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Abstract 
 

In this paper, we address the critical challenges of robotic navigation in dynamic environments, increasingly relevant with 

rapid advancements in robotics and artificial intelligence. Traditional navigation methods, reliant on predefined paths and 

detailed mapping, often fail in such unpredictable settings. Our research introduces a novel approach using temporal-

difference learning, a form of reinforcement learning, to enhance robot navigation in these scenarios. We explore the 

difficulties posed by dynamic environments, such as moving obstacles and changing terrains, and demonstrate the 

adaptability of temporal-difference learning in overcoming these challenges. Our method, tested through rigorous 

experiments, shows significant improvements in adaptability, reduced collisions, and enhanced pathfinding efficiency in 

various simulated conditions. These results emphasize the potential of our approach in creating more resilient robotic systems 

for complex situations, including urban landscapes, disaster areas, or extraterrestrial environments. This paper contributes to 

the field of robotics by offering a promising solution to navigate dynamic settings, opening new possibilities for robotic 

deployment in intricate and unpredictable environments. 
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1.Introduction 
 

Artificial intelligence (AI) and machine learning (ML) 

have evolved remarkably since their concep- tion, 

transitioning from rudimentary algorithms to complex, 

self-learning systems [1]. At  the  crux  of this progression 

lies the endeavor to bestow machines with the prowess to 

discern patterns, adapt to them, and proactively predict 

future trends [2]. Historically, supervised learning stood 

tall, driving the early suc- cesses in this domain [3]. 

However, the vast and intricate landscape of  AI and ML is 

not without its challenges. Supervised learning, for all its 

merits, grapples with a depen- dency on  

labeled data, making it less adaptive in dynamic 

environments [4].  In realms where states are transient or 

where complete system knowledge is elusive, traditional 

methods like supervised learning reveal their inherent 

limitations [5]. 

It is against this backdrop that Temporal Differ- ence (TD) 

Learning emerged as a beacon of inno- vation [6]. 

Dissociating itself from the rigidities of immediate reward 

feedback, TD learning delves into the temporal 

interlinkages between different states, banking on the 

discrepancies between successive pre- dictions to fine-tune 

models [7]. The practical implications of TD learning are  

 

 

 

pro- found. Its ability to operate with increased  

compu -tational efficacy, reduced memory requirements, 

and exceptional responsiveness to incoming data has set it 

apart [8]. Particularly in complex domains like the 

bounded random-walk, seminal works, such as those by 

Sutton, highlight its unparalleled advantages [9]. But the 

tapestry of TD learning is woven with con- tributions from  

a global community. Beyond Sut- ton’s foundational work, 

scholars like Johnson et al. have illuminated the subtle 

nuances governing the TD learning-environment 

relationship [10]. The deep dives into the mathematical 

scaffolding of TD by researchers like Kumar and Lee have 

been invalu- able [11], while expansive surveys by experts 

like Al- varez have demonstrated its applicability across 

di- verse sectors including finance, healthcare, and more 

[12]. 

Contemporary advancements, notably  in  neural TD 

learning, are pushing the boundaries even fur- ther, 

offering glimpses into the future trajectory of this dynamic 

field  [13].  The  synergy  of  TD  learn- ing with deep 

learning architectures, as explored by Wang et al., is a 

testament to the ongoing evolution and potential of this 

methodology [14]. In this comprehensive overview, we 

aim to encapsu- late the rich legacy, current relevance, and 

promising future of TD learning in AI and ML. Drawing 

from a plethora of sources, we stitch together the 
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milestones, challenges, and breakthroughs that have 

shaped this as a column vector of size (5 1). 

For instance, the representation for state D is given by XD 

=  [0; 0; 1; 0; 0].The last states, A and G, aren’t one-hot 

encoded; in- stead, they correlate with a reward of either z 

= 0 or  z = 1. 

