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Abstract 
 

Today, cloud markets, especially Amazon, have attracted a lot of attention from users due to the provision of Spot Virtual 

Machines (SVMs). It has several advantages for both sides of the market. On the one hand, Amazon can generate revenue 

from its underutilized virtual machines. On the other hand, the customer can get the SVM as needed at a dynamic price 

through an auction method. Providing optimal bidding strategies in such a market is a crucial challenge. The bidding price is 

affected by uncertain parameters such as the price of SVMs, the number of available SVMs, the number of current customers, 

and their bidding values. In this paper, we use Information Gap Decision Theory (IGDT) to determine the best bidding 

strategy. Our proposed method includes both risk-averse and risk-neutral strategies. The evaluation results based on historical 

Amazon EC2 prices confirm the effectiveness of the proposed method in the presence of uncertain prices. It has high 

performance compared to the baseline methods in terms of robustness cost, uncertainty budget, and execution time. 
 

Keywords: Cloud spot market; Bidding strategy; Uncertainty; Information Gap Decision Theory (IGDT) 

 

1-Introduction  
 

Cloud computing markets provide users with a large 

number of virtual resources in the form of Virtual 

Machine (VM) instances [1]. For example, the 

Amazon marketplace currently offers several types 

of Spot Virtual Machines (SVMs) by auction [2]. 

Auction has proven to be an effective mechanism for 

trading cloud services. It not only allows the 

customer to obtain the requested resources at lower 

prices but also allows the cloud provider to increase 

its profit [3]. 

We consider an Amazon-like auction market with a 

set of users and a set of homogeneous SVMs. In this 

market, any user can bid for SVM instances [4]. 

According to Amazon's policy, if the user's bid 

exceeds the price of the SVM, it will be leased to the 

user. Otherwise, the user must wait for the next 

bidding period [5]. Achieving SVMs significantly 

reduces users' computational costs for their jobs [6]. 

The constantly changing price of SVMs makes it 

difficult to decide on a bid price. Therefore, in most 

cases, making suggestions to the user is a 

challenging issue. If the user input is low, the 

probability of interrupting the execution of user 

tasks increases, which in turn leads to longer 

execution times and higher costs. Conversely, if the 

user's bid is high, the provider may increase the 

price. In this case, the cloud provider may lose its 

potential user and lose financially [7]. However, 

there is a financial benefit in calculating the bid price 

by taking into account the associated risks, 

especially the cash price. In addition, other 

uncertainties inherent in the cash market may also 

add to the complexity. Some of the most important 

uncertainties are the unavailability of SVMs, the 

future demand of users, and the patterns suggested 

by other users. Therefore, providing a suitable offer 

price requires the use of optimal bidding strategies. 

The purpose of this paper is to design a robust 

strategy against momentary price fluctuations using 

Information Gap Decision Theory (IGDT) 

technique. IGDT is one of the powerful tools to find 

robust solutions with different levels of security 

against the uncertainty of input parameters. It has 

been used by previous researchers in other 

applications such as stock markets, electricity, etc. 

[8]. 
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We use IGDT for user bidding concerning SVMs 

under spot price uncertainty. The use of IGDT has 

recently been promoted to deal with severe 

uncertainties in power systems [9]-[13]. To the best 

of our knowledge, no research has been conducted 

regarding the use of IGDT to model uncertainty in 

the cloud market. This is the first research in which 

the uncertainty of the parameters affecting the bid 

price (for example, SVM price) is modeled by the 

IGDT method. 

In summary, the most important contributions of this 

article are as follows: 

 Presenting a method for robust bidding 

decision-making for SVMs considering 

lower and upper limits for market prices  

 Risk-constrained bidding decision-making 

for SVMs in the presence of spot price 

uncertainty to minimize the total processing 

cost of the user  

 Obtaining appropriate bidding strategies by 

using IGDT 

The rest of this paper is organized as follows: 

Section 2 reviews the related works; Section 3 

presents the uncertainty modeling technique; Section 

4 presents the formulation of the problem using two 

risk-averse and risk-neutral strategies; Section 5 

provides the input data, results, and assessments in 

detail; Finally, the conclusion is provided in Section 

6. 

 

2- Related Works 
 

Optimal bidding strategies without considering 

uncertainties (risk-neutral models) have been 

reviewed based on a combination of statistical and 

forecasting methods. For example, in [16], first, 

authors analyzed the actual price distribution based 

on spot price history using a k-AMSE parameter. 

