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Abstract 

Successful future urban planning is highly dependent on optimal connectivity between important areas of cities. Discovering 

essential latent links will optimize the urban structure. Moving towards a better structure requires some information. There 

are a lot of sources of information for urban structure inferring, including the current structure, the time-varying traffic 

dynamics, and the construction costs, which are the basics of the optimization problem formulation. This paper presents a 

new formulation for the problem. The model problem to be solved tries to utilize all data sources needed for inferring. There 

are some methods for solving the formulated problem. The methods need some development to apply to the model. Methods 

utilizing learning automata (LA) are favorable in this field due to their interaction with the environment. This paper presents 

two LA-based approaches for the model: Distributed Learning Automata (DLA) and Cellular Learning Automata (CLA). The 

algorithms result in an optimal connectivity matrix considering urban structure, traffic dynamics, and costs, where the matrix 

must include the current urban structure and some new reasonable necessary links. Moreover, comparisons are possible 

because the model has a fitness value for evaluating the provided connectivity matrix. The CLA-based proposed method 

performed better than the others in most experiments. 
 

Keywords: Urban Structure, Traffic Dynamics, Optimal Connectivity Structure, Distributed Learning Automata, Cellular 

Learning Automata. 

1.Introduction 

Social development and the urban economy depend 

highly on urban traffic network studies. In modern 

cities, we can see the effects of traffic and its 

consequences. The expansion of traffic networks has 

developed these cities, and urban transformation 

affects the urban traffic pattern in return. There are 

many essential processes in urban traffic planning, 

such as traffic forecasting, background prediction, 

project evaluation, traffic survey layout, and scheme 

design. The urban traffic network design is the most 

critical point in the layout scheme design due to its 

determining capability of future urban planning for 

operational efficiency and economic development 

[1]. Ever-changing city patterns and challenges in 

urban development have convinced researchers to 

pay more attention to studies about traffic network 

structure affecting urban traffic distribution in recent 

years [2]. 

A high degree of synchronicity is there in the urban 

traffic network. Therefore, to reach efficient traffic 

management strategies, we must consider many 

features for appropriate models of these systems. In 

particular, such systems can be examples of event-

driven and synchronous ones. The complex 

interactions of different discrete events can be the 

basis for their dynamics [3]. The data gathered from 

dynamics can provide valuable information about 

the urban components' behavior. Helpful knowledge 

for developing more efficient cities and planning 

better decisions can is achievable by analyzing this 

data. So traffic can be considered a critical 

component of an urban ecosystem[4]. 

There are different patterns over time in urban 

traffic. Therefore, vehicle distribution could be more 

stable due to the diversity in traffic patterns, and 

global traffic pattern modeling in a complex road 
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network full of intersections is challenging [5]. 

There is much information about the traffic flow of 

urban administrative areas in real-time traffic data. 

The ever-varying traffic dynamics is a valuable 

source for effectively deriving traffic connection 

structure representing a dynamic picture of areas 

closely associated with the city based on traffic flow 

information of different hours during weekdays [6]. 

The structure of an urban area imposes functional 

activities in cities. There might be considerable 

interactions between two city areas, but no direct or 

structural connection, so unconnected urban areas 

may interact. Finding these areas is a challenging 

task. An even more challenging issue is finding areas 

that interact strongly at particular times of the day. 

The optimal connection structure can explain a dense 

functional correlation of traffic flow in different city 

areas, indicating which areas are most similar in 

terms of their traffic flow characteristics at different 

times of the day. The functional traffic dynamics and 

fixed road network formation are the essential 

elements of the effective connection structure [7]. 

There is another determinative factor for optimal 

structure, and it is the cost of modifying the network. 

The cost has many different aspects, such as 

construction and demolition costs. 

Formulating the problem is the first step of optimal 

urban structure, inferring from real-time traffic data. 

The second step is to design a method to discover 

the most correlated zones considering costs. Traffic 

dynamics, costs, and current structure are inputs of 

the method. Two LA-Based algorithms are the 

proposed methods of the research. Learning 

automaton, or LA, is a coputational intelligence 

technique that can solve many real-world and 

complex problems with high uncertainty or lack of 

knowledge about the environment [8, 9]. 

Reinforcement learning literature considers LA a 

stochastic model and classifies them as a temporal-

difference (TD) learning method [10]. TD methods 

update estimates based partially on the other learned 

estimates without waiting for an outcome, like 

dynamic programming [11]. 

Distributed Learning Automata is the algorithm used 

in one of the proposed methods. Due to the LA's 

limited capability, the interconnection of multiple 

LAs in various forms, like a tree, a mesh, or an 

array, increases their ability. The cooperation of 

these automata solves a problem [12]. DLA has been 

used successfully for solving complex problems [13-

17]. Cellular Learning Automata is the 0algorithm 

used to design the second proposed method. A 

Cellular Automaton (CA) model consists of many 

simple cells passing through a group of states based 

on local interaction. The group of a cell's 

neighborhood produces its local environment based 

on the definition of the cell's local rule. Each cell 

selects a state among a finite set of states. Each cell's 

state, along with its adjacency cells' state, is called 

that cell's configuration. The CAs' local rule 

indicates their evolution via time and implies CAs' 

configuration changes in a stage. CA is suitable for 

modeling systems with locally-connected, simple 

building blocks. The combination of CAs and LAs 

presents a new CLA model [18]. This combination 

creates a distributed computation model that utilizes 

CAs' computation power and LAs' learning 

capabilities. CLA is an enriched version of CA due 

to the learning ability of optimal action. It also 

outperforms LA because of LA's interactions [19]. 

