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Abstract 
 

In fog computing, optimal offloading is of crucial importance due to the limited energy of mobile devices. In this regard, 

using machine learning methods has recently attracted much attention. This paper presents a reinforcement learning-based 

approach to motivate users to offload their tasks. We propose a self-organizing algorithm for offloading based on Q-learning 

theory. Performance evaluation of the proposed method against traditional and state-of-the-art methods shows that it 

consumes less energy. It also reduces the execution time of tasks and results in less consumption of network resources. 
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1.Introduction 
 

The use of fog computing technology in fields such as 

industry and vehicle traffic management is expanding 

rapidly [1, 2]. The basic idea is to transfer large 

amounts of data from the Internet of Things (IoT) 

devices to a remote cloud. Here, if an end device's 

computing capacity is insufficient, the task is 

offloaded to a near-cloud device. Similarly, if the 

resources on the cloud machine are inadequate, the 

task is offloaded to the remote cloud. 

The literature review shows that most research has 

been focused on minimizing delay and energy 

consumption. Some of the essential methods used in 

the literature are game theory [3, 4], auction theory [2, 

5], and meta-heuristics [1, 6]. Recently, the use of  

 

 

 

 

 

 

machine learning methods, especially Reinforcement 

Learning (RL) [7], for offloading optimization has 

been considered. Here, each agent learns to behave 

based on the reward/penalty of the previous rounds in 

a way that leads to the optimization of the goal in the 

following rounds. In other words, in RL, the agent 

tries to learn from the experiences gained from 

previous actions. This is the way that humans and 

animals learn in the real world. Various theories in RL 

have many diversities in goals and working methods. 

Their main difference is in the goals and type of 

modeling. The main contribution of this article is as 

follows: 

 

 After modeling the system with queuing theory, we 

solve the joint minimization problem of delay and 

energy consumption. For this purpose, we perform 
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new modeling with the Q-learning method based 

on real-world requirements. 

 The reward function we design is based on price. 

We consider a predetermined price for each joule 

of energy consumption. This paper complements 

one of the most recent research [2] in which each 

agent uses a Second-price Sealed-bid auction 

(SPSB) for task offloading. In this modeling, only 

the user who wins the auction has the right to use 

the resources of the fog machine to offload his/her 

tasks. Nevertheless, our proposed model does not 

ignore the chances of losing users in the following 

rounds. In this way, it tries to provide fairness to 

all users. 

 

The remainder of this paper is organized as follows: 

Section 2 reviews the most critical studies on 

offloading optimization based on RL methods; 

Section 3 explains the system model; Section 4 

describes the proposed method; Section 5 presents the 

evaluation results of the proposed method along with 

statistical analysis; Finally, Section 6 concludes the 

study. 

 

2- Related Works 
 

In recent years, critical research has been conducted 

on modeling offloading based on RL, most with Deep 

Reinforcement Learning (DRL). Interested readers 

can refer to [8] for a more in-depth study. Santos et al. 

[9] proposed a DRL method for joint energy 

consumption and cost optimization. They used 

embedded Service Function Chains (SFC). Mixed-

integer Linear Programming (MILP) is used to solve 

the problem on a small scale. Their method can 

improve the acceptance ratio for user requests. In 

another research with a similar purpose, which was 

carried out by Gazori et al. [10], load balancing was 

also considered. Rahman et al. [11] proposed a DRL 

algorithm to minimize Fog Radio Access Networks 

(F-RANs) delay. It optimally allocates computing 

resources and power to users. Similar research [12] 

showed that the proposed method could reduce the 

delay, energy consumption, and network utilization 

compared to full local implementation and First-Fit 

(FF) plans. Most traditional fog networks use the FF 

algorithm for allocation, which is by no means 

optimal but has a high speed. In another research [13], 

the Deep Deterministic Policy Gradient (DDPG) 

algorithm was used. This method does not need to 

know the transfer probabilities in different states. The 

authors showed that their approach is superior to the 

Policy Gradient (PG), Deterministic Policy Gradient 

(DPG), and Actor-Critic (AC) methods. Baek et al. 

