
Journal of Computer & Robotics 15 (2), Summer and Autumn 2022, 37-47

37

*Corresponding Author. Email: mhossein.rezvani@gmail.com

A Reinforcement Learning Method for Joint Minimization of Energy

Consumption and Delay in fog Computing

Reza Besharati
a
,Mohammad Hossein Rezvani

a,*
,Mohammad Mehdi Gilanian Sadeghi

a

Department of Computer and Information Technology Engineering, Qazvin Branch, Islamic Azad University,Qazvin. Iran

Received 11 July 2022; Accepted 27 October 2022

Abstract

In fog computing, optimal offloading is of crucial importance due to the limited energy of mobile devices. In this regard,

using machine learning methods has recently attracted much attention. This paper presents a reinforcement learning-based

approach to motivate users to offload their tasks. We propose a self-organizing algorithm for offloading based on Q-learning

theory. Performance evaluation of the proposed method against traditional and state-of-the-art methods shows that it

consumes less energy. It also reduces the execution time of tasks and results in less consumption of network resources.

Keywords: Fog Computing; Computation offloading; Optimization; reinforcement learning; Q-learning

1.Introduction

The use of fog computing technology in fields such as

industry and vehicle traffic management is expanding

rapidly [1, 2]. The basic idea is to transfer large

amounts of data from the Internet of Things (IoT)

devices to a remote cloud. Here, if an end device's

computing capacity is insufficient, the task is

offloaded to a near-cloud device. Similarly, if the

resources on the cloud machine are inadequate, the

task is offloaded to the remote cloud.

The literature review shows that most research has

been focused on minimizing delay and energy

consumption. Some of the essential methods used in

the literature are game theory [3, 4], auction theory [2,

5], and meta-heuristics [1, 6]. Recently, the use of

machine learning methods, especially Reinforcement

Learning (RL) [7], for offloading optimization has

been considered. Here, each agent learns to behave

based on the reward/penalty of the previous rounds in

a way that leads to the optimization of the goal in the

following rounds. In other words, in RL, the agent

tries to learn from the experiences gained from

previous actions. This is the way that humans and

animals learn in the real world. Various theories in RL

have many diversities in goals and working methods.

Their main difference is in the goals and type of

modeling. The main contribution of this article is as

follows:

 After modeling the system with queuing theory, we

solve the joint minimization problem of delay and

energy consumption. For this purpose, we perform

R.Besharati et al/ A Reinforcement Learning Method for Joint Minimization of Energy Consumption…

38

new modeling with the Q-learning method based

on real-world requirements.

 The reward function we design is based on price.

We consider a predetermined price for each joule

of energy consumption. This paper complements

one of the most recent research [2] in which each

agent uses a Second-price Sealed-bid auction

(SPSB) for task offloading. In this modeling, only

the user who wins the auction has the right to use

the resources of the fog machine to offload his/her

tasks. Nevertheless, our proposed model does not

ignore the chances of losing users in the following

rounds. In this way, it tries to provide fairness to

all users.

The remainder of this paper is organized as follows:

Section 2 reviews the most critical studies on

offloading optimization based on RL methods;

Section 3 explains the system model; Section 4

describes the proposed method; Section 5 presents the

evaluation results of the proposed method along with

statistical analysis; Finally, Section 6 concludes the

study.

2- Related Works

In recent years, critical research has been conducted

on modeling offloading based on RL, most with Deep

Reinforcement Learning (DRL). Interested readers

can refer to [8] for a more in-depth study. Santos et al.

[9] proposed a DRL method for joint energy

consumption and cost optimization. They used

embedded Service Function Chains (SFC). Mixed-

integer Linear Programming (MILP) is used to solve

the problem on a small scale. Their method can

improve the acceptance ratio for user requests. In

another research with a similar purpose, which was

carried out by Gazori et al. [10], load balancing was

also considered. Rahman et al. [11] proposed a DRL

algorithm to minimize Fog Radio Access Networks

(F-RANs) delay. It optimally allocates computing

resources and power to users. Similar research [12]

showed that the proposed method could reduce the

delay, energy consumption, and network utilization

compared to full local implementation and First-Fit

(FF) plans. Most traditional fog networks use the FF

algorithm for allocation, which is by no means

optimal but has a high speed. In another research [13],

the Deep Deterministic Policy Gradient (DDPG)

algorithm was used. This method does not need to

know the transfer probabilities in different states. The

authors showed that their approach is superior to the

Policy Gradient (PG), Deterministic Policy Gradient

(DPG), and Actor-Critic (AC) methods. Baek et al.

