is very close to the binary ground truth, with 

all the correct assignments having larger confidences 

than any of the wrong ones. Also, on all individual 

experiments, both approximations from Equations 2 

and 3 become increasingly accurate with each 

gradient step, we started from a set of parameters w  

 

that does not favor any assignment (w = 0, which 

means that before the very first iteration, all non-

zero scores in M are equal to 1). 

 

Fig.4. Graphs from the time series obtained from the a real 

network: (a) three graphs from one cluster; (b) and (c) graphs 

from different clusters. 

 

 

Fig.5. Unsupervised learning stage. First row: matching rate and correlation of eigenvector with the ground truth during training per 

gradient step. 
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6. Conclusion 

In this work, some efficient learning and 

optimization methods have been described, which 

are sufficient for graph/hypergraph matching and 

MAP inference problems based on Quadratic Integer 

Program formulations. This work demonstrated 

through several extensive experiments that important 

algorithms have the potential to improve matching 

and inference accuracy significantly. Also, this 

research brought valuable insights and methods to 

graph and hypergraph matching to hopefully open 

new roads for further exploration, especially 

inefficient matching and unsupervised learning. This 

research handled two main aspects of matching: (1) 

presenting the optimal solutions with a brief review 

for pattern analysis in unsupervised graph and 

hypergraph matching problems in the continuous 

domain and (2) obtaining a high-quality discrete 

solution with important theoretical properties, unlike 

the traditional approaches to obtaining the final hard 

assignment based on greedy algorithms or the 

classical Hungarian method. There are many 

avenues for future work in matching with second- or 

higher-order constraints. They bring a significant 

boost in matching performance, as they are more 

robust to changes in scale, rotations, perspective or 

affine transformations, various appearance changes, 

and non-rigid deformations. 
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