Then, they presented a prediction model based on 

the Gated Recurrent Unit (GRU) network. Their 

results show that the proposed method is more 

accurate than the baseline ones. In [17], a utility-

based strategy was proposed in favor of user 

decision-making for the short-term trade-offs 

between the spot price and availability. The results 

show that this solution can provide efficient choices 

of SVM instances, with low bids and high 

availability. Khandelwal et al. [18] used a random 

regression forest model to predict the price of 

SVMs. They compared the proposed method with 

several machine learning algorithms such as Support 

Vector Machine (SVM), Neural Network (NN), 

decision tree, and random forests. Also, a similar 

study was conducted by Al-Theiabat et al. [19], this 

time using the deep learning method and the use of 

Long-term Short-term Memory (LSTM). They found 

that this method has less error compared to other 

machine learning solutions such as Auto-regressive 

Integrated Moving Average (ARIMA). Liu et al. 

[20] designed a Hidden Markov Model (HMM) to 

predict spot prices. Their results show that the 

proposed model can predict the spot price more 

accurately compared to regression-based forecasting 

methods. The major disadvantage of the above-

mentioned research is not handling the uncertainties 

in the price of SVMs. This can increase the deviation 

of the predicted prices from their real values in the 

next time slots. 

Risk-based models of bidding problems mainly have 

been investigated based on probabilistic methods. 

Although there are various methods for handling 

uncertainty, only probabilistic methods have been 

applied to the bidding problem of SVMs. For 

example, Zheng et al. [21] proposed an optimal 

bidding strategy for cloud users which depends on 

the probability distribution function of prices. 

Mireslami et al. [22] proposed an algorithm for 

deploying a web application with two phases: 

resource reservation and dynamic bidding. During 

the reservation step, resources are reserved 

according to the expected Service-level Agreement 

(SLA). Then in the dynamic bidding step, the user 

demand is modeled as a random variable. Also, 

Naghdehforoushha et al. [7] used Markov Decision 

Process (MDP) to model bidding and scheduling 

problems jointly. The proposed model works at two 

time scales on two levels. At the top level, it selects 

the most appropriate user bids and adjusts the spot 

price to minimize the cost of SVMs on the cloud 

provider side. At a lower level, it decides to admit 

tasks to maximize user-side satisfaction. Their 

results show that the proposed method manages to 

minimize cloud providers’ costs and maximize user 

gain more effectively compared to heuristic 

methods. In another study, Ivashko et al. [23] 

developed a model to find the optimal bid using a 

threshold-based strategy. Although their method 

minimizes the cost of renting SVMs, it does require 

prior knowledge of price probability distribution, an 

assumption that does not exist in the real world at 

all. Xie and Lui [24] used Q-learning techniques to 

deduce favorable prices from historical data. They 

first designed a dynamic discrete-time pricing 

scheme and formulated an MDP to describe price-

dependent demands. Their results show that the 

proposed dynamic model can lead to an increase in 

revenue of up to 20% compared to static pricing. 

Unlike previous studies, our proposed IGDT-based 

method is a non-probabilistic method with two 



Journal of Computer & Robotics 16 (1), Winter and Spring 2023, 75-87 

 
 

77

 
 

major advantages: First, by solving the deterministic 

method, the minimum execution cost of each user is 

obtained based on the price history. In this way, the 

user can find a confidence interval for the price of 

SVMs close to the deterministic desired cost. 

Regarding the user, our model depends on the 

amount of money of user wants to spend to get the 

SVMs within the specified deadline. Second, it finds 

the minimum and maximum price (price interval) for 

SVMs in a risk-averse strategy based on the IGDT. 

In this way, not only the user can cost-effectively 

perform the task, but also the spot market is 

regulated. The user does not have to bid a high value 

to win. It is enough for the user to bid in the range 

where prices fluctuate. In the other words, even if 

users bid a high price for SVMs over time, the 

provider is still able to set a reasonable price. Our 

evaluations show that the IGDT is a robust 

mathematical tool for assessing risks in presence of 

uncertain prices. 

 

3- Uncertainty Modeling 
 

There are different models for dealing with existing 

uncertainties in the literature. Also, different 

methods have been created to model uncertainty 

from a wide range of methods, including stochastic 

programming, robust optimization, fuzzy, and IGDT 

[14, 15]. These methods differ in using different 

solutions to define the uncertainty of the input 

parameters. For example: 

 In stochastic programming, the probability 

density function of the uncertain input 

parameter(s) must be known. 

 In robust optimization, the uncertainty set or 

uncertainty radius must be known. 

  In fuzzy methods, the membership function 

of the uncertain input parameter(s) must be 

known. Besides, working with fuzzy 

numbers is not easy. 

 In the IGDT method, there is no need to 

have specific information about the 

uncertain parameter.  

Since IGDT is an efficient method for modeling the 

uncertainty with unknown practical knowledge about 

their behavior, we use it to model the uncertainty of 

the spot price and investigate its effect in the 

presence of bid prices. 