[14] proposed a combination of DRL and game theory

to solve the offloading optimization problem. In this

game, fog nodes work together to maximize local

rewards. They do not need to know the states of other

nodes and only work based on local observations. In

this research, DRL is used to approximate reward

functions. The technique used in this research results

in a higher acceptance rate and minor overflow than

state-of-the-art methods.

The use of RL is not limited to offloading. It has also

been used in other fields, such as load balancing [15],

spot price forecasting [16, 17], content distribution

[18], and scheduling [19]. After reviewing the

literature, the following points can be highlighted as

the most important differences between our modeling

and previous research:

1) Using queuing theory, we provide closed-form

relations to model delay and energy for each user.

None of the above studies have used such

modeling to design the reward function. The

formulation used in this research provides a more

realistic description of the fog/cloud environment.

2) None of the above studies suggest a price-based

model. We set a predetermined price for each joule

of energy consumed. As we will see later in Eq.

(13), this price is used in the reward function.

 Journal of Computer & Robotics 15 (2), Summer and Autumn 2022, 37-47

39

3.System Model

As shown in Fig. 1, the system consists of M mobile

users, F fog devices, and a central cloud. Each

mobile user can only connect to a fog node via the

Base Station (BS). The set of mobile users is denoted

by
1 2{ , ,..., }Mu u uU . Also, the collection of fog

nodes is denoted by
1 2{ , ,..., }Ff f fF . Every mobile

user has several tasks to be performed. These tasks are

entered into the system continuously. If the user's

computing resources are insufficient to perform the

task, he/she offloads the task to a fog node. Similarly,

if the computing resources of the fog node are

inadequate, the task is offloaded to the central cloud.

For each fog node jf , we denote all users who are

offloading to it by a set)(jfC . For example, in Fig.

1,
1 1 2 3 4) { , , , }(u u u uf C indicates that users 1u , 2u ,

3u , and 4u are offloading their tasks to the node 1f .

Similarly, in this figure, we can write
2 5 6) { , }(u uf C

and
1 1 2) { , }(f fc C .

Fig. 1- An illustration of the system model

3.1.The Edge Layer Modelling

As with previous research [2], we assume that each

mobile user
iu U can have multiple tasks to be

performed. The number of these tasks follows the

Poisson distribution with the mean arrival rate
iu .

The size of each task submitted to the user
iu is

denoted by i . Performing this task requires spending

several processor cycles for each bit denoted by i .

The service rate of performing the task on the

processor of the mobile device
iu , is calculated as

follows:

(1)
.

i

i

u

u
i i

C

which
iu

C represents the computing capacity of the

mobile user
iu in cycles/sec. This study uses an M/M

/1/K queuing system to model the mobile user. In this

model, the maximum number of buffer rooms is K. If

the number of tasks entered is more than K, the extra

ones will be dropped. Tasks are entered at a rate
iu

while the acceptance rate by the mobile device is
i

a
u .

Let
i

K
u represent the task blocking ratio. The blocking

probability (i.e. k K) can be obtained as follows

[2]:

(2)
1

(1).()

1 ()

i i

i

i

K
u uK

u K
u

The average number of tasks,
iu

L , in the mobile user

iu is obtained as follows::

(3)

1

1

(1).()

1 1 ()

i i

i

i i

K
u u

u K
u u

K

L

Now, applying Little's law gives the local execution

time for each task,
i

l
ut , as follows:

(4)

1

1

(1).()
1

.
1 1 ()

i i i

i

i i i i

K
u u ul

u a a K
u u u u

L K

t

R.Besharati et al/ A Reinforcement Learning Method for Joint Minimization of Energy Consumption…

40

Now, the local energy consumption of the mobile user

iu is calculated as follows:

(5)

1

1

(1).()

. .
1 1 ()

i i i

i i i

i i i

l K
u u ul l l

u u u a K
u u u

P K

E P t

which
i

l
u

P represents the local power of the mobile

user iu . Now, the offloading time is calculated as

follows:

(6)
. .

i i

i

K
iu uo

u
t

Ri

where
iR denotes the offloading rate. Finally, the

energy consumed during the task offloading from the

mobile device iu to the relevant fog device is

calculated as follows:

(7)
. .

