
Journal of Artificial Intelligence in Electrical Engineering, Vol. 1, No. 2, September 2012

54

Mohammad Pourmahmood Aghababa
Young Researchers Club, Ahar Branch, Islamic Azad University, Ahar, Iran,

Email: m.pour13@gmail.com

 numerical optimization, neural networks, objective function, weight updating, five bar linkage
manipulator robot.

The objective of optimization is to seek
values for a set of parameters that maximize
or minimize objective functions subject to
certain constraints. In recent years, many
optimization algorithms have been
introduced. Some of these algorithms are
traditional optimization algorithms.
Traditional optimization algorithms use
exact methods to find the best solution. The
idea is that if a problem can be solved, then
the algorithm should find the global best

solution. However, as the search space
increases the objective value of these
algorithms increases. Therefore, when the
search space complexity increases the exact
algorithms can be slow to find the global
optimum. Linear and nonlinear
programming, brute force or exhaustive
search and divide and conquer methods are
some of the most common exact
optimization methods.

Calculus provides the tools and elegance
for finding the optimum value of many
objective functions. It quickly finds a single

M. P. Aghababa: Neuro-Optimizer: A New Artificial Intelligent Optimization Tool and Its Application for

55

optimum but requires a search scheme to
find the global optimum. Continuous
functions with analytical derivatives are
necessary (unless derivatives are taken
numerically, which results in even more
function evaluations plus a loss of
accuracy). If there are too many variables,
then it is difficult to find all the extrema.
The gradient of the objective function
serves as the compass heading solution to
the steepest downhill path. It works well
when the optimum is nearby, but cannot
deal with cliffs or boundaries, where the
gradient cannot be calculated.

Other optimization algorithms are
stochastic algorithms, consisted of
intelligent, heuristic and random methods.
Stochastic algorithms have several
advantages compared to other algorithms as
follows:
1) Stochastic algorithms are generally easy
to implement.
2) They can be used efficiently in a
multiprocessor environment.
3) They do not require the problem
definition function to be continuous.
4) They generally can find optimal or near-
optimal solutions.

There are several stochastic algorithms
such as: Genetic algorithms (GA) (Holland,
1975), Guided Local Search (GLS)
(Voudouris, 1997), Tabu Search (TS)
(Glover,1989), Variable Neighborhood
Search (VNS) (Mladenovic and Hansen,
1997), Iterated Local Search (ILS) (Stützle,
1999), Simulated Annealing (SA)
(Kirkpatrick et al. 1983), Greedy
Randomized Adaptive Search Procedure
(GRASP) (Feo and Resende, 1995),
Memetic Algorithms (MA) (Moscato,
1989), Scatter Search (SS) (Cung et al.
1997), Ant Colony Optimization (ACO)
(Marco Dorigo et al. 1999), Particle Swarm

Optimization (PSO) (Kennedi and Eberhart
1995) and Shuffled Frog Leaping algorithm
(SFL) (Eusuff, Lansey 2003), etc. These
algorithms are implemented in many
optimization problems and they have many
applications in practical problems.

Artificial neural networks (ANNs) have
been introduced as an effective tool in
artificial intelligence field. Artificial neural
networks have been used in many fields of
science and engineering for many
applications such as function
approximation, prediction, pattern
classification and control.

Among many types of the ANNs, the
Hopfield network [1], the Boltzmann
machine [2], the Mean Field network [3],
the Gaussian machine [4], the Self
Organizing Map network [5] and several
others can be used as optimizers. Several
authors have suggested the use of the neural
networks as a tool to provide approximate
solutions for combinatorial optimization
problems such as the traveling salesman
problem [6, 7], scheduling problems [8],
[9], graph problems [10], [11], Knapsack
Problems [12], [13], Placement Problems
[14],vehicle routing problems[15], [16],
Satisfaction Problems [17], [18], Large
Scale Puzzles [19], channel assignment
problems [20], [21], Circuit Partitioning
[22], etc.

Hopfield optimizer solves combinatorial
optimization problems by gradient descent,
which has the disadvantage of being
trapped in local minima [23]. Mean Field,
Boltzmann and Gaussian machines are
stochastic in nature and allow escaping
from local optima. Moreover, In order to
use a neural optimizer to solve
combinatorial optimization problems, one
must cast problems into the neural network
model. In other words, the constraints and

Journal of Artificial Intelligence in Electrical Engineering, Vol. 1, No. 2, September 2012

56

the objective function should be mapped in
energy function of neural network.
However, using this mapping procedure
may require higher order neural networks
for solving the problem. There is also no
direct method for mapping constrained
optimization problems on to a neural
network except through addition of terms in
the energy function which penalize
violation of the constraints. In addition,
SOM network is only applicable to
Euclidean problems. Therefore, application
of artificial neural networks for
optimization problems is restricted. In fact,
there are two major restrictions: 1) the
problem should be discrete and 2) the
problem should be mapped onto the neural
network. These mappings are not possible
for many problems and many of the real
world optimization problems are
continuous.