 

 

 

3-1- Principles of IGDT 
 

 

IGDT is a decision-making method that tries to 

maximize system robustness in the face of severe 

uncertainties. The advantage of the IGDT compared 

to the stochastic programming method is related to 

the dependency of output variables from 

probabilistic scenarios. Moreover, IGDT is 

computationally lightweight. This means that it does 

not require any assumptions about the nature of the 

uncertain parameter. The only necessary assumption 

is the predicted value of the uncertain parameter so 

focus on the difference between the actual value of 

the uncertain parameter and the predicted value. It 

seeks to determine the maximum allowable bound of 

uncertainty for the uncertain parameter. In this case, 

the objective function remains within the allowable 

range. Also, the result of IGDT is accurate and 

efficient. The advantage of the IGDT compared to 

the robust optimization is related to the ability to 

model the worst and good realizations of uncertain 

parameters based on the user’s strategy. The 

advantage of IGDT over probabilistic methods such 

as Monte Carlo is that it does not require specific 

information about uncertain parameters (e.g., 

probability density function, the fuzzy logic 

membership function, and the exact definition of 

scenarios) [8].  

Despite the above-mentioned advantages of IGDT, 

there are also some disadvantages. It does not use 

historical data in uncertainty modeling. This can lead 

to more conservative results for IGDT. In the 

following, we will briefly explain this method. 

As an optimization problem, this method includes 

objective function, equality, and inequality 

constraints, as follows: 

(1) ),( Xfof
X

 min  

(2) 0),( XH i
 

(3) 0),( XG j
 

(4)  

, where   denotes the set of uncertain parameters. 

Here, X represents decision variables. Also,   is the 

uncertainty set describing the uncertain parameters, 

and HG /  is the set of inequalities/equalities for the 

set of decision variables X .  
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One of the key points for IGDT is Info-Gap 

modeling. There are several types of models for 

uncertain parameters according to their attributes. 

Here, the envelope-bound model is used to represent 

the prior information about the uncertain input 

parameters   [11]. Eq. (5) shows the mathematical 

description of the uncertainty set as an info-gap 

fractional error model in the IGDT. 

 












 



 :),(  

(5) 

 

 

 

, where   is the predicted value of the uncertain 

parameter . Also,   is the maximum allowable 

deviation of the original realization of the uncertain 

parameter from its forecasted value. This 

is also called the unknown radius of uncertainty. 

 

4- Problem Formulation 
 

This section consists of two parts; first, in Section 4-

1, the base case model is introduced, considering the 

objective function along with all constraints. 

Then, in Section 4-2, the risk-averse model is 

introduced, considering the objective function and 

constraints. 

To evaluate the impact of uncertainty using the 

IGDT, it is necessary that obtain the solution in a 

Base Case (BC) according to the forecasted value of 

input parameters. BC is a deterministic model of the 

optimization problem by which a risk-neutral 

strategy is obtained. In other words, this strategy is 

the basic form of the proposed model without 

considering uncertainty. Then, in the second level, 

the optimization of different decision-making 

strategies is followed.  

The BC optimization problem is described by Eqs. 

(6)-(8) and assumes that the uncertain parameter has 

no deviation from its predicted value. 

 

(6) ),( Xfof
X

b  min 

(7) 0),( XH i
 

(8) 0),( XG j
 

Assuming that the unknown parameter is exactly 

equal to the predicted value, the BC value of the 

objective function is obtained based on the output 

obtained from Eq. (6)-(8). If the uncertain parameter 

differs from its predicted value, the decision-maker 

is encountered with two different strategies: risk-

averse strategy and risk-seeker strategy. The 

decision-making in a risk-averse strategy is 

undertaken pessimistically. Here, the decision-maker 

assumes that uncertainty has an undesirable effect on 

the objective function. On contrary, the decision-

making in a risk-seeker strategy is undertaken 

optimistically. Here, the decision-maker assumes 

that the uncertainty not only may not adversely 

affect the objective function but also can help 

achieve a better objective function compared to the 

BC value. 

For VM instances that are affected by real-time price 

fluctuations, optimistic decision-making can cause 

irreparable financial losses to the user. To overcome 

this problem, we adopt the RA strategy to increase 

the robustness of the bidding strategy against 

uncertainty. It makes the objective function resistant 

to the possibility of error in the prediction of the 

uncertain parameter. To address uncertainty, a risk 

aversion strategy can be applied by the decision-

maker with a risk-neutral strategy. Now we proceed 

to formulate it. 