CLA has found many applications in various areas 

[20-25]. 

The network structure in this work remains 

unchanged during the research period. The time-

dependent traffic flow produces functional dynamics 

data. There is a cost factor in the proposed problem 

definition to develop a possibility of urban structure 

inferring close to reality using the data at hand. 

Therefore, the definition satisfies three criteria: 

similarity of the optimal and current structures, the 

optimal structure functionality in conducting the 

traffic flow, and cost-effectiveness. The paper's 

contribution is to formulate and solve a developing 

problem (inferring optimal city structure) where 

there needs to be more attentive to the costs of 

creating a new structure in the real world. As long as 

there is a need to track the performance of a new 

structure towards optimality, the methods here must 

be interactive to solve the problem. This section 

mentioned the optimal urban structure inferring and 

briefly described the research. Section 2 presents a 

literature review to determine the advances in this 

area. The formulation for the problem definition is in 

section 3. Section 4 proposes algorithms for 

inferring the effective urban structure. In section 5, 

we find the testbed and the experimental result. A 

conclusion takes place in the final section to discuss 

the achievements. 
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2. Literature Review 
 

Despite recent improvements in intelligent 

transportation, analyzing and demonstrating traffic 

dynamics still needs to be improved. [26] considered 

urban intersection and multi-dimensional vehicle-

vehicle interaction models, which are pretty complex 

and challenging on a large scale. They also 

optimized the urban traffic graph using efficient 

computational simulation and proposed basic 

innovative methods. Simulating Realistic Manhattan 

topologies with different types of intersections helps 

us understand different traffic patterns and calculate 

the average travel delay. As long as modeling 

massive urban data flows requires more rigorous 

approaches, traditional models suffer theoretical 

limitations in complex systems. [27] described a 

conceptual framework for modeling city traffic 

dynamics and offered a way to confine complexity 

based on the abstract power of Markov chains. The 

test suite of the proposed model was a real-world 

data set of taxis' GPS footprints in Beijing. 

Novel technologies can gather real-time data from 

urban areas and estimate their distribution of traffic 

for further analysis. Nowadays, we can extract 

valuable scenarios from such data. [28] extracted 

congestion hotspots in urban areas using a model 

based on essential cases in complex networks. The 

model could identify sensitive points that can 

become hotspots increasing mobility demand. [29] 

Urban transportation networks were highly 

uncertain, unpredictable, complex, and stochastic. 

The author proposed a framework based on the 

Markovian approach to model dynamic network 

traffic and used public Google Maps data of 

downtown Baltimore to validate the model. A 

statistical method calculated the complexities of 

transportation. 

Urban dynamics detection in multi-layer network 

growth is a research topic providing scholars with a 

new way of considering structure-changing trends 

and respected impacts. A quantitative research 

method examined network centrality, accessibility, 

and community partition in [30], focusing on the 

growth of the upper layer (rail network). The 

researchers found that when a rail network grows 

from a simple tree-like network to a more intricate 

form, the network diameter and the average shortest 

path length of multi-layer networks decrease 

dramatically in the case study of Kuala Lumpur. The 

network expansion ability has been changing, and 

more rail stations in the city center had a higher 

ability for future expansion. They discussed the 

different performances of these nodes added in the 

multi-layer network to show the impact on the 

repartition of network communities and the number 

of decreasing communities. The research could help 

scholars understand and apply these network 

dynamic computational techniques. 

The mathematical computer modeling of cities has 

roots in the past. The core elements are the structural 

evolution dynamics and flow models (spatial 

interaction). [31] developed an urban structure 

stochastic model to deal with uncertainty arising 

from unexpected events. They presented two 

noteworthy results: the representation of the 

structural variables via a single potential function 

and evolution modeling by developing stochastic 

differential equations and showing the ability to 

estimate parameters of the spatial interaction model 

from the structure alone, independently of flow data, 

using the Bayesian inferential framework. Markov 

chain Monte Carlo methods were their solution to 

overcome significant computational challenges of 

the posterior distribution in the case study on the 

London, UK retail system. 

[32] investigated the role of evolving urban spatial 

structure in commuting patterns of Beijing, China. 

They identified persisting, emerging, and non-center 

areas between 2000-2008 in Beijing's three 

subregions to describe the multi-dimensional and 

dynamic urban spatial evolution. They stated that 

commuting differs between persisting, emerging, 

and non-center areas and, more notably, across the 

subregions. Emerging center areas generated longer 

commutes than other similar areas. Commutes to 

emerging centers were shorter in the inner-ring 

suburbs compared to persisting centers. Emerging 

center areas incurred the longest commutes in the 

outer-ring suburbs, while persisting center areas 

were the shortest. They reflected changing economic 

and urban functions in distinct city subregions and 

warned about the increase in commutes and relevant 

adverse side effects in developing polycentric urban 

Chinese cities. 

There are high maintenance and operation costs in 

the universal deployment of devices in urban flow 

monitoring systems. There is a demand for 

techniques to reduce the number of deployed devices 

without degenerating granularity and data accuracy. 