In this paper, a recurrent artificial neural
network called neuro-optimizer (NO) is
introduced to overcome the mentioned
shortages of the optimizer neural networks.
The neuro-optimizer is a recurrent neural
network that can evaluate stochastic
optimization and adjust its weights by a
new unsupervised heuristic rule to achieve
optimal or near optimal solutions. There is
no mapping in NO procedure and any
continuous problem can be easily
optimized. NO has not any train or test
phases, because it updates its weights
during optimization process using the
heuristic unsupervised rule. The proposed
neural optimizer is very fast and easy to
implement. These claims can be shown by
using simulation results in finding the
minimums of several benchmark functions.
For comparison, the results of NO are
compared to the results of two well known
intelligent optimization methods, Genetic

Algorithm (GA) [24] and Particle Swarm
Optimization (PSO) [25].

PID (Proportional-Integral-Derivative)
control is one of the earliest control
strategies. It has been widely used in the
industrial control field. Its widespread
acceptability can be recognized by: the
familiarity with which it is perceived
amongst researchers and practitioners
within the control community, simple
structure and effectiveness of algorithm,
relative ease and high speed of adjustment
with minimal down-time and wide range of
applications where its reliability and
robustness produces excellent control
performances. However, successful
applications of PID controllers require the
satisfactory tuning of three parameters
(which are proportional gain (KP), integral
time constant (KI) and derivative time
constant (KD)) according to the dynamics
of the process. Unfortunately, it has been
quite difficult to tune properly the gains of
PID controllers because many industrial
plants are often burdened with problems
such as high order, time delays and
nonlinearities [26].

Traditionally, these parameters are
determined by a trial and error approach.
Manual tuning of PID controller is very
tedious, time consuming and laborious to
implement, especially where the
performance of the controller mainly
depends on the experiences of design
engineers. In recent years, many tuning
methods have been proposed to reduce the
time consumption on determining the three
controller parameters. The most well
known tuning method is the Ziegler-
Nichols tuning formula [27]; it determines
suitable parameters by observing a gain and
a frequency on which the plant becomes
oscillatory.

M. P. Aghababa: Neuro-Optimizer: A New Artificial Intelligent Optimization Tool and Its Application for

57

Considering the limitations of the
Ziegler-Nichols method and some empirical
techniques in raising the performance of
PID controller, recently artificial
intelligence techniques such as fuzzy logic
[28], fuzzy neural network [29] and some
stochastic search and optimization
algorithms such as simulated annealing
[30], genetic algorithm [31], particle swarm
optimization approach [26], immune
algorithm [32] and ant colony optimization
[33] have been applied to improve the
performances of PID controllers. In these
studies, it has been shown that these
approaches provide good solutions in
tuning the parameters of PID controllers.
However, there are several causes for
developing improved techniques to design
PID controllers. One of them is the
important impact it may give because of the
general use of the controllers. The other one
is the enhancing operation of PID
controllers that can be resulted from
improved design techniques. Finally, a
better tuned optimal PID controller is more
interested in real world applications.

This paper proposes the NO technique as
a new optimization algorithm. The
proposed method is applied for determining
the optimal values for parameters of PID
controllers. Here, we formulate the problem
of designing PID controller as an
optimization problem and our goal is to
design a controller with high performance
by adjusting four performance indexes, the
maximum overshoot, the settling time, the
rise time and the integral absolute error of
step response. An optimal PID controller is
designed for a five bar linkage manipulator
robot using NO algorithm. The advantages
of this methodology are that it is a simple
method with less computation burden, high-

quality solution and stable convergence
specifications.

The rest of this paper is organized as
follows. In the Section 2, the neuro-
optimizer is explained in details and its
optimization algorithm is described. Section
3 deals with the description of genetic
algorithm and particle swarm optimization
as two well known optimization algorithms.
In section 4, the neuro-optimizer is
compared to genetic algorithm and particle
swarm optimization technique by means of
simulations. Finally, the paper ends with
some conclusions in Section 5.