. .
i i

i i i i

K
iu uo o o o

u u u u
E P t P

Ri

3.2.The Fog Layer Modelling

We represent the incoming traffic to each fog device

with an M/M/c/ K model, in which there are c

individual internal servers and a buffer of size K . As

mentioned in the previous section, if a task can not be

admitted to the mobile device
iu U , it will be

offloaded to the relevant fog device jf , for which

()i ju fC . The size of a task that is submitted from

the mobile device
iu to the fog device jf is denoted

by i . Performing this task requires spending several

processor cycles for each bit that is denoted by i .

The service rate to perform the task on the fog device

jf is calculated as follows:

(8)
.

j

j

f

f
i i

C

Similar to Eq. (4), using Little's law gives the local

execution time for each task in the fog device jf as

follows:

(9)
j

j

j

fl
f a

f

L

t

where
jfL denotes the number of system tasks. Now,

the local energy consumption of the fog device jf is

calculated as follows:

(10)
1

. .()
j j j j j

j

ql l l l
f f f f f

f

E P t P t

which
j

l
f

P represents the local power of the fog device

jf . If the computing resources in the fog device are

insufficient to process a task, it is offloaded to the

central cloud.

4- The proposed method

Q-learning is one of the model-free techniques in RL

theory. It is a Finite Markov Decision Process

(FMDP) [17]. Here, a reward function is the expected

reward/penalty,
1tr
, for an action

ta performed in a

given state
ts . The agent's previous experiences are

weighted by the Q-value and then evaluated by the

reward function. As shown in Fig. 2, after each action

ta , the agent is moved from the state
ts to a new state

1ts
 and receives a reward

1tr
. This reward reflects the

importance of the action and can be the basis for

deciding what to do next. The sequences of states in

which each agent enters over time can be represented

by
0 0 0 1 1 1 2 2 2(, , , , , , , , , ..., , ,)t t ts r a s r a s r a s r a .

 Journal of Computer & Robotics 15 (2), Summer and Autumn 2022, 37-47

41

Fig. 2- The role of the environment in Q-learning [7]

Q-learning does not need any information from the

environment in previous states to learn the value of an

action. Therefore, it can find the optimal action

selection policy in an almost random way. The most

important elements of the proposed system are as

follows:

Agent: For each fog device jf , all mobile users iu ,

which)(ji fC , are the operating agents in the

proposed modeling.

State: The state of the mobile user iu at a time t is

denoted by i

t
s S, which S represents the set of

all possible states as follows:

(11) "offload_pending", "local_pending", "running"S

"local_pending" indicates the state where the task is

executed locally on the end device. If the user intends

to offload the task to the fog node, he/she goes to the

"offload_pending" state. According to the SPSP

method [2], each user can set his/her own suggested

price for each joule of energy consumption (US$/J).

The user then sends his/her bid value to the fog

machine. After the bid values of all users are sent to

the fog machine, the winning user wu is determined.

The fog machine should now allocate computational

resources to the winning user. At this moment, the

user's state changes from "offload_pending" to

"running" . The proposed method is pretty fair to loser

users, wu . In other words, they are still allowed to

try their chance in the later rounds of competing for

resources. Any losing user may remain in his/her

current state "offload_pending" to participate in the

next auction round. He/she may also refuse to offload.

In this case, the state of the user changes from

"offload_pending" to "local_pending" . Let us denote the

number of end devices connected to the fog device

jf by
jfN . Therefore, the state of all users can be

represented by a vector
t

S . For example, if four users

are connected to a fog node, and the third user wins

the auction, the state vector of the system is

represented by:

 "offload_pending", "offload_pending", "running", "local_pending"
t
S

Now, if the capacity of the fog node is still sufficient,

users whose state is "offload_pending" can try again to

offload their tasks. For example, if at the next time

1t , the second user wins the auction, the state

vector changes to

 1
"offload_pending", "running", "running", "local_pending"

t
S

As is common in FMDP, at least one of the states

must be defined as the terminal stateT . For a user

iu , if his/her state at the time t , namely i

t
s , belongs

to the set T , then its value will not change with any

future action. In our problem, the state "running" is

terminal, i.e., {"running"}T . In other words, if a

user's task is in "running" state (that is i

t
s T), it stays

in that state until the task is completed.