 

4-1- Risk-neutral Problem Formulation 
 

In this section, we present the deterministic 

formulation for the optimization problem concerning 

the cost of processing tasks on SVMs during a T-

hour period by Eq. (9). The base system model and 

related formulation are given in [25]. We consider 

the following assumptions in this study according to 

[25]: 

 Every user, requesting a spot service, 

participates in the spot market to submit user 

tasks. 

 Every user acts as a price-taker agent, in the 

sense that user bids alone cannot influence 

the price 0f SVMs. 

 In each hour, the user predicts the price of 

SVMs an hour ahead. 

 Each user considers only the processing 

costs and neglects the storage and data 

transfer costs. 

 Since the price of SVMs depends on the 

supply-demand pattern in a geographical 

area, we limit ourselves to a predefined 

geographical area. 

 The bid price dynamically changes each 

hour. 

 The purchased SVMs are homogeneous and 

are only of the Spot type. 
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 Each user uses a checkpointing technique to 

store calculations before the out-of-bid 

event.  

 

The decision variable is the bid price for the round 

t+1, which is denoted by 
1tb . This value must be 

calculated by the user for the next hour considering 

the price of SVMs of the current hour. The set of 

bids submitted by the user is denoted by

],...,[ 1 TbbB  , in which T is the last round to bid. 

Table 1 shows the mathematical notations used in 

this paper. 

This risk-neutral term is the deterministic form of 

the base problem. 

 

(9) 
))(()()(

1 1


 


VM

i

N

i

T

h

spot hpfhprghMinDECF 

 

, where )(h  denotes the binary variable associated 

with allocating SVMs to the user, )(hprg
i

 denotes the 

progress of the i-th task on the corresponding SVM 

at time h, and ))(( hpf spot  denotes the function of the 

price of SVMs at time h. Later in Eq. (28), we will 

estimate the function  f(.) through the curve fitting 

technique for the hourly price of SVMs. The 

processing cost is the amount of money that is paid 

by the user for using the SVMs conditional on the 

successful bidding by the user. Eq. (9) simply states 

that the user's objective is to minimize the sum of the 

costs associated with the progress of the tasks at the 

specified prices. This cost will be paid by the user to 

the provider for the entire business hours.  

According to Eq. (10), if the bid price at round h is 

higher than the price of SVMs at that round, the 

requested SVMs are allocated to the user, and the 

value of the binary variable )(h  at that round is 1; 

otherwise, no SVM is allocated to the user: 

 



 


else

hphb
h

spot

0

)()(1
)(

 

(10) 

Allocation decision variables in the previous, 

current, and next (estimated) rounds are denoted by

)1( h , )(h , and )1(ˆ h , respectively. 

Depending on what these values are, the rate of 

progress of i-th task on the corresponding SVM at 

each hour can be calculated as follows: 
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As stated before, we can use a fault-tolerance 

mechanism such as checkpointing to store the 

system state to avoid the resulting loss when an out-

of-bid failure occurs [25]. 

For the estimation of )1(ˆ h  in Eq. (11), one must 

at first estimate the price of SVMs )1(ˆ hp spot for the 

next hour, and then estimate the amount of bid price 

)1(ˆ hb . The value of )1(ˆ hb at the next time slot is 

calculated using the following equation: 

 

)1()()1(ˆ bhbhb   (12) 

 

  

, in which b  is obtained as follows: 

 

 

Hh
hp

hphp
b

spot

spotspot





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)1(

)1()(  (13) 

 

The b  can be estimated from price fluctuations in 

two consecutive time slots. In this regard, the total 

progress rate concerning each task on a dedicated 

SVM during all hours should not exceed the user-

specified time. This constraint is stated as follows: 

 

 

1

( , ) ( ) ,
T

execution

h

prg i h t i i VM h H


     
(14) 

 
  

Also, it should be ensured that the deadline for 

executing the user’s tasks is not violated. In this 

regard, the sum of hours spent executing tasks on 

each SVM shall not exceed the user-specified 

deadline for that task. So, we write the following 

constraint: 

 

VMiithiMH deadline
T

h




)(),(
1

 
(15) 
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Table 1 

 Mathematical Notations 

DECF  Deterministic ECost Function 

RECF Robust ECost Function 

DECF  The objective function of the 

deterministic model 

RECF The objective function of the robust 

model 

h  Index of hours (1 to  ) 

i  Index of SVMs (1 to    ) 

},...,1{ SVMNSVM 

 
Set of all requested SVMs by the user 

},...,0{ TH 

 
Set of daily hours (time slots) 

),( hiprg  
Execution progress time for 

itask  on 

SVM i at the period h (in hours).  