[14] proposed a combination of DRL and game theory 

to solve the offloading optimization problem. In this 

game, fog nodes work together to maximize local 

rewards. They do not need to know the states of other 

nodes and only work based on local observations. In 

this research, DRL is used to approximate reward 

functions. The technique used in this research results 

in a higher acceptance rate and minor overflow than 

state-of-the-art methods. 

The use of RL is not limited to offloading. It has also 

been used in other fields, such as load balancing [15], 

spot price forecasting [16, 17], content distribution 

[18], and scheduling [19]. After reviewing the 

literature, the following points can be highlighted as 

the most important differences between our modeling 

and previous research: 

 

1) Using queuing theory, we provide closed-form 

relations to model delay and energy for each user. 

None of the above studies have used such 

modeling to design the reward function. The 

formulation used in this research provides a more 

realistic description of the fog/cloud environment. 

2) None of the above studies suggest a price-based 

model. We set a predetermined price for each joule 

of energy consumed. As we will see later in Eq. 

(13), this price is used in the reward function. 
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3.System Model 
 

As shown in Fig. 1, the system consists of M  mobile 

users, F  fog devices, and a central cloud. Each 

mobile user can only connect to a fog node via the 

Base Station (BS). The set of mobile users is denoted 

by 
1 2{ , ,..., }Mu u uU . Also, the collection of fog 

nodes is denoted by 
1 2{ , ,..., }Ff f fF . Every mobile 

user has several tasks to be performed. These tasks are 

entered into the system continuously. If the user's 

computing resources are insufficient to perform the 

task, he/she offloads the task to a fog node. Similarly, 

if the computing resources of the fog node are 

inadequate, the task is offloaded to the central cloud. 

For each fog node jf , we denote all users who are 

offloading to it by a set )( jfC . For example, in Fig. 

1, 
1 1 2 3 4) { , , , }( u u u uf C  indicates that users 1u , 2u , 

3u , and 4u  are offloading their tasks to the node 1f . 

Similarly, in this figure, we can write 
2 5 6) { , }( u uf C  

and 
1 1 2) { , }( f fc C .  

 

 

Fig. 1- An illustration of the system model 

 

 

3.1.The Edge Layer Modelling 
 

As with previous research [2], we assume that each 

mobile user 
iu U  can have multiple tasks to be 

performed. The number of these tasks follows the 

Poisson distribution with the mean arrival rate 
iu . 

The size of each task submitted to the user 
iu  is 

denoted by i . Performing this task requires spending 

several processor cycles for each bit denoted by i . 

The service rate of performing the task on the 

processor of the mobile device 
iu , is calculated as 

follows: 

(1) 
.

i

i

u

u
i i

C

 
 

 

 

which 
iu

C  represents the computing capacity of the 

mobile user 
iu  in cycles/sec. This study uses an M/M 

/1/K queuing system to model the mobile user. In this 

model, the maximum number of buffer rooms is K. If 

the number of tasks entered is more than K, the extra 

ones will be dropped. Tasks are entered at a rate 
iu  

while the acceptance rate by the mobile device is 
i

a
u . 

Let 
i

K
u  represent the task blocking ratio. The blocking 

probability (i.e. k K ) can be obtained as follows 

[2]: 

(2) 
1

(1 ).( )

1 ( )

i i

i

i

K
u uK

u K
u



 

 
 

 

The average number of tasks, 
iu

L , in the mobile user 

iu  is obtained as follows:: 

 

(3) 

1

1

( 1).( )

1 1 ( )

i i

i

i i

K
u u

u K
u u

K

L





  

 
  

 

 

Now, applying Little's law gives the local execution 

time for each task, 
i

l
ut , as follows: 

(4) 

1

1

( 1).( )
1

.
1 1 ( )

i i i

i

i i i i

K
u u ul

u a a K
u u u u

L K

t
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Now, the local energy consumption of the mobile user 

iu  is calculated as follows: 

 

(5) 

1

1

( 1).( )

. .
1 1 ( )

i i i

i i i

i i i

l K
u u ul l l

u u u a K
u u u

P K

E P t





   
 

   
    

 

 

 

which 
i

l
u

P  represents the local power of the mobile 

user iu . Now, the offloading time is calculated as 

follows: 

 

(6) 
. .

i i

i

K
iu uo

u
t

Ri

  

  

 

where 
iR  denotes the offloading rate. Finally, the 

energy consumed during the task offloading from the 

mobile device iu  to the relevant fog device is 

calculated as follows: 

 

(7) 
. .