Action: The action performed by the mobile user iu

at a time t is denoted by i

t
a A . Here, A is a

set of all possible actions as follows:

(12) "local_request", "offload_request"A

R.Besharati et al/ A Reinforcement Learning Method for Joint Minimization of Energy Consumption…

42

The simplest way is to select an action based on a

greedy strategy. In this strategy, the action is selected

to have the highest value, arg max ,
i

i i i

t t t
a

Q s aa .

Transition Function: It is the probability that an

agent iu will move from the state i

t
ss to a new

state
1

i

t
ss

 when it acts i

t
aa . It is denoted by

a matrix (, | ,)P s r s a , which : [0,1]P S A S

and (, | ,) 1
s r

P s r s a

 .

Reward Function: Depending on what action the

agent chooses, it will receive a reward as follows:

(13

)

1

1 1

1

. _

. . .

_0

if s

else if s

else if s

i i

j

i i i i i j

l
i

u u
t

fi l o l i

t u u u u u f t

i

t

p E local pending

p E p E b E running

offloading pending

r

As stated in the above relation, if after acting i

t
a , the

mobile user iu is moved to a new state

_local pending , he/she will receive a reward .
i i

l

u u
p E .

Note that the goal of the system here is to minimize

the energy consumption of mobile devices. In other

words, the proposed algorithm encourages users to

offload their tasks to the fog devices instead of

performing them locally on their own devices. If the

user performs the task locally, he/she will receive a

penalty .
i i

l

u u
p E . Simply speaking, if the user

offloaded the task instead of running it locally, he/she

could save .
i i

l

u u
p E dollars by not consuming

valuable local resources. The second condition in the

above relation states that if the user is moved to a

state "running" , he/she will receive a reward

. . .j

i i i i i j

fl o l

u u u u u f
p E p E b E . Here, the first term,

.
i i

l

u u
p E , is the amount of money the user has saved

by not performing the task locally. Simply put, if the

user wanted to run the task locally instead of

offloading it, he/she would have to pay .
i i

l

u u
p E

dollars for local resource usage. The second term,

.
i i

o

u u
p E , is the amount of money that must be paid to

transmit the task to the BS. The third term, .j

i j

f l

u f
b E , is

the amount of money that must be paid to the fog

device to perform the task. Note that
j

i

f

u
b is the bid

price previously offered by the user iu to the fog

device jf . As mentioned earlier, in this research we

adopt the SPSB auction mechanism proposed by

Besharti et al. [2]. When all users submit their bids to

the fog device, only one of them who has offered the

highest bid (here, the user iu), will win the auction.

Then, the winner user iu has to pay j

i

f

u
b dollars for

each joule of energy consumption to the fog device.

Finally, the last condition in Eq. (13) states that if the

user is moved to a state "offloading_pending" , he/she

will not receive any reward. Although this user tends

to offload the task, his/her bid price has not been the

highest compared to other competitors. Therefore, the

user is temporarily moved to the state

"offloading_pending" so that he/she may win the

auction in the next time slot.

Based on performing a specific action, the agent is

transferred from one state to another. The basic form

of the Q-learning algorithm for the agent
iu is

 1 1 1
, , , ,i i i i i

t t t t t
s a r s a

 , meaning that the agent was in

the state i

t
s , performed the action i

t
a , received the

reward
1

i

t
r

, and finally ended up in the state
1

i

t
s

, from

where it decided to act
1

i

t
a

. By doing so, it provides a

new iteration to update ,i i

t t
Q s a .

The Q-learning algorithm is one of the off-policy RL

methods. We adopt the simplest form of it, which is

called single-step Q-learning. It is defined as follows:

(14)

 1 1

, ,

max , ,
i

i i i i

t t t t

i i i i i

t t t t

b

Q s a Q s a

r Q s b Q s a

 Journal of Computer & Robotics 15 (2), Summer and Autumn 2022, 37-47

43

where Q and are the learned action-value function

and learning rate, respectively. The value strikes a

balance between the agent's findings from the

environment and what he/she has learned. Also,

denotes the discount factor, which satisfies 0 1 .

A lower discount factor encourages the agent to take

action sooner rather than postponing it indefinitely. In

other words, it determines how much importance

should be given to immediate rewards and future

rewards. This helps us to avoid infinity as a reward. A

value of 0 means that more importance is given

to immediate rewards, and a value of 1 means that

more importance is given to future rewards. In

practice, the discount factor of 0 is never

learned, because it only considers immediate rewards,

and the discount factor of 1 continues for future

rewards, which may lead to infinity. Therefore, the

optimal value for the discount factor, , is in the

range (0, 1).