)(it deadline
 

deadline for completion of 
itask  (in 

hours) 

)(it execution

 
Run time of 

itask  (in hours) 

ingcheckpointt  
the time needed for check-pointing (in 

minutes) 

resumet  
the time needed for resuming the 

result (in minutes) 

VMN  number of SVMs 

T  number of time slots 

  Budget of uncertainty 

  
Robust region of the uncertainty 

sources 

),( hiMH  Runtime spent on each machine (hour) 

)(hp spot
 

Price of SVMs for each time slot 

($/hour) 

)1(ˆ hp spot
 

The estimated price of SVMs for the 

next time slot ($/hour) 

)(hb  
The bid price of the user for an SVM 

type at a time slot h ($/ hour) 

)1(ˆ hb  
The estimated bid price of  the cloud 

user for the next time slot ($/hour) 

b  The amount of change in the bid price 

)(h  
Binary variable indicating whether 

requested SVM instances are allocated 

to the user at the time slot h or not 

)1(ˆ h  

Estimated binary variable indicating 

whether requested SVMs are allocated 

to the user at the time slot 1h or not 

  
The envelope of the robust region of 

the uncertainties )(hp spot  

)(
~

hP spot
 

The predicted price of SVMs for h 

time slots ($) 

demandonp 
 price of on-demand VMs ($) 

 

It should also be noted that the price of SVMs per 

hour can not exceed the price of on-demand 

instances. Otherwise, the user would prefer to use 

on-demand instances with high reliability instead of 

unreliable SVMs. So the following constraint can be 

defined accordingly: 

 

HhPhp demandonspot  )(  
(16) 

 

4-2- Risk-Averse Problem Formulation using 

IGDT 
 

As mentioned earlier, different methods, including 

stochastic optimization, robust optimization, 

probabilistic methods, and IGDT, are used in the 

literature to model uncertainties in optimization 

problems [26]-[29]. In particular, IGDT is a 

powerful way to describe uncertainty. This technique 

is an interval optimization method that optimizes the 

objective under uncertainty so that it does not 

require uncertain parameter historical data in the 

modeling. IGDT models the uncertainty by an 

interval around the predicted value of the 

uncertainty. It also controls the risk of prediction by 

guaranteeing a predetermined level of objective and 

introducing the maximum level of the confidence 

interval around the predicted value. The IGDT seeks 

to determine the maximum allowable bound of 

uncertainty for the uncertain parameter so that the 

objective function remains within the allowable 

range. It proposes a confidence interval to the 

decision-maker by considering a distance around the 

predicted value of the uncertainty parameter. 

According to the decision maker’s risk preference, 

IGDT can provide robust strategies corresponding to 

cost expectations for random variables located 

within a given interval. As widely accepted, cloud 

users are risk-averse. Hence, this method is the best 

option for conservative decision-makers. This 

strategy occurs if an uncertain parameter increases 

the objective function of cost. Therefore, this 

strategy seeks to find the maximum value of the 

uncertain parameters for the worst predetermined 

amount of the objective function relative to its base 

value. In this strategy, by solving the robustness 

function, the objective function is resisted against 

uncertain parameter deviation. The robustness 

function means that the decision-maker was assured 

of a deviation in the uncertain parameter, in which 

the objective function value would not be increased 

than the predetermined value. Therefore, the 

robustness function is applied in this paper so that 

we maximize the level of uncertainty within the 

user’s tolerance while maintaining a certain cost 
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level for the user [11]. Hence a maximized allowable 

deviation for the price of SVMs from predicted 

values will be derived using the IGDT technique [8]. 

The robust function is utilized to maximize the risk 

level of the SVMs’ price that the user can bear for an 

expected level of cost. By detecting the worst case, 

the user’s bidding strategy optimization problem is 

solved as an MINLP. The following mathematical 

relationships describe this strategy: 

 

 




 max
X,

ˆ   (17) 

 

equalityi iXH  ,0),(   (18) 

 

 

inequalityj jXG  ,0),(   
(19) 

 

Finally, the risk-averse strategy used in our research 

is applied as follows: 

 

1
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(25) Hhphp demandonspot  )1()(~
1 

(26) 
The inherent limitations of the problem, i.e. Eqs. 

 (14-16) 

According to the IGDT concept, the maximum value 

of 1  is obtained by solving the single-objective 

robust problem in Eq. (20). The IGDT method takes 

into account the uncertainty parameters which were 

not considered by the deterministic method at all. It 

maximizes the envelope of the robust region using 

Eq. (23). Note that the DECF denotes the 

deterministic cost function attained by Eq. (9), while 

the RECF denotes the robustness cost function in 

Eq. (22). The robust region of )(~ hp spot
 can be 

summarized by Eq. (23). Therefore, Eq. (10) and 

constraint in Eq. (16) can be rewritten as Eqs. (24)-

(25) to obtain the worst case. This considered model 

is a Mixed-Integer Non-linear Programming 

(MINLP), which is solved by the GAMS 

optimization software under the BARON solver 

[30].  