. .
i i

i i i i

K
iu uo o o o

u u u u
E P t P

Ri

  

   

 

3.2.The Fog Layer Modelling 

 

We represent the incoming traffic to each fog device 

with an M/M/c/ K model, in which there are c  

individual internal servers and a buffer of size K  . As 

mentioned in the previous section, if a task can not be 

admitted to the mobile device 
iu U , it will be 

offloaded to the relevant fog device jf , for which 

( )i ju fC . The size of a task that is submitted from 

the mobile device 
iu  to the fog device jf  is denoted 

by i . Performing this task requires spending several 

processor cycles for each bit that is denoted by i . 

The service rate to perform the task on the fog device 

jf  is calculated as follows: 

(8) 
.

j

j

f

f
i i

C

 
 

 

 

Similar to Eq. (4), using Little's law gives the local 

execution time for each task in the fog device jf   as 

follows: 

(9) 
j

j

j

fl
f a

f

L

t 


 

where 
jfL denotes the number of system tasks. Now, 

the local energy consumption of the fog device jf  is 

calculated as follows: 

 

(10) 
1

. .( )
j j j j j

j

ql l l l
f f f f f

f

E P t P t  


 

 

which 
j

l
f

P  represents the local power of the fog device

jf . If the computing resources in the fog device are 

insufficient to process a task, it is offloaded to the 

central cloud.  

 

4- The proposed method 
 

Q-learning is one of the model-free techniques in RL 

theory. It is a Finite Markov Decision Process 

(FMDP) [17]. Here, a reward function is the expected 

reward/penalty, 
1tr 
, for an action 

ta  performed in a 

given state 
ts . The agent's previous experiences are 

weighted by the Q-value and then evaluated by the 

reward function. As shown in Fig. 2, after each action 

ta , the agent is moved from the state 
ts  to a new state 

1ts 
 and receives a reward 

1tr 
. This reward reflects the 

importance of the action and can be the basis for 

deciding what to do next. The sequences of states in 

which each agent enters over time can be represented  

by 
0 0 0 1 1 1 2 2 2( , , , , , , , , , ..., , , )t t ts r a s r a s r a s r a . 
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Fig. 2- The role of the environment in Q-learning [7] 

 

Q-learning does not need any information from the 

environment in previous states to learn the value of an 

action. Therefore, it can find the optimal action 

selection policy in an almost random way. The most 

important elements of the proposed system are as 

follows: 

Agent: For each fog device jf , all mobile users iu , 

which )( ji fC , are the operating agents in the 

proposed modeling. 

State: The state of the mobile user iu  at a time t  is 

denoted by i

t
s S, which S represents the set of 

all possible states as follows: 

 

(11)  "offload_pending", "local_pending", "running"S  

 

"local_pending"  indicates the state where the task is 

executed locally on the end device. If the user intends 

to offload the task to the fog node, he/she goes to the 

"offload_pending"  state. According to the SPSP 

method [2], each user can set his/her own suggested 

price for each joule of energy consumption (US$/J). 

The user then sends his/her bid value to the fog 

machine. After the bid values of all users are sent to 

the fog machine, the winning user wu  is determined. 

The fog machine should now allocate computational 

resources to the winning user. At this moment, the 

user's state changes from "offload_pending"  to 

"running" . The proposed method is pretty fair to loser 

users, wu . In other words, they are still allowed to 

try their chance in the later rounds of competing for 

resources. Any losing user may remain in his/her 

current state  "offload_pending" to participate in the 

next auction round. He/she may also refuse to offload. 