[33] presented an approach to infer the fine-grained, 

real-time crowd flows throughout a city based on 

coarse-grained observations. This task has two 

challenges: the spatial correlations between coarse- 

and fine-grained urban flows and the complexities of 

the external effects. A developed model called 



H. Yasinian, M. Esmaeilpour / Learning Automata-Based Approaches to Infer Urban Structure from …….. 

44

 

 

UrbanFM handled these challenges. It consisted of 

two major parts: an inference network to generate 

fine-grained flow distributions from coarse-grained 

inputs using a novel distributional upsampling and 

feature extraction module and a general fusion 

subnet to increase the performance considering the 

influence of various external aspects. They reported 

the remarkable effectiveness and efficiency of the 

structure for small-scale upsampling. The single-

pass upsampling used by UrbanFM was insufficient 

at higher upscaling rates. Hence, they presented 

UrbanPy, a cascading model for advanced inference 

of fine-grained urban flows decomposing the 

original tasks into numerous subtasks. This 

improved structure demonstrated more satisfactory 

performance in larger-scale inference tasks 

compared to UrbanFM. 

Intelligent transportation systems guarantee public 

safety and are critical. Two aspects make such 

systems very complicated: complex Spatio-temporal 

correlations of traffic, including spatial correlations 

between locations among timestamps along with 

temporal correlations, and a variety of such 

spatiotemporal correlations depending on the 

surrounding geographical information (varying from 

location to location, e.g., points of interests and road 

networks). A deep-meta-learning-based model 

named ST-MetaNet was proposed in [34] to handle 

challenges mentioned collectively by predicting 

traffic in all locations simultaneously. ST-MetaNet 

employed a sequence-to-sequence architecture 

containing an encoder to learn historical information 

and a decoder to make step-by-step predictions. 

There were embedded recurrent neural networks in 

both the encoder and decoder of the traffic. The 

extensive experiments illustrated the ability of ST-

MetaNet on two real-world datasets. 

Surveying different characteristics and abilities of 

various network structures under traffic congestion 

were the goal of the research [35] in response to 

shortcomings in single-layer networks. Simulation 

and a comparative experiment guided us to obtain 

optimal multi-layer urban traffic network topology 

under different conditions. They found that scale-

free interconnected multi-layer networks have a 

relatively powerful ability to support more traffic 

and have higher anti-congestion capacities. The 

research results helped deepen our understanding of 

the traffic network structures' characteristics. 

Weather and human interactions are unpredictable 

observed elements in a vehicle traffic network. They 

create dynamic systems with high complexity and 

non-linearity. Consequently, modeling the evolution 

of traffic systems over time is complicated through 

mathematical or modern patterns. Robust traffic 

analysis and forecasting approaches are in great 

demand for transportation systems. [36] offered a 

model-free data-driven approach to analyze and 

forecast traffic dynamics using the Koopman mode 

decomposition. Their work included the 

reconstruction of observed data, distinguishing 

decaying or growing patterns, and obtaining 

hierarchies of previously identified and never before 

identified spatiotemporal patterns from data sets 

delivered by the California Department of 

Transportation and the Federal Highway 

Administration. They claimed that forecasting 

highway network conditions are possible using this 

methodology.  

 

3. Problem Formulation 
 

Definition of structural connectivity ( S ) depends on 

adjacency, travel time, distance, or other information 

about connections between zones. The n n  adjacency 

matrix of a weighted graph  ,G V Lss
 is the 

structural connectivity. V is the set of n nodes (zones) 

and L
s

is the edges representing structural 

connectivity between zones. An n m matrix B forms S

, where 1B
ij
 if road j passes through zone i . 

Connection strength between zones is the 

implication of the structural connectivity equation 

[6]: 

 

 

 

(1) 

Sij  is the number of main roads linking i and j . 

Structural connectivity is not the only factor, and 

there is a functional connectivity factor between 

zones ( F ). An n n symmetric adjacency matrix of a 

weighted  ,G V Lf f graph is functional connectivity.

L f  is the edges representing functional connectivity 

between zones. An n T matrix D forms F where Dit

represents the traffic volume or the number of 

vehicles passing the road i  at time t . 

An n T matrix D F is obtained using from which Dit

represents the traffic volume or the number of 

vehicles passing the road i at time t . Functional 

T
S BB
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connectivity reveals functional similarity between 

zones and it is as follows: 

 

 
 

(2) 

 

is an operator to calculate the absolute value of one 

minus distance as the similarity. The proposed 

formulation needs a distance metric, and 

Bhattacharyya distance [37] measures the similarity 

or closeness between two discrete or continuous 

normal distributions: 

 

 

 

  

 

 

 

 

 

 

(3) 

In equationError! Reference source not found.,T  

is the number of periods and F is a symmetric 

matrix. 

Inferring an optimal connectivity matrix ( O ) is the 

problem here. Although O can represent the existing 

structure ( S ), it should also reveal other time-

dependent structural connectivity relationships that 

can represent high inferred connectivity between the 

zones demanding connection according to the traffic 

dynamics hidden in the present structure. O  needs to 

represent the essential edges and some new links that 

are very high-demanded and rare. 

The objective is to maximize a fitness function's 

value, consisting of two sub-functions. The first one 

( 1Y  ) is the affordability of creating the estimated 

optimal connectivity ( Ô ) and the structural 

connectivity ( S ). Higher values are profitable 

(equationError! Reference source not found.). The 

second sub-function ( 2Y  ) is the quality added to the 

structure by changing links. Allocating more roads 

to more dynamically similar zones is considered the 

quality of the estimated structure 

(equationError! Reference source not found.). 

Therefore the objective function ( Y ) is as follows: 

 

 

 

 

(4) 

Where: 

 

 

  

 

 

 
(5) 

 

  

 

 

 

 
(6) 

 

In formula Error! Reference source not found.   

and   are constant parameters regulating the 

influence of sub-functions on the objective function 

( 1   ).The affordability in equation 

Error! Reference source not found. is the inverse 

of the sum of the costs over time. 