 

Fig 1. A generator of bounded random walks 

 

A complete example of a random-walk sequence is 

denoted by column-wise stacking of every ac- tive state in 

that sequence. For example, to con- sider a sequence 

shown in  figure  1  with  states XD, XC, XD, XC, XB, 

XA, this is denoted with a re- ward z = 0 and the active 

state sequence as:  

[0 0 0 0 1];[0 1 0 1 0];[1 0 1 0 0];[0 0 0 0 0];[0 0 0 0 0] 

domain [15-18].   

  

2.Random-Walk  

2.1.Setup of the Random-Walk 

Sutton [4] introduced a straightforward stochastic method 

that states can be viewed over time, show- ing that TD 

methods outperform supervised learning (Widrow-Hoff) in 

efficiency. 

2.2.Random-Walk Implementation 

Within the context of the bounded random-walk, there are 

two types of states: 

• Active states: B, C, D, E, F 

• End states: A, G 

We benefit from a vectorized format (one-hot en- coding) 

for the active states. Each state is expressed 

3.Temporal Difference (TD) Learning 
 

Sutton emphasizes the difference between one-step and 

multi-step predictions. This review focus on multi-step 

predictions using TD. TD provides two primary 

advantages: 1) efficient step-by-step calcu- lation, and 2) 

improved learning speed and precision. 

 

3.1.Supervised Learning 

For multi-step predictions, consider a series of obser- 

vations, x1, x2, ...xm, lead to a result z. Each pre- diction, 

Pt, is influenced by current and preceding states.  Sutton 

simplifies this:  a prediction depends on the current state xt 

and some adjustable weights w: P (xt; w). The formula  for  

weight  adjustment, with η as the learning rate, is: 

∆wt = η(z − Pt)xt 

Weights are adjusted in supervised learning only af- ter 

processing the entire sequence. The process will repeat 

until convergence, providing insights to the value of 

intermediate states. 

3.2.TD & Incremental Learning 

TD Learning breaks down the difference between Pt and z 

into differences between consecutive predic- tions. The 

weight adjustment in TD is: 

∆wt = η(Pt+1 − Pt)xt 

Unlike supervised learning that updates after the en- tire 

sequence, TD allows immediate updates. This approach 

conserves memory and accelerates learn- ing.  Sutton’s 

work shows that supervised learning and TD(1) yield 

similar results. 

3.3.TD(λ) Learning 

TD(1) is a subset of the broader TD framework. In TD(λ), 

recent predictions get more weight during up- dates. This 

is accomplished by exponentially weigh- ing the 

predictions based on last prediction, with λ as the 

coefficient: 

Σ 

 

λt−krwkPk 

k=1 

An error term, e, evolves as: 

et+1 = rwt+1 + λet 

 

Predictions for intermediary states in the random walk 

challenge. Then, two experiments are per- formed: 

repeated presentations using varied λ val- ues and a single 

presentation with a neutral starting point and varying (λ, η) 

pairs. 

∆wt = η(Pt+1 − Pt) 
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Fig 2. Errors in random-walk with repeated pre- sentations 

 

3.4.Optimal Weights in Random- Walk 

For sequences of non-terminal states, w(i) represents the 

expected outcome value starting at i. Using tran- sition 

probability matrix Q and vector h, the optimal weight w(i) 

is: 

E[f  |S = i] =  (I − Q)−1h  

 k=1 

An error term, e, evolves as: 

et+1 = rwt+1 + λet 

This attention to prediction last prediction poten- tially 

enhances TD(1)’s effectiveness. 

4.Experiments & Results 

I explore the technical of recreating figures 3-5 from 

Sutton’s document. First, I calculate the optimal 

The vector of optimal weights for non-terminal states B to 

F is: 

E(z) = (I − Q)−1h 

 

4.1.Repeated Presentations 

100 training sets, each with 10 random-walk se- quences, 

are used.  With repeated presentations, for a given λ, going 

through 10 sequences multiple times until convergence. 

After each training epoch, weights were adjusted. The 

average root mean squared error (rmse) contrasts acquired 

and optimal weights. 