In this case, the state of the user changes from 

"offload_pending" to "local_pending" . Let us denote the 

number of end devices connected to the fog device 

jf  by 
jfN . Therefore, the state of all users can be 

represented by a vector 
t

S . For example, if four users 

are connected to a fog node, and the third user wins 

the auction, the state vector of the system is 

represented by: 

 

 "offload_pending", "offload_pending", "running", "local_pending"
t
S  

 

Now, if the capacity of the fog node is still sufficient, 

users whose state is "offload_pending"  can try again to 

offload their tasks. For example, if at the next time 

1t  , the second user wins the auction, the state 

vector changes to  

 

 1
"offload_pending", "running", "running", "local_pending"

t 
S  

 

As is common in FMDP, at least one of the states 

must be defined as the terminal stateT . For a user 

iu , if his/her state at the time t , namely i

t
s , belongs 

to the set T , then its value will not change with any 

future action. In our problem, the state "running"  is 

terminal, i.e., {"running"}T . In other words, if a 

user's task is in "running"  state (that is i

t
s T ), it stays 

in that state until the task is completed. 

Action: The action performed by the mobile user iu  

at a time t  is denoted by i

t
a A . Here, A  is a 

set of all possible actions as follows: 

 

(12)  "local_request", "offload_request"A  
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The simplest way is to select an action based on a 

greedy strategy. In this strategy, the action is selected 

to have the highest value,  arg max ,
i

i i i

t t t
a

Q s aa . 

Transition Function: It is the probability that an 

agent iu  will move from the state i

t
ss   to a new 

state 
1

i

t
ss


  when it acts i

t
aa  . It is denoted by 

a matrix ( , | , )P s r s a , which : [0,1]P   S A S  

and ( , | , ) 1
s r

P s r s a


  . 

Reward Function: Depending on what action the 

agent chooses, it will receive a reward as follows: 

 

(13

) 

1

1 1

1

. _

. . .

_0

if s

else if s

else if s

i i

j

i i i i i j

l
i

u u
t

fi l o l i

t u u u u u f t

i

t

p E local pending

p E p E b E running

offloading pending

r


 



 


  
 



 

As stated in the above relation, if after acting i

t
a , the 

mobile user iu  is moved to a new state 

_local pending , he/she will receive a reward .
i i

l

u u
p E . 

Note that the goal of the system here is to minimize 

the energy consumption of mobile devices. In other 

words, the proposed algorithm encourages users to 

offload their tasks to the fog devices instead of 

performing them locally on their own devices. If the 

user performs the task locally, he/she will receive a 

penalty .
i i

l

u u
p E . Simply speaking, if the user 

offloaded the task instead of running it locally, he/she 

could save .
i i

l

u u
p E  dollars by not consuming 

valuable local resources. The second condition in the 

above relation states that if the user is moved to a 

state "running" , he/she will receive a reward 

. . .j

i i i i i j

fl o l

u u u u u f
p E p E b E  . Here, the first term, 

.
i i

l

u u
p E , is the amount of money the user has saved 

by not performing the task locally. Simply put, if the 

user wanted to run the task locally instead of 

offloading it, he/she would have to pay .
i i

l

u u
p E  

dollars for local resource usage. The second term, 

.
i i

o

u u
p E , is the amount of money that must be paid to 

transmit the task to the BS. The third term, .j

i j

f l

u f
b E , is 

the amount of money that must be paid to the fog 

device to perform the task. Note that 
j

i

f

u
b  is the bid 

price previously offered by the user iu  to the fog 

device jf . As mentioned earlier, in this research we 

adopt the SPSB auction mechanism proposed by 

Besharti et al. [2]. When all users submit their bids to 

the fog device, only one of them who has offered the 

highest bid (here, the user iu ), will win the auction. 

Then, the winner user iu  has to pay j

i

f

u
b  dollars for 

each joule of energy consumption to the fog device. 

Finally, the last condition in Eq. (13) states that if the 

user is moved to a state "offloading_pending" , he/she 

will not receive any reward. Although this user tends 

to offload the task, his/her bid price has not been the 

highest compared to other competitors. Therefore, the 

user is temporarily moved to the state 

"offloading_pending"  so that he/she may win the 

auction in the next time slot. 