After determining the transition function P and the

received reward
1

i

t
r

 by the parent node (controller),

the MDP problem can be easily solved using dynamic

programming algorithms. Here, the core idea is to use

the value function ()V s to find the optimal action

*

ia . The optimal action in any state
i

ts is the action

that brings the most reward to the agent. For this

purpose, the state value function must be expressed in

the following form, which is known as the Bellman

equation:

(15) * 1 * 1() max (. () | ,)i i i i

t t t tV s r V s s s a a

The above formula, after simplification, can be

rewritten as follows:

(16) * *

,

() max (, | ,)[. ()]
a

s r

V s P s r s a r V s

One of the most common ways to solve the Bellman

equation is to rewrite it in the following recursive

form:

(17) 1

,

() max (, | ,)[. ()]t t
a

s r

V s P s r s a r V s

Algorithm 1 Pseudo-code of the Q-learning for offloading

Input: The fog node identifier jf , the set of states S, the set of actions A

 , the set of terminal states T

Output: the optimal action-value function vector
*

Q

1: Set 0t

2: for)(i jfC do

3: for i
ts S do

4: for i

t
a A do

5: Initialize ,i i

t t
Q s a arbitrarily

6:
Initialize terminal state value, , . 0iQ T

7: end for

8: end for

9: end for

10: repeat

11: Initialize
t

S

12: repeat (for each step of the episode)

13: Choose
t

A from
t

S using policy derived from
t

Q

(e.g., ℇ -greedy)

14: Take action
t

A , observe
1t

R ,
1t

S

15:

 1 1

, ,

max , ,

t t t t

t t t t

 B

Q S A Q S A

R Q S B Q S A
 using Eq. (14)

16:
1t t

S S

17: until
t
S T

18: 1t t

19: until Max_Num_Episodes

20: *
,

t t
Q Q S A using Eq. (18)

21: return
*

Q

Thus, the value of all states can be obtained. Given

that 0 1 , it can be proved that the Bellman

equation will converge and, therefore, the solution is

as follows:

(18) * () lim ()t
t

V s V s

The critical advantage of Q-learning over other RL

methods is that it converges very quickly. The main

reason is that 𝑄 can directly approximate the optimal

R.Besharati et al/ A Reinforcement Learning Method for Joint Minimization of Energy Consumption…

44

action-value function,
*

q . Here, the policy

determines which state-action pairs to visit and

update. Like most RL methods, the prerequisite for

convergence here is that all pairs continue to be

updated. Under this assumption and other common

indefinite approximation conditions in the sequence

of size-step parameters, it is found that Q converges

with a probability of 1 to
*

q . Another advantage of

Q-learning is that it does not require a specific

environment model. In RL terminology, it is a model-

free method and does not require a predetermined

policy to find any optimal state-action pair. The

pseudo-code of the Q-learning for the offloading

problem is shown in Algorithm 1.

5.Performance Evaluation

We use the iFogSim [20] simulator to evaluate the

efficiency of the proposed method,

SPSB_Auction_RL. We compare the

SPSB_Auction_RL with FCFS method [2]. It is the

base method used in iFogSim. Here, the task is

offloaded to the parent fog node once the buffer

becomes full. As described in the previous section,

SPSB_Auction_RL uses a second-price sealed-bid

auction to offload tasks. The inter-arrival time of tasks

has an exponential distribution with a rate of 50 tasks

per minute. Also, the queue capacity of each fog node

is 20. All experiments were repeated 40 times, and

their average was calculated for each offloading

criterion.

Fig. 3 shows the total energy consumption. It is equal

to the sum of the energy consumed in the local

execution and the energy consumed for offloading.

The local and offloading energy is calculated using

Eq. (10) and Eq. (7), respectively. As shown in Fig. 3,

energy consumption increases in both methods when

the number of fog devices increases. However,

SPSB_Auction_RL has lower energy consumption

compared to FCFS.

Fig. 4 shows the execution time for different numbers

of fog nodes. Note that the number of fog nodes is

insignificant in a real-world environment. Previous

research has also considered the number of fog nodes

low [4]. Also, note that the computing capacity of a

typical fog device is much less than a dedicated cloud

server. As seen in Fig. 4, the average execution time

of both methods increases with the number of nodes.