The formulation has two types of costs: demolition 

( Dem ) and construction ( Con ) costs. The following 

formula takes advantage of the difference between 

the estimated optimal connectivity ( Ô ) and the 

structural connectivity ( S ) to integrate normalized 

value of these costs: 
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(7) 

If there is no connection between nodes ( ,i j ) 0k  , 

so when we want to connect them, 1k k  and we 

must pay   ijkCost . It means that the cost of linking 

two zones differs each time, e.g., the cost of 

constructing a road between two zones for the first 

time is different from the second time.  

 

4. Problem Formulation 
 

Our proposed methods are LA-based ones. A 

learning automaton, as a machine learning algorithm 

studied since the 1970s, selects its current action 

based on past experiences from the environment. It 

will fall into the range of reinforcement learning if 

the environment is stochastic and utilizes the 

Markov Decision Process (MDP). Before presenting 

the proposed LA-based methods, we need to explain 

some concepts. 

4.1. Reinforcement Learning 
 

Machine learning explores and engineers algorithms 

and methods on which systems and computers can 

learn. It is one of the comprehensive and widely 

used units of artificial intelligence. The machine 

learning goal is that computers, in the most general 

sense of them, can find a better performance by 

utilizing data gradually. Reinforcement learning, or 

RL, is an interactive strategy different from learning 

by monitoring. This type of learning uses actual 

measurements and signals for indirect learning to 

diagnose the inaccuracy or correctness of the 

learning procedure. In other words, the accumulated 

knowledge is reinforced or weakened by rewards or 

penalties [11].  

 

4.1.1. Learning Automata 
 

A learning automaton can be considered an abstract 

object with a limited action set. Learning automata 

works by choosing an action from the set of actions 

and applying it to the environment. A randomized 

environment evaluates the action, and automata use 

the environment's reaction to choose the next step. 

Automata learn to choose optimal action during this 

process. The automata learning algorithm determines 

the usage of the environment's reaction to the 

selected action that selects the following automata 

action. Two sorts of learning automata are automata 

with fixed structure and automata with variable 

structure. In a static structure stochastic automata, 

the probability of the actions is unchangeable, such 

as in types like Testline, Krinsky, TestlineG, and 

Krylov. While in variable structure stochastic 

automata, the actions' probability changes in each 

repeat. 

4.1.2. Stochastic automata With Variable 

Structure 
 

The modifications in the actions' probability are 

performed based on the learning algorithm in 

variable structure learning automata. In this type of 

automata, the representation of the automata's inner 

state ( i ) is by the actions' probability, called the 

probability vector (  , , ,,
1 2

i i i ip p p pr ). The 

learning algorithm is a repetitive relationship to 

modify the state probability vector. If the 

environment's response is proper, the action is 

rewarded 

(equationError! Reference source not found.) and 

penalized otherwise (equation 

Error! Reference source not found.). The learning 

algorithm is a determining factor of the learning 

automata performance to update the actions' 

probability. There are different learning algorithms 

in the literature [38]. The general form of the 

learning algorithm is as follows )if the selected 

action is i in this step): 

 

A: Appropriate Environment’s Response 

 
 

( 1) ( ) [1 ( )]             

( 1) (1 ) ( )       ,   

p n p n a p ni i i

p n a p n j j ij j

   

    
 

(8) 

 
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  B: Inappropriate Environment’s Response  

 

( 1) (1 ) ( )                          

( 1) (1 ) ( )   ,   
1

p n b p ni i
b

p n b p n j j ij j
r

  

     


 
(9) 

 

Where r is the number of automata actions, a and b

are the reward and penalty parameters respectively. 

Regarding to a and b values, three conditions can be 

assumed. If a and b are equal, learning automaton is 

called LRP , if b  equals zero, it is called LRI and if

b a it is named LR P . 

4.1.3. Distributed Learning Automata 
 

The distributed learning automata (DLA) is an 

automata network that concertedly collaborates to 

solve a particular problem. A directed graph models 

a DLA, and the set of nodes in the graph represents 

the set of automata. Each node's outgoing edges 

represent the corresponding automaton's group of 

actions. The automaton action selection causes a 

different automaton on the other side of the edge to 

be activated, corresponding to the selected action. At 

any time, there is just one active automaton in the 

network. We formally define DLA with  learning 

automata as a graph .  is the 

set of automata, and  is the set of edges in the 

graph. The edge  corresponds to the action  

of the automaton . The action probability vector 

for learning automaton is  where  represents 

the probability of selecting action  by . 

4.1.4. Cellular Automata 
 

Cellular Automata are a distributed computing 

model providing a platform for performing complex 

computations through local interactions. CA is a 

lattice of similar simple units or cells. Putting many 

cells together produces complex behavioral patterns 

because of the cells' interactions with their 

neighbors. The update of each cell's state is 

according to its current state and neighbors using the 

CA's updating rule. represents a d-

dimensional CA, where is a lattice of d-tuples 

from integer numbers. shows each cell in

 1 2; ;:::; Dz z z , and 1;2;:::;F f kg is a finite set of 

states. or neighbor vector is a 

finite subset of the
dZ . The neighbor vector 

determines the relative positions of neighboring cells 

for any given cell in the
dZ . Neighbors of a cellu

are the set { 1,2,... }iu x i m  and finally , 

: mF   is the local rule of the CA, which 

produces the cell's new state considering the current 

neighbors' state [39]. 