 

 

Fig 3. Errors with one-time presentation for var- ied λ values 

 

4.2.Single Presentation 

Using the same 100 training sets,  weights start at 

0.5 for intermediary states. For given (λ, η)  pairs, each 

sequence is processed once. Unlike the previous 

experiment, weights are adjusted after each sequence. The 

average rmse is derived, and the effect of learning rate (η) 

is assessed. 

 

Fig 4.Average errors at the best alfa on the random-walk 
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5.Results and Analysis 

5.1.Findings from Repeated Presen- Tations 

In the repeated presentations experiment, as demon- strated 

in Figure 2, varying the values of λ showcased differential 

convergence rates to make the optimal predictions. Lower 

λ values tended to exhibit more consistent learning curves, 

though often need more iterations for convergence. As λ 

increased, learning speed improved, however results 

showed more vari- ability, indicating sensitivity to the 

specific sequence of training data. 

5.2.Insights from Single Presentation 

Figure 3 and figure 4 portray results from the one- time 

presentation learning. Interestingly, intermedi- ary states, 

when initialized by 0.5, quickly deviated towards either 

end of the reward spectrum. This swift polarization 

indicates the TD method’s efficiency in making immediate 

updates based on single sequence experiences. But the 

effectiveness of learning largely depended on the chosen 

pair of (λ, η). Higher val- ues of λ combined with 

appropriate η often yielded quicker and more accurate 

predictions. However, ex- cessively high η sometimes led 

to overshooting, re- quiring more epochs for stabilization. 

5.3.Comparative Analysis 

Both experiments unveiled the intrinsic trade-offs be- 

tween learning speed and prediction accuracy. While 

repeated presentations made a deep-rooted under- standing 

of the temporal sequences, the one time pre- sentation 

emphasized the adaptability of the TD ap- proach. 

Moreover, the two experiments showed the intertwined 

influence of λ and η. An optimal result between these 

hyperparameters appears pivotal for harnessing the full 

potential of TD learning in the bounded random-walk 

context. 

5.4.General Observations 

Across both learning methodologies, it became ap- parent 

that the TD method’s inherent strength lies in its ability to 

make incremental updates based on the temporal 

sequences. These update not only con- serve computational 

resources but also enable faster adaptation toward the 

dynamics of the learning en- vironment. 

6.Conclusion 

Temporal Difference (TD) Learning stands at the 

intersection of prediction and control, bridging the gap 

between traditional dynamic programming and Monte 

Carlo methods. Over the past few decades, it has evolved 

to become a cornerstone of modern re- inforcement 

learning, enabling agents to understand and navigate their 

environments in real-time with no- table efficiency. 

The power of TD Learning lies in its ability to learn online,  

without waiting until the end of an episode, as seen in 

classical Monte Carlo methods. This online learning 

approach has proven invaluable in applica- tions where 

decision-making on the fly is crucial, such as in robotics, 

autonomous vehicles, and various real- time game 

environments. It allows systems to adapt and refine their 

strategies, harnessing both immedi- ate and delayed 

rewards to optimize behavior. 

Furthermore, recent advancements in deep learn- ing have 

given rise to Deep TD methods,  marrying the strengths of 

neural networks with the adaptive properties of TD 

learning. The result, as demon- strated by achievements 

like AlphaGo’s victory over world champions, has been a 

significant leap in the capabilities of AI systems in 

complex tasks that were previously thought to be beyond 

their reach. 

Yet, as with all AI techniques, TD Learning is not without 

its challenges. Issues such as the exploration- exploitation 

trade-off, convergence guarantees, and the efficient 

handling of large state spaces remain active areas of 

research. Innovations in these areas promise to further 

elevate the potential and applica- bility of TD Learning. 

Looking ahead,  the horizon for TD Learning is 

vast and promising. As computational power contin- ues to 

grow and our understanding of reinforcement learning 

deepens, we anticipate even more sophisti- cated 

applications and refinements to the TD Learn- ing 

framework. Its trajectory points towards a future where 

machines are not just reactive, but truly adap- tive and 

intelligent entities capable of navigating a myriad of 

dynamic environments with unprecedented prowess. 
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