However, the growth of execution time in

SPSB_Auction_RL is always linear, while the growth

of time in FCFS is exponential. This presents an

interesting implication for network designers in terms

of scalability.

Fig. 5 shows the network usage for different numbers

of fog nodes. This is one of the essential metrics

produced in iFogSim reports. It is the amount of data

transferred to offload all tasks in the network. As

shown in Fig. 5, network usage increases with the

number of fog devices. However, the network usage

in the SPSB_Auction_RL method is significantly

lower than that of the FCFS.

Fig. 6 shows the buffering cost of executing

commands on the cloud node. The buffering cost in

the proposed method is slightly higher than in the

FCFS. The reason lies behind the execution of auction

operations between each node and its children in

discrete time intervals. Reinforcement learning

algorithms impose more overhead on the fog

operating environment. Of course, this amount of

overhead is negligible and can never be a reason for

the impracticality of the proposed method. It is still

far superior to FCFS in energy consumption and

latency.

 Journal of Computer & Robotics 15 (2), Summer and Autumn 2022, 37-47

45

Fig. 3- Energy consumption for different numbers of fog nodes

Fig.4 Execution time for different numbers of fog nodes

Fig. 5 Network usage for different numbers of fog nodes

Fig. 6 Cost of execution for different numbers of fog nodes

6- Conclusion

This paper proposed a Q-learning-based method to

solve the offloading optimization problem in fog

computing. After modeling the system with queuing

theory, the joint energy and delay minimization

problem was formulated. Our price-based Q-learning

technique motivates users to participate in offloading

operations. It also does not ignore the chances of users

who lose in the auction participating in subsequent

rounds.

The performance of the proposed method was

evaluated against the baseline method, namely FCFS.

The simulation results showed that the proposed

method significantly reduces the execution time

compared to the FCFS method. Also, energy

consumption and network usage show a significant

amount of improvement. The proposed method is

more stable than FCFS due to the lower variance of

energy consumption.

One of the future research trends is to consider user

mobility and handoff. Also, using other reinforcement

learning methods in combination with multi-objective

meta-heuristics such as NSGA may significantly

affect convergence.

0
5

10
15
20
25
30
35
40

Su
m

 o
f

C
o

n
su

m
e

d
 E

n
e

rg
y|

(J
)

Number of Fog Nodes

SPSB Auction_RL

FCFS

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000

Ex
e

cu
ti

o
n

 T
im

e
(m

s)

Number of Fog Nodes

SPSB Auction_RL

FCFS

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1600.00

1800.00

N
e

tw
o

rk
 U

sa
ge

Number of Fog Nodes

SPSB Auction_RL

FCFS

0
50000

100000
150000
200000
250000
300000
350000
400000
450000

4 6 8 10 12 14 16 18 20 22 24

C
o
st

 o
f

E
x
ec

u
ti

o
n

Number of Fog Nodes

FCFS

SPSB Auction_Rl

R.Besharati et al/ A Reinforcement Learning Method for Joint Minimization of Energy Consumption…

46

References

[1] Keshavarznejad, M., Rezvani, M.H. and Adabi, S.,:

Delay-aware optimization of energy consumption for

task offloading in fog environments using

metaheuristic algorithms. Cluster Computing, pp.1-29

(2021)

[2] Besharati, R., Rezvani, M.H. and Sadeghi, M.M.G.,

2021. An Incentive-Compatible Offloading Mechanism

in Fog-Cloud Environments Using Second-Price

Sealed-Bid Auction. Journal of Grid Computing, 19(3),

pp.1-29.

[3] Li, Q., Zhao, J., Gong, Y. and Zhang, Q.,: Energy-

efficient computation offloading and resource allocation

in fog computing for internet of everything. China

Communications, 16(3), pp.32-41 (2019)

[4] Khoobkar, M.H., Dehghan Takht Fooladi, M., Rezvani,

M.H. and Gilanian Sadeghi, M.M., 2022. Partial

offloading with stable equilibrium in fog-cloud

environments using replicator dynamics of evolutionary

game theory. Cluster Computing, 25(2), pp.1393-1420.