There have been many different structural variations 

of CA proposed since its beginning. CA can be 

classified based on different features. According to 

the possible states for the cells, CAs can be binary 

and multi-valued. The applied local rule to each cell 

may be identical or different. We refer to these two 

possibilities as uniform and hybrid CA. Most local 

rules are deterministic, although there are variations 

of probabilistic [40] or fuzzy [41] local rules. Cells' 

states lay down the local rules; thus, all cells update 

their state simultaneously, and These CA are 

synchronized. On the contrary, local rules might be 

state and time-dependent, which results in 

asynchronous CA. Choosing an appropriate model 

depends on the given application.  

4.1.5. Cellular Learning Automata 
 

Every cellular learning automaton includes a set of 

learning automata. The learning automata in each 

cell determine the state of the corresponding cell 

based on its action probability vectors. There is an 

operation rule for CLA similar to cellular automata. 

The rule and the selected actions of the neighbor 

cells determine the reinforcement signal provided to 

the learning automata residing in that cell. In CLA, 

neighboring learning automata in any cell contain 

their local environment. This environment is not 

stationary as long as it changes and is affected by the 

learning automata actions [42]. A d-dimensional 

cellular learning automaton is a structure

, , , ,dZ A N F . A is a set of LA assigned to 

cells of the CLA. : mF    is a function to 

compute the reinforcement signal for each LA based 

on the state of the neighbouring LA, where    is the 

possible values for the reinforcement signal. 

Cellular learning automata work as follows: the 

initial step is defining each cell's state according to 

the probability vectors of the LA in that cell. The 

n

( ), A E , , , 1 2{ }A A A An

E A A 

( ), i j j

Ai

Aj
jp

j
pm

m Aj

, , ,dZ N F

dZ
dZ

1 2{ , ,..., }mN X X X
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previous experiments arbitrarily determine the initial 

state of the CLA. In the second stage, each cell's 

local rule determines the cell's reinforcement signal. 

Finally, each LA updates its probability vector using 

the reinforcement signal and the cell's chosen action. 

This process continues until some condition is 

satisfied. 

In most applications, all cells synch with a global 

clock and operate simultaneously. However, in some 

cases, activation of different cells' LA is 

asynchronous (asynchronous cellular learning 

automata (ACLA)) [43]. In standard CLA or close 

CLA, each cell only interacts with its local 

environment, including neighboring cells. Some 

applications also have a global environment, and 

cells interact with the local and external global 

environments. This kind is open cellular learning 

automata (OCLA) [44]. CLA containing multiple 

LA in each cell is another type of CLA. Several LA 

serves each cell in this kind of CLA, and the 

activation of LA can be synchronous or 

asynchronous [45].  

4.2. Optimal Connectivity Inferring 
 

In this section, we propose methods for inferring 

structural connectivity. A must-finding hidden 

structure is the optimal connectivity matrix that the 

proposed methods (DLA-based and CLA-based) try 

to discover. Each node in the graph  ,G V Ls s

represents a zone with a learning automaton. The 

graph is complete, so an automaton has 1n actions 

( n is the number of zones), and the actions are 

selecting other city zones. To infer the optimal 

connectivity matrix, there are two proposed 

algorithms in this paper. Ô is the estimated optimal 

connectivity matrix, an n n one in which all of its 

elements are zero when the algorithms begin.  

 

4.2.1. Algorithm 1: Optimal Connectivity 

Inferring Using DLA 
 

We modify the algorithm presented in [46] here to 

deal with inferring urban structure from traffic 

dynamics bringing costs up.  

An automaton i related to the randomly chosen zone 

in the algorithm selects an action j first. After 

choosing the action by the automaton i , the update of

Ô takes place, and ˆ ˆ 1O Oij ij  , ˆ ˆ 1O Oji ji  . When the 

automaton's action updates Ô , that automaton is 

rewarded or penalized by changing the 

corresponding probability vector. Rewarding or 

penalizing is carried out based on the increase or 

decrease in the objective function value Y  

(formulaError! Reference source not found.) 

compared to the previous values of Y . If the Y value 

corresponding to the new Ô is higher than the highest 

value achieved, the algorithm rewards the automaton 

or penalizes otherwise. The algorithm repeats the 

process to constitute the optimal connectivity matrix 

until there is no progress in Y value for more than a 

predefined number of action selections ( ne ). The 

method uses a smoother vector ( s ) instead of the 

probability vector for action selection which is: 

 

 

 

1 deg

1 deg1

pij
Vij

r vi i
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j r pij
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r vii
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 
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(10) 

   

In equationError! Reference source not found.,

1  is a normalizing factor.  deg vi  is the degree of 

node iv , andV  is the normalized functional 

connectivity covariance matrix: 

 

1

Vij
V

ij n
Vij

j






 
 

(11) 

 

In equation Error! Reference source not found.,V

is the functional connectivity covariance matrix 

defined by equation 

Error! Reference source not found. [6]: 

 
TV DD   

 

(12) 

 

After reaching the stop criterion, the last Ô  with the 

highest objective value is considered the best 

estimated optimal connectivity in this algorithm 

iteration. The method starts from another random 

point using an updated probability vector to form 

another Ô . After repeating 1n times, the best Ô  is the 

one with the highest Y value. The algorithm iterates

2n times to escape from trapping in local optimums 

likely to happen because of convergence to a non-

optimal probability vector. 
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DLA Based Optimal Connectivity Inferring (Algorithm1) 

 

Input: V , S , F , a , b ,  , and   

Output: O  

 

1: Repeat 

2:     Initialize P  

3:     Repeat 

4:           Initialize Ô  

5:           Choose a random zone 

6:           Repeat 

7:                Select an action by the current automaton 

                   according to s  (relation 

Error! Reference source not found.). 