At the end of this section, we briefly explain the 

proposed algorithm for the optimal bidding strategy. 

The cloud user sends hourly bids to the cloud 

provider to rent his/her needed computing resources. 

The above-mentioned robustness function of the 

IGDT, ensure the user makes appropriate decisions 

concerning the bidding interval. In the following, we 

explain the procedure for determining the bid value 

in each time slot (an hour): 

(1)  Initially, the user finds his/her minimum cost 

function using Eqs. (9)-(16). The resultant cost 

value is, in fact, the expected minimum cost if 

market prices are equal to the predicted values 

per hour. 

(2)  Now, the user finds his/her optimal value of the 

robustness function using Eqs. (20)-(26). As 

stated before, the value of the robustness function 

is less than the expected minimum cost obtained 

in step (1).  

(3) For all levels of robustness cost (the confidence 

level) )( 1 , the actual values of the price of 

SVMs for each iteration s  are obtained. 

(4)  Considering the robustness and maximum values 

of 1 , the user calculates the optimum bid price 

as follows: 

 

)1()1(ˆ)1( 1 hbhb  (27) 

 

Fig. 1 shows the flowchart of the proposed method 

in brief. Later in Section 5, we will provide more 

explanations about evaluation scenarios. 
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Fig 1. The flowchart of the proposed method 

 

5- Performance Evaluation 
 

To analyze the performance of the proposed method, 

we run extensive experiments on a 64-bit Intel® 

Core i7-2670QM processor with 6 MB Cache, 2.2 

GHz CPU frequency, and 8 GB RAM. We evaluated 

our algorithm using one of the most popular public 

cloud providers, namely Amazon EC2 [31]. It is 

responsible for providing computing capacity that 

can scale in the Amazon Web Services (AWS) cloud 

[32]. Amazon offers its surplus computing capacity 

under a spot pricing scheme to customers, e.g., 

organizational tenants. Each user participates in a 

next-hour market with a time horizon of 24 hours. 

The resource pricing policy is imposed by Amazon 

EC2 based on “on-demand” and “spot” pricing 

schemes. The pricing procedure is performed for 

general-purpose SVMs, for example, t2.small. Note 

that our proposed method is not limited to Amazon 

services and can be generalized to any other type of 

SVMs from any cloud provider. 
 

5-1- Data 
 

Because Amazon has only provided 90-day spot 

prices historical to users for a variety of SVMs [31], 

we use them as input data. Fig. 2 shows, for 

example, the pattern of spot price changes for the 

specified VM instance (m2.4xlarge) concerning the 

“us-east-1f” geographical zone for February 17, 

2017. 
 

 

 
Fig 2. price fluctuations of SVMs concerning “m2.4xlarge” 

instances during different hours [31]. 

 

 

Now, using the MATLAB 2020a software, we 

proceed to find the best-fit curve concerning the 

price pattern of Fig. 3. The details of the calculations 

are as follows: 

 

 
Fig 3. Curve fitting for hourly prices pattern of Fig.2 
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The fitted curve of Eq. (28) is shown in Fig. 3. 

Two cases are represented to clarify the 

effectiveness of the proposed bidding strategy and to 

reveal the results of using IGDT optimization, as 

follows: 
 

Case I: Without considering IGDT as a risk-neutral 

strategy 

Case II: Considering IGDT as a risk-averse strategy 

 

5-2- Evaluation Without Uncertainty  
 

We will examine the allocation of spot VM instances 

to the consumer, as well as the execution progress 

rate of the tasks. The total cost, in this case, is $ 

63.205 and its execution time is 0.492 seconds. 

We have already stated that changes to the binary 

variable )(h  at any time interval h show the 

allocation vector concerning the SVMs over 24 

hours. This vector is shown in Fig. 4. According to 

Eq. (10), if the current bid is higher than the price of 

SVMs, the consumer will be able to use cheap 

SVMs to perform his/her tasks at that time. As is 

evident in Fig. 4, the bids offered by the consumer in 

periods 1, 4, 6, 7, 9, 12, 15, 17, 19, and 22 are higher 

than the spot prices. This means that during these 

periods, the user is allowed to perform tasks on the 

requested SVMs. The user will not be allowed to use 

the resources for the rest of the time due to the low 

bid offered by him/her. So at those hours, the value 

of the variable )(h  is zero. 