Based on performing a specific action, the agent is 

transferred from one state to another. The basic form 

of the Q-learning algorithm for the agent 
iu  is 

 1 1 1
, , , ,i i i i i

t t t t t
s a r s a

   , meaning that the agent was in 

the state i

t
s , performed the action i

t
a , received the 

reward 
1

i

t
r


, and finally ended up in the state 
1

i

t
s


, from 

where it decided to act 
1

i

t
a


. By doing so, it provides a 

new iteration to update  ,i i

t t
Q s a . 

The Q-learning algorithm is one of the off-policy RL 

methods. We adopt the simplest form of it, which is 

called single-step Q-learning. It is defined as follows: 

(14)

 
   

   1 1

, ,

max , ,
i

i i i i

t t t t

i i i i i

t t t t

b

Q s a Q s a

r Q s b Q s a 
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where Q  and   are the learned action-value function 

and learning rate, respectively. The   value strikes a 

balance between the agent's findings from the 

environment and what he/she has learned. Also,   

denotes the discount factor, which satisfies 0 1  . 

A lower discount factor encourages the agent to take 

action sooner rather than postponing it indefinitely. In 

other words, it determines how much importance 

should be given to immediate rewards and future 

rewards. This helps us to avoid infinity as a reward. A 

value of 0   means that more importance is given 

to immediate rewards, and a value of 1   means that 

more importance is given to future rewards. In 

practice, the discount factor of 0   is never 

learned, because it only considers immediate rewards, 

and the discount factor of 1   continues for future 

rewards, which may lead to infinity. Therefore, the 

optimal value for the discount factor,  , is in the 

range (0, 1). 

After determining the transition function P and the 

received reward 
1

i

t
r


 by the parent node (controller), 

the MDP problem can be easily solved using dynamic 

programming algorithms. Here, the core idea is to use 

the value function ( )V s  to find the optimal action 

*

ia . The optimal action in any state 
i

ts  is the action 

that brings the most reward to the agent. For this 

purpose, the state value function must be expressed in 

the following form, which is known as the Bellman 

equation: 

 

(15) * 1 * 1( ) max ( . ( ) | , )i i i i

t t t tV s r V s s s a a       

 

The above formula, after simplification, can be 

rewritten as follows: 

(16) * *

,

( ) max ( , | , )[ . ( )]
a

s r

V s P s r s a r V s


    

One of the most common ways to solve the Bellman 

equation is to rewrite it in the following recursive 

form: 

 

(17) 1

,

( ) max ( , | , )[ . ( )]t t
a

s r

V s P s r s a r V s


    

  

Algorithm 1 Pseudo-code of the Q-learning for offloading 

Input: The fog node identifier jf , the set of states S, the set of actions A  

            , the set of terminal states T  

Output: the optimal action-value function vector 
*

Q  

1: Set 0t   

2: for )(i jfC  do 

3: for i
ts S do 

4: for i

t
a A  do 

5: Initialize  ,i i

t t
Q s a  arbitrarily 

6: 
Initialize terminal state value,  , . 0iQ T  

7: end for 

8: end for 

9: end for 

10: repeat 

11: Initialize 
t

S  

12: repeat (for each step of the episode) 

13: Choose 
t

A  from 
t

S  using policy derived from 
t

Q   

(e.g., ℇ -greedy) 

14: Take action 
t

A , observe 
1t

R , 
1t 

S  

15:    

   1 1

, ,

max , ,

t t t t

t t t t
 

 



   
 B

Q S A Q S A

R Q S B Q S A
 using Eq. (14) 

16: 
1t t 

S S  

17: until 
t
S T  

18: 1t t   

19: until Max_Num_Episodes 

20:  *
,

t t
Q Q S A  using Eq. (18) 

21: return 
*

Q  

 

Thus, the value of all states can be obtained. Given 

that 0 1  , it can be proved that the Bellman 

equation will converge and, therefore, the solution is 

as follows: 

 

(18) * ( ) lim ( )t
t

V s V s


  

The critical advantage of Q-learning over other RL 

methods is that it converges very quickly. The main 

reason is that 𝑄 can directly approximate the optimal 
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action-value function, 
*

q . Here, the policy 

determines which state-action pairs to visit and 

update. Like most RL methods, the prerequisite for 

convergence here is that all pairs continue to be 

updated. Under this assumption and other common 

indefinite approximation conditions in the sequence 

of size-step parameters, it is found that Q  converges 

with a probability of 1 to 
*

q . Another advantage of 

Q-learning is that it does not require a specific 

environment model. In RL terminology, it is a model-

free method and does not require a predetermined 

policy to find any optimal state-action pair. The 

pseudo-code of the Q-learning for the offloading 

problem is shown in Algorithm 1. 