8:                Update estimated optimal connectivity matrix Ô  

9:                Calculate objective function Y
(relationError! Reference source not found.) 

10:              Update p  (relations Error! Reference source not found. 

and Error! Reference source not found.) 

11:         Until reaching stop criterion 

12:       Compare Ôbest with the Ô and replace Ôbest with Ô  

               if new Y value is higher. 

13:    Until 1n 2n iterations 

14:    Compare O with the Ôbest and replace O with Ôbest  

          using objective function value Y . 

15: Until 1n iterations 

 

4.3. Algorithm 2: Optimal Connectivity Inferring 

using CLA 
 

Algorithm 2 is a method to detect unconnected 

sections and then integrate them, maximizing the 

fitness function. CLA's learning nature results in 

optimal connectivity. The following passage 

discusses the proposed algorithm in 7 steps: 

1. Creation of irregular cellular learning automata. 

2. Assigning one cell to each zone and one LA to 

each cell. 

3. Action selection by all cells in a parallel manner 

and adding the selected zones to the string inside 

each cell. 

4. If the selection of an area is over the threshold (its 

degree here), checking the fitness function value 

before and after the selection is necessary. 

Increasing the value makes for updating the optimal 

structure. 

5.  Repeating step 3 until achieving the stop 

criterion. 

6. Discovering the connected zones to each zone by 

the strings inside each cell. 

7. Integrating the acquired strings by a greedy search 

algorithm maximizing the fitness value. 

8. Calculating the final fitness value. 

9. Checking improvement in the fitness function 

value (reward for all actions in case of success or 

otherwise penalization). 

10. Returning to step 2 until reaching the stop 

criterion.In step 1 n cellular automata are generated 

each with an empty strings. These strings can be the 

neighbors of the zones discovered by the method. 

Each CLA is assigned to a zone and equipped with 

an LA. CLAs select actions using formula 

Error! Reference source not found. in step 3. The 

optimal connectivity matrix is updated if the 

condition described in step 4 is met. The internal 

loop is terminated should no progress occur in Y

value after a predefined number of iterations ( ne ). 

The connected areas to each zone is determined by 

the string inside its corresponding CLA in step 6. If

j is shown up ns  times in the string belonging to the 

CLA i , then ˆ
nO

ij
s , ˆ

nO
ji

s . In step 6, the fitness 

function value is first calculated for the current 

achieved structure, then two strings with the most 

connections between their vertices (the edges 

between nodes of two strings are maximal) are 

combined, and the fitness function is recalculated. If 

the fitness value increases, the combination process 

continues, otherwise it stops. The internal loop 

terminates and the estimated optimal structure is 

found. 
 
CLA Based Optimal Connectivity Inferring (Algorithm 2) 

 

Input: V , S , F , a , b ,  , and   

Output: O  

 

1: Repeat 

2:     Initialize P  

3:     Repeat 

4:           Initialize Ô  

5: Assign a cellular automaton to each zone and put an 

automaton in each CLA 

6:           Repeat 

7:                For all cells do in parallel 

8: Select an action by the current automaton 

according to s (relation 

Error! Reference source not found.). 

9: Check if selected areas are more than their 

degree and update Ô respectively. 

10:         Until reaching stop criterion 

11:         Calculate objective function Y
(relationError! Reference source not found.) 

12:         Update p  (relations Error! Reference source not found. and 

Error! Reference source not found.) 

13:        Compare Ôbest with the Ô and replace Ôbest with Ô  

              if new Y value is higher. 

14:    Until 2n iterations 

15:    Compare O with the Ôbest and replace O with Ôbest  

          using objective function value Y . 

16: Until 1n iterations 
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5. Experimental Results 
 

There are two metrics to evaluate the methods: the 

similarity between the structural connectivity matrix 

and the optimal one (formula) and the analogy 

between the optimal structure matrix and the 

functional connectivity matrix (formula). 

 We carry out the experiments using two datasets 

(synthetic and real-world). The synthetic data 

experiments show the general effectiveness of the 

proposed approach and novel problem definition. 

The Camera data gathered using the municipality 

sensors deployed in the city of Hamadan’s urban 

areas are to demonstrate the applicability of the 

mathematical formulation of the problem in real-

world applications. 

 

5.1. Experiments on Synthetic Data 
 

Three synthetic sets of data with different 

numbers of zones are used here 

( 10, 100, 1000n n n   ). A random integer between 

zero and 2logn  is assigned to each edge that 

represents the number of roads connecting the 

corresponding zones. So S  is a symmetric 

matrix and its elements are some numbers in the 

mentioned range.  
 

 
 

Fig. 1. An example of a synthetic urban area with 10n  . 

To form matrix F , the traffic flow (matrix D ) is 

needed. Each row in D represents the traffic pattern 

of an urban zone in different time periods. The 

number of vehicles crossing the roads of each urban 

zone varies over time. A random number production 

function should be applied to create such numbers. 

Various distributions can be used for random 

number generation and the selected function here is 

the normal distribution or Gaussian distribution 

which is widely used to model random processes 

such as traffic. There are two parameters in this 

probability function, one for location   which is 

referred to as the means of distribution and another 

one for scale   that is also called scattering. The 

Normal distribution probability density function 

formula is defined by equation 

Error! Reference source not found.. 

 

 
 2

12 2; , 2
22

x

f x e



  
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 

  

 

(13) 

 

 

It is assumed that the Ci vehicles pass through zone 

i , and the required time for each one is a normal 

random integer derived from a normal distribution 

probability density function. Based on the 

assumptions, there are some decisions for each zone 

to generate functional connectivity matrix. The first 

one is the total number of vehicles Ci . The second 

one is the number of normal distribution probability 

density functions f and their  and , and the final 

decision is about the time interval. In Error! 