[5] Besharati, R. and Rezvani, M.H., : February. A

prototype auction-based mechanism for computation

offloading in fog-cloud environments. In 2019 5th

conference on knowledge based engineering and

innovation (KBEI) (pp. 542-547). IEEE (2019)

[6] Jafari, V and Rezvani, M.H., Joint Optimization of

Energy Consumption and Time Delay in IoT-Fog-

Cloud Computing Environments using NSGA-II

Metaheuristic Algorithm. Journal of Ambient

Intelligence and Humanized Computing, in press,(2021)

[7] Sutton, R.S. and Barto, A.G., 2018. Reinforcement

learning: An introduction. MIT press.

[8] Lei, L., Tan, Y., Zheng, K., Liu, S., Zhang, K. and

Shen, X., 2020. Deep reinforcement learning for

autonomous internet of things: Model, applications and

challenges. IEEE Communications Surveys &

Tutorials, 22(3), pp.1722-1760.

[9] Santos, J., Wauters, T., Volckaert, B. and De Turck, F.,

2021. Resource provisioning in fog computing through

deep reinforcement learning.

[10] Gazori, P., Rahbari, D. and Nickray, M., 2020. Saving

time and cost on the scheduling of fog-based IoT

applications using deep reinforcement learning

approach. Future Generation Computer Systems, 110,

pp.1098-1115.

[11] Rahman, G.S., Dang, T. and Ahmed, M., 2020. Deep

reinforcement learning based computation offloading

and resource allocation for low-latency fog radio access

networks. Intelligent and Converged Networks, 1(3),

pp.243-257.

[12] Jazayeri, F., Shahidinejad, A. and Ghobaei-Arani, M.,

2021. Autonomous computation offloading and auto-

scaling the in the mobile fog computing: a deep

reinforcement learning-based approach. Journal of

Ambient Intelligence and Humanized Computing, 12(8),

pp.8265-8284.

[13] Chen, M., Wang, T., Zhang, S. and Liu, A., 2021.

Deep reinforcement learning for computation

offloading in mobile edge computing

environment. Computer Communications, 175, pp.1-12.

[14] Baek, J. and Kaddoum, G., 2020. Heterogeneous task

offloading and resource allocations via deep recurrent

reinforcement learning in partial observable multifog

networks. IEEE Internet of Things Journal, 8(2),

pp.1041-1056.

[15] Talaat, F.M., Saraya, M.S., Saleh, A.I., Ali, H.A. and

Ali, S.H., 2020. A load balancing and optimization

strategy (LBOS) using reinforcement learning in fog

computing environment. Journal of Ambient

Intelligence and Humanized Computing, pp.1-16.

[16] Naghdehforoushha, M., Dehghan Takht Fooladi, M.,

Rezvani, M.H., Gilanian Sadeghi,M.M.,, 2022,

BLMDP: A New Bi-level Markov Decision Process

Approach to Joint Bidding and Task-Scheduling in

Cloud Spot Market, Turk J Elec Eng & Comp Sci,

DOI: 10.3906/elk-2108-89

[17] Naghdehforoushha, M., Fooladi, M.D.T., Rezvani,

M.H. and Sadeghi, M.M.G., 2022. BLMDP: A new bi-

level Markov decision process approach to joint bidding

andtask-scheduling in cloud spot market. Turkish

Journal of Electrical Engineering and Computer

Sciences, 30(4), pp.1419-1438.

[18] Fang, C., Xu, H., Yang, Y., Hu, Z., Tu, S., Ota, K.,

Yang, Z., Dong, M., Han, Z., Yu, F.R. and Liu, Y.,

2022. Deep-Reinforcement-Learning-Based Resource

Allocation for Content Distribution in Fog Radio

Access Networks. IEEE Internet of Things

Journal, 9(18), pp.16874-16883.

 Journal of Computer & Robotics 15 (2), Summer and Autumn 2022, 37-47

47

[19] Shruthi, G., Mundada, M.R., Sowmya, B.J. and

Supreeth, S., 2022. Mayfly taylor optimisation-based

scheduling algorithm with deep reinforcement learning

for dynamic scheduling in fog-cloud

computing. Applied Computational Intelligence and

Soft Computing, 2022.

[20] Gupta, H., Vahid Dastjerdi, A., Ghosh, S.K. and Buyya,

R.,: iFogSim: A toolkit for modeling and simulation of

resource management techniques in the Internet of Things,

Edge and Fog computing environments. Software:

Practice and Experience, 47(9), pp. 1275-1296 (2017)