 

 
Fig 4. The value of the variable )(h  for 24 hours 

 

Fig. 5 shows the progress of the user's task on 

different SVMs. As stated earlier in Eq. (11), in each 

hour, if the deadline is not violated and the VM is 

assigned to the consumer, then the progress rate of 

the task can be calculated. 

As stated before in Eq. (11), if the SVM is allocated 

during the previous time slot, the rate of execution 

progress for the task, )(hprg
i

, at the current and 

next time slots will be different. Based on this, five 

different cases for )(hprg
i

 can be distinguished on 

each VM at each time slot: 

Case 1: This situation occurs at time slot 7 in Fig. 5. 

As stated in the first condition of Eq. (11), in the 

previous and current hours, the SVM has been 

allocated to the consumer. This means that during 

these hours, the bids offered by the user were higher 

than the price of SVMs (according to Eq. (10)). But 

this is not the case in the next hour. Therefore, the 

out-of-bid event will take place in the next hour. In 

this case, we use the checkpointing operation to 

prevent the loss of task results concerning the 

previous hours. To do this, a portion of the execution 

time, ingcheckpointt , is spent on checkpointing. In 

this case, the value of the progress rate is equal to 

ingcheckpointt1 . 

 

 
  Fig 5. Execution progress rate of task on spot VMs for 24 hours 

 

Case 2: This situation occurs at time slot 6 in Fig. 5. 

As stated in the second condition of Eq. (11), in the 

current and next hours, the spot VM has been 

allocated to the consumer. This means that during 

these hours, the bids offered by the consumer were 

higher than the spot price. But this is not the case in 

the previous hour. Therefore, the out-of-bid event 

has been taken place in the previous hour. In this 

case, we use the recovery operation to resume the 

task. To do this, a portion of the execution time, 

resumet , is spent resuming. In this case, the value of 

the progress rate is equal to resumet1 . 

Case 3: This situation occurs at time slots 1, 4, 9, 

and 12 in Fig. 5. As stated in the third condition of 

Eq. (11), only in the current hour, the spot VM has 

been allocated to the consumer. This means that 

merely during the current hour, the consumer bid 

was higher than the spot price. But this is not the 
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case in the previous and next hours. Therefore, the 

out-of-bid event has taken place in the previous and 

next hours. For this reason, due to the out-of-bid 

occurrence in the previous hour, the previous results 

must be retrieved. Also, due to the out-of-bid 

occurrence in the next hour, the obtained results 

must be stored in the current hour. To do this, two 

portions of the execution time, namely ingcheckpointt  , 

and resumet , are spent for checkpointing and 

resuming operations, respectively. In this case, the 

value of the progress rate is equal to

resumeingcheckpoint tt 1 . 

Case 4: This situation has not occurred in Fig. 5 at 

all. As stated in the fourth condition of Eq. (11), in 

three consecutive hours, the spot VM has been 

allocated to the consumer. This means that during 

these hours, the consumer bid was higher than the 

spot price. Therefore, in this case, the value of the 

progress rate is equal to one full hour. 

Case 5: When none of the above four situations 

occur, the value of the progress rate at that time slot 

is equal to zero. This situation occurs at time slots 2, 

3, 5, 8, 10, 11, and 13-24 in Fig. 5. 

It is also emphasized that in each of the above cases 

and at each hour, it must be checked that the task 

deadline is no more than the current hour. Because 

in this case, the deadline for the task has ended and 

its continuing will no longer have worth to the 

consumer. 

 

5-3- Evaluation in the Presence of Uncertainty  
 

In this case, to study the efficiency of the IGDT-

based method, the value of the parameter   is 

chosen as a random number in the interval [0, 1] 

according to the uniform distribution. The random 

values of   over 100 scenarios are shown in Fig. 6. 

In the risk-averse strategy, the cost is minimized 

from the perspective of the decision variable. It 

simultaneously performs the maximization of the 

objective function from the perspective of the 

uncertainty variable. Thus, the best decision is made 

against the most pessimistic occurrence of 

uncertainty. In this case, the maximum cost will be 

less than a critical cost. As mentioned earlier,   

denotes the critical cost deviation coefficient in 

deterministic mode. We consider 100 scenarios in 

the simulations. In each scenario, a random number 

in the interval [0, 1] is generated for  . Then, for 

each generated  , a confidence interval around the 

predicted value for the uncertainty parameter (spot 

price) is obtained. In addition, the total cost of 

executing the tasks for the robustness function in the 

risk-averse strategy is obtained. 

 

 
Fig 6. Random values generated for   in each execution 

scenario 

As explained in Section 4-2, in the IGDT-based 

method, the robustness strategy is implemented. The 

variations of the “tolerable uncertainty” versus the 

“objective cost” in this strategy are depicted in Fig. 