Reference source not found. an example of the 

traffic generated during different time intervals of a 

day is presented. In this pattern 700 vehicles pass 

through the zone. The required time for 500 vehicles 

are derived from Gaussian function with 12  and

3  . Others are derived from another function with

20  and 1  . 

 

 
Fig. 2. An example of a city zone traffic pattern. 

In all synthetic experiments, two Gaussian functions 

with different  and can be utilized to create the 

pattern of the traffic. Each function creates a distinct 
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number of integers. Each data is produced by using a 

number of  3log10 n  different patterns, so the number 

of patterns for 10n  , 100n  , and 1000n   would be 

3, 6, and 9. Each pattern has its own number of 

vehicles Ci which can be calculated using a random 

number between 3 2n n  and 3 2n n . A random 

proportion of Ci is dedicated to the first distribution 

and the rest are for the second one. 

Table 1 

An example of Parameters used to generate patterns for 10n  . 

i  Ci  Details 

1 1083 
8581Ci  , 12  , 3   

2252Ci  , 20  , 1   

2 1092 
7161Ci  , 13  , 3.5   

3762Ci  , 19  , 2   

3 907 
7701Ci  , 11.5  , 4   

1372Ci  , 21  , 1.5   

 

The traffic of each zone in the network generated by 

the traffic generation method with one of the 

parameter settings causes some zones to have the 

same pattern. The patterns generated by the 

introduced method with specific parameters (e.g.,) 

can be applied to form the traffic flow for a whole 

day. Performing the approach again creates weekly 

or monthly patterns. It is also possible to divide a 

day into arbitrary intervals. All experiments generate 

a set of weekly flow data with 15 minutes intervals 

using the method explained. 

To start the experiments, some parameters need to be 

set. There are two adjustable parameters in the 

objective function (  and  ), which represent the 

importance of each sub-function. If adding or 

removing a link from a network structure is so 

costly, the first objective function is of more 

importance and  has to have a greater value than  ; 

otherwise if the current structure is not effective and 

inferring, the structure from dynamics is favorable 

(   is dominant to ). In all experiments here they 

are the same ( 0.5   ). Other parameters are reward 

and penalty parameters ( a and b ), which are set 

0.1a   and 0.01 in all experiments. These values 

are obtained after applying the proposed method 

upon different datasets many times.  

After applying the proposed method on the synthetic 

datasets the optimal structure is found and 

represented by the optimal connectivity matrix. 

Value of the objective function is changed in each 

iteration of the internal loop of the algorithm 

because of automata action selection. 

After passing iterations in the internal loop, there 

might be no improvement in the objective function 

value. The algorithm chooses the structure with the 

highest Y as the estimated optimal structure which an 

example is shown in Error! Reference source not 

found. The algorithm will terminate internal loop 

automatically if there will be no improvement in 

objective function value after passing ne iterations. 

 

 
0.2640Y   

Fig. 3. Estimated optimal structure found in the internal loop 

of the algorithm executed on data with 10n  . 

 

The procedure of internal loop is repeated using the 

tuned probability vectors hoping to find a better 

structure with higher objective function value. 

During this loop, the probability matrix is updated 

again in accordance to the optimal structure. Number 

of iterations for external loop is 1n . The whole 

process is repeated 2n  times to examine the ability 

of algorithm. The stopping criterion parameters are 

specified in Table 2. 

Table 2 

Stopping criterion in synthetic data experiments. 

Number of zones ne  1n  2n  

10 20 20 30 

100 40 200 30 

1000 60 2000 30 

Three algorithms are employed in this section to 

solve the problem; these methods are retrieved from 

the following section: 
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Table 3 

Algorithms to solve the problem. 

# reference name 

1 [47] 
Urban Structure Accessibility Modeling and 

Visualization for Joint Spatiotemporal Constraints 

2 [48] 

Learning Urban Community Structures: A 

Collective Embedding Perspective with Periodic 

Spatial-temporal Mobility Graphs 

3 
Algorithm 1 

[46] 

Distributed Learning Automata Based Approach to 

Inferring Urban Structure via Traffic Flow 

4 Algorithm 2 
Inferring Urban Structure from Traffic Flow using 

Cellular Learning Automata 

A set of points of interest and human mobility 

vectors taken from GPS trajectories are used in [48] 

to learn the vector representation of the community. 

This can describe static spatial configurations and 

the dynamic connectivity of human mobility in the 

community. In our problem definition, the 

community representation is consonant. We use the 

second term of the method defined in [48] to 

formulate and solve the problem based on the data 

described before. There is a similarity between the 

two POIs calculated using cosine similarity, and 

each edge gets a weight in that method. The learning 

framework outputs a representation that is 

considered an estimated optimal connectivity. Then 

we can calculate the fitness function value using the 

equation. 

Computational models are developed in [47] to 

extract joint-constrained and dynamic structures in 

cities, which helps demonstrate accessibility. A 

model named USAGraph forms regions that satisfy 

some constraints. We define Primary Traffic 

Regions (PTRs) according to the constraints.  

PTR areas are assumed to be connected in the 

estimated optimal connectivity structure. We use the 

areas to compute the fitness function value based on 

equation (4). 

Table 4 reveals the minimum, maximum, mean, and 

variance of the fitness function value calculated after 

implementing the algorithms on three synthetics. 