 

5.Performance Evaluation 

 

We use the iFogSim [20] simulator to evaluate the 

efficiency of the proposed method, 

SPSB_Auction_RL. We compare the 

SPSB_Auction_RL with FCFS method [2]. It is the 

base method used in iFogSim. Here, the task is 

offloaded to the parent fog node once the buffer 

becomes full. As described in the previous section, 

SPSB_Auction_RL uses a second-price sealed-bid 

auction to offload tasks. The inter-arrival time of tasks 

has an exponential distribution with a rate of 50 tasks 

per minute. Also, the queue capacity of each fog node 

is 20. All experiments were repeated 40 times, and 

their average was calculated for each offloading 

criterion. 

Fig. 3 shows the total energy consumption. It is equal 

to the sum of the energy consumed in the local 

execution and the energy consumed for offloading. 

The local and offloading energy is calculated using 

Eq. (10) and Eq. (7), respectively. As shown in Fig. 3, 

energy consumption increases in both methods when 

the number of fog devices increases. However, 

SPSB_Auction_RL has lower energy consumption 

compared to FCFS. 

Fig. 4 shows the execution time for different numbers 

of fog nodes. Note that the number of fog nodes is 

insignificant in a real-world environment. Previous 

research has also considered the number of fog nodes 

low [4]. Also, note that the computing capacity of a 

typical fog device is much less than a dedicated cloud 

server. As seen in Fig. 4, the average execution time 

of both methods increases with the number of nodes. 

However, the growth of execution time in 

SPSB_Auction_RL is always linear, while the growth 

of time in FCFS is exponential. This presents an 

interesting implication for network designers in terms 

of scalability. 

Fig. 5 shows the network usage for different numbers 

of fog nodes. This is one of the essential metrics 

produced in iFogSim reports. It is the amount of data 

transferred to offload all tasks in the network. As 

shown in Fig. 5, network usage increases with the 

number of fog devices. However, the network usage 

in the SPSB_Auction_RL method is significantly 

lower than that of the FCFS. 

Fig. 6 shows the buffering cost of executing 

commands on the cloud node. The buffering cost in 

the proposed method is slightly higher than in the 

FCFS. The reason lies behind the execution of auction 

operations between each node and its children in 

discrete time intervals. Reinforcement learning 

algorithms impose more overhead on the fog 

operating environment. Of course, this amount of 

overhead is negligible and can never be a reason for 

the impracticality of the proposed method. It is still 

far superior to FCFS in energy consumption and 

latency. 
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Fig. 3- Energy consumption for different numbers of fog nodes 

 

 

 

 
Fig.4 Execution time for different numbers of fog nodes 

 

 

 

 

Fig. 5 Network usage for different numbers of fog nodes 

 

 
Fig. 6 Cost of execution for different numbers of fog nodes 

 

6- Conclusion 
 

This paper proposed a Q-learning-based method to 

solve the offloading optimization problem in fog 

computing. After modeling the system with queuing 

theory, the joint energy and delay minimization 

problem was formulated. Our price-based Q-learning 

technique motivates users to participate in offloading 

operations. It also does not ignore the chances of users 

who lose in the auction participating in subsequent 

rounds. 

The performance of the proposed method was 

evaluated against the baseline method, namely FCFS. 

The simulation results showed that the proposed 

method significantly reduces the execution time 

compared to the FCFS method. Also, energy 

consumption and network usage show a significant 

amount of improvement. The proposed method is 

more stable than FCFS due to the lower variance of 

energy consumption. 

One of the future research trends is to consider user 

mobility and handoff. Also, using other reinforcement 

learning methods in combination with multi-objective 

meta-heuristics such as NSGA may significantly 

affect convergence. 
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