7. Note that in the figure, “Alpha1” represents 
1̂  

(Eq. (20)). As is evident in Fig. 7, the tolerable 

uncertainty increases from 1.04 ( 1717.0 ) to 2 (

5763.0 ). This means that the objective cost 

increases from $0.12 (base mode) to $62.88 (

5763.0 ). As expected, when the objective cost 

increases, it shows more tolerance toward 

uncertainty. This fact is evident in Fig. 9. The 

average calculation time of the algorithm in the 

robustness strategy in each scenario is equal to 

0.2427 seconds. 

 

 
Fig 7. The variations of “tolerable uncertainty” vs “objective 

cost” concerning the robustness strategy 
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Fig. 8 shows a comparison of the “total cost” of task 

processing concerning robustness strategy for 

different scenarios.  

 

 
Fig 8. The “total cost” of task processing concerning robustness 

and deterministic strategies for different scenarios 

 

Also, our results on 100 different scenarios show 

that the minimum   value is equal to 0.05. This 

value corresponds to 1 1.98   in the robustness 

strategy. In contrast, the maximum   value is equal 

to 1. This value corresponds to 1 1.04   in the 

robustness strategy. Due to space limitations, we 

omit the table of 100 scenario executions. Moreover, 

the execution time concerning the robustness 

strategy for different scenarios is shown in Fig. 9.  

 

 
Fig 9. The execution time concerning robustness strategy for 

different scenarios 

 

 

 

Fig. 10 shows consumer bids based on the IGDT 

algorithm versus spot prices during 24 hours. As can 

be seen from the figure, the spot price increases at 

time slots 1-2, 4-5, 7-8, 9-11, 13-14, 15-16, 17-18, 

19-20, and 22-24. Therefore, according to the IGDT 

algorithm, consumer bids have been raised 

correspondingly at time slots 5-6, 8-9, 10-12, 14-15, 

16-17, 18-19, 20-21, and 23-24. In contrast, the spot 

price has been decreasing at the time slots 2-4, 5-7, 

8-9, 11-13, 14-15, 16-17, 18-19, and 20-22. 

Accordingly, consumer bids at time slots 3-5, 6-8, 9-

10, 12-14, 15-16, 17-18, 19-20, and 21-23 have 

experienced a fall. As is evident, the consumer's bid 

is always one time slot, behind the trend of 

rising/falling the price of SVMs. 
 

 
Fig 10. The user bids based on the IGDT algorithm vs spot 

prices during 24 hours 

 

Fig. 11 shows the variations in the uncertainty 

budget interval for the robustness strategy. As 

expected, with an increase in the uncertainty budget, 

the robustness interval increases too. In the risk-

averse policy (robustness strategy), the decision-

maker aims to make the least possible profit by 

spending the most. Needless to say, such an agent 

must take the least risk. According to Eq. (21), when 

the β value increases, because the beta is in the range 

[0, 1], the value of 1+β is greater than 1 and is 

incremental. Mathematically, when this incremental 

expression is multiplied by the DECF value, it 

increases the distance between the RECF and the 

DECF values and thus increases the cost.  
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Fig 11. Variations in uncertainty budget interval for the 

robustness strategy 

 
 

6- Conclusion 
 

In this paper, a bidding strategy for SVMs using 

IGDT was presented. We targeted a cost-effective 

dynamic bidding strategy for spot pricing schemes in 

cloud marketplace environments. In this regard, the 

most important issue is to minimize the overall 

processing costs of the consumer by taking into 

account the QoS constraints (e.g., an upper bound on 

the execution time) while taking into account the 

uncertainty in the spot prices. We formulated the 

problem in both deterministic (without uncertainty 

modeling) and non-deterministic (with uncertainty 

modeling) settings. To handle the uncertainties, we 

used the IGDT method, which can significantly 

approximate the near-optimal solution. It uses a risk-

averse strategy and determines the strength level to 

decide on the bid price. As a result, it helps the user 

to make the right decisions to set the right bid price. 

Numerical analyzes on different scenarios using the 

Amazon spot price dataset proved that the proposed 

IGDT-based algorithm can reasonably balance 

monetary costs and reliability. Since the proposed 

bidding strategy is not dependent on a specific cloud 

provider, it can be used for all Infrastructure-as-a-

Service (IaaS) environments.  

There exist important lines of research for future 

studies. Other mechanisms for checkpointing can be 

used to increase reliability. Adopting a low-risk 

bidding strategy while considering the user's future 

demand may lead to significant performance 

improvements. A combination of on-demand and 

spot pricing methods can also be used. Also, a 

procedure for determining the optimal number of 

required VM instances can be used by users. 

Another line of future research is multi-objective 

optimization using other uncertain parameters. 
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