The min, max, and mean values of the objective 

function obtained by the proposed algorithm 2 are 

higher than the ones from other algorithms on 

synthetic data. The variance is lower in all cases, 

which is very favorable. The proposed algorithm 

learns traffic dynamics iteratively. The advantages of 

this algorithm result in finding the latent link based 

on the current structure.  

Table 4 

Results obtained by the algorithms on different datasets. 

Objective 

function 
Algorithm 

# 

Dataset 

10 

100 1000 

Min 

1 
0.2152 0.2286 0.2521 

2 
0.2132 0.2415 0.2629 

3 
0.2342 0.2744 0.2989 

4 
0.2344 0.2785 0.3011 

Max 

1 
0.2392 0.2621 0.3023 

2 
0.2510 0.3028 0.3511 

3 
0.2818 0.3272 0.3605 

4 
0.2824 0.3281 0.3621 

Mean 

1 
0.2265 0.2410 0.2611 

2 
0.2314 0.2809 0.2759 

3 
0.2546 0.3043 0.2978 

4 
0.2557 0.3062 0.3211 

Variance 

1 
0. 000581 0. 000667 0. 001023 

2 
0. 000491 0. 000421 0. 000991 

3 0.000213 0.000287 0.000932 

4 0.000219 0.000282 0.000901 

 

5.2. Experiments on Real World Data 
 

In these experiments, the network structure 

consists of different zones of Hamadan that have 

40 separated parts (Error! Reference source 

not found.) and the connections between them. 

The traffic dynamic data is the number of 

vehicles going through the paths that connect 

the zones in 15 minutes intervals obtained by 

cameras installed on streets. It is very costly to 

create or remove a new path from the city 

structure, so the first sub-function( 1Y ) will be of 
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high importance and S  must be as close to Ô  as 

possible, therefore 0.9  and 0.1  . 

 

 
Fig. 4. Map of Hamedan city consisting 40 zones. 

 
 

Reward and penalty parameters used in the proposed 

algorithm are 0.1a   and 0.01 in this test, which 

are obtained based on many examination. The 

stopping criterion parameters for this case can be 

found in Table 5. 

Table 5 

Stopping criterion in real data experiments. 

Number of zones ne  1n  2n  

40 32 80 30 

As it was explained the estimated optimal 

connectivity matrix which represents the optimal 

structure can be found during the internal loop 

causing a growing flow in the objective function 

value by automata action selection. The structure 

with the highest Y as the estimated optimal structure 

is chosen by the algorithm and the algorithm will 

terminate internal loop as it was described before. 

The procedure of internal loop is repeated 1n times to 

find the best estimated optimal structure. After 

accomplishing the execution of the proposed 

algorithm on real world datasets Minimum, 

maximum, mean, and variance of fitness function 

value is calculated (Table 6). 

 

Table 6 

Results obtained by the algorithms on real datasets. 

Objective function 
Algorithm 

# 
value 

Min 

1 0.8191 

2 0.8339 

3 0.8590 

4 0.8598 

Max 

1 0.8976 

2 0.9100 

3 0.9310 

4 0.9322 

Mean 

1 0.8511 

2 0.8962 

3 0.9213 

4 0.9218 

Variance 

1 0.000321 

2 0.000299 

3 0.000236 

4 0.000230 

5.3. Time Complexity Survey 
 

There are two fixed loops in algorithm 1 repeating 1n

and 2n times. There is another loop with uncertain 

repetition cycles. This loop is highly dependant of 

the problem and (the network structure, traffic flow, 

and the regulating parameters in the fitness 

function). If we confine the algorithm to create just 

one link between two distinct nodes, it will repeat 

ne n times in worst case scenario. So the time 

complexity will be   1 2n n ne n . Like algorithm 1, 

there are also two fixed loops in algorithm 2 one 

repeating 1n and 2n times. Considering the same 

limitation, the other loop repeates 1ne to ne n

times in worst case scenario, because of parallel 

nature of action selection. So the time complexity  

 

will be
1

1 2
2

n
n n ne
  

  
  

. 
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6. Conclusions 
 

Two methods have been proposed in this paper, 

trying to optimize an objective function that bears a 

paradigmatic structure. Two types of data, synthetic 

and real-world, have been used to show the 

effectiveness of the algorithms. A method generated 

synthetic data to create traffic patterns in 10, 100, 

and 1000 zones. Two kinds of data that included the 

static road network connectivity of zones and 

functional correlations of traffic flow between the 

city zones have been used and provided for the 

presented methods. These kinds of data are useful 

for finding hidden connections, which are very 

helpful in city planning. Using the traffic dynamics, 

some unconnected linkages in the current structure 

appeared. The zones connected with the new paths 

are beneficial because their traffic models are 

indifferent. We examined the proposed algorithms 

on different data compared to other algorithms. 

Algorithm 2 potentially has a better performance rate 

than the other algorithms on real-world and synthetic 

data using the objective function's min, max, mean, 

and variance. The experiments showed that the 

CLA-based algorithm outperforms others in all 

cases, and the DLA-based one is the second. In real 

datasets mean fitness function for the CLA-based 

one is 0.9218, and for the DLA-based one, it is 

0.9213, and we can observe that the CLA-based 

algorithm is better than the DLA-based algorithm. 

This performance can be because of the learning 

nature of the algorithms to infer the optimal 

structure. Utilizing other MDP-based approaches to 

infer urban structures can be a future study. The 

presented algorithms can be beneficial in other forms 

of planning other than urban management in traffic 

optimization like management, engineering, 

construction, economics, and many more fields. 
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