Our lives confront us with many
opportunities for optimization. What is the
best route to work? Which project do we
tackle first? When designing something, we
shorten the length of this or reduce the
weight of that, as we want to minimize the
objective value or maximize the appeal of a
product. In fact, we do optimization in our
lives and this work is performed by our
nervous system. If we want to find an
optimum value, without any use of
calculation devices, the following process
may be occurred. We start with selecting a
random solution in search space and then
calculating its objective function value.
Afterwards we select another solution and
compute its objective value. Comparing
these two results, we can find a better
solution as third solution. Therefore, by this
way, we use the results of previous
solutions to determine a better solution in
the next step. This process can be continued
until a satisfactory solution is obtained.

Now, we try to model the mentioned
human optimization process. We can use
artificial neural networks. ANNs have been

Journal of Artificial Intelligence in Electrical Engineering, Vol. 1, No. 2, September 2012

58

introduced as a model of human neural
networks. As mentioned earlier, ANNs can
do two important tasks: function
approximation and pattern classification.
Recently there are also attempts for using
ANNs in optimization problems. But there
are two major restrictions, first, the problem
should be discrete and second, the problem
should map onto neural network that these
mappings are not possible for many
problems. Therefore, introducing a new
human inspired tool that can easily and
efficiently optimize any continuous
problems is required.

With considering the mentioned
assumptions about the quality of human
optimization, we introduce a neuro-
optimizer (NO). A neuro-optimizer is a
recurrent neural network that works as a
stochastic intelligent optimizer, for
continuous functions. NO uses a prediction-
correction strategy supported by a recurrent
neural network to find an optimum of a
given function. In each iteration, using an
unsupervised heuristic weight updating
rule, NO produces new better solutions,
stochastically. The stochastic nature of NO
prevents of being in any local optimum
trap. Heuristic weight updating rule updates
the weights to next solutions and move
toward global or near global solutions,
rapidly. This causes a fast convergence rate
with less function evaluations. Figure (1)
shows the schematic diagram of a neuro-
optimizer with

)...,,,(21 : A solution in search
space.
: Dimension of the search space.
: Number of neurons in the hidden layer.

)...,,,(21 : Next solution generated
by neuro-optimizer.
 Connection weight between ith neuron
in input layer and jth neuron in hidden layer.

: Connection weight between jth neuron
in hidden layer and kth neuron in output
layer.

The outputs of neurons in hidden layer ()
and output layer () are achieved by (1) and
(2), respectively.

)(

 (1)

)(

 (2)

 and are two linear or nonlinear
functions.

. The schematic of neuro-optimizer.

In this paper, we consider minimization
problems and introduce the neuro-optimizer
as a minimizer; one can change a
maximization problem to minimization one:
just slap a minus sign on the front of the
objective function to change a
maximization problem to a minimization
one.

For a minimization problem, the
proposed neuro-optimizer works as follows:

First, initial conditions are set and weight
matrices are initialized with random values.
Then a random solution is selected in
search space. This solution is assigned to
the best solution and its objective value is
calculated and assigned to the best objective
value. This solution is fed to NO, as input,
and the output of NO is obtained by using
(1) and (2). Then the objective value of the
output solution is computed. If the new

M. P. Aghababa: Neuro-Optimizer: A New Artificial Intelligent Optimization Tool and Its Application for

59

objective value is less than the best one, the
best objective value and the best solution
are updated (replaced by new ones),
otherwise no updating (replacement)
occurs. Thereafter, the weights are updated
by

))1()((
)())()1(()(

))(()()1(
11

11

 (3)
and

))1()((
)())()1(()(

))(()()1(
22

22

 (4)
where is the iteration number,]1,0[

, i=1,2 is the inertia coefficient,],0[max

and],0[max , i=1,2 are global and local
learning factors, respectively (max and max

are problem dependent constants),]1,0[

, i=1,2 is the momentum coefficient and
OBJ(n) and OBJGLOBAL are the current
objective function value and the best
objective value calculated so far,
respectively.

Then the current solution, the output of
the previous input, is fed back to NO, as the
new input, to generate the next solution. In
fact, in each iteration, current solution is fed
to NO to produce an output as the next
solution and after updating the weights, the
best solution and corresponding objective
value, this new solution is fed back to NO
as the current input to generate the next
output as the next solution. Therefore, in
NO procedure just one function evaluation
is assessed in each iteration and there is no
mapping onto the network and any
continuous problem can be optimized using
NO. In other words, NO just acts as a
solution generator. This process continues
until one of the stop conditions is satisfied.

When the process is stopped, the saved best
solution is the optimum of the problem.

The pseudo-code of the neuro-optimizer
procedure is as follows:

 The number of hidden layer�s
neurons () depends on the complexity of
the problem, objective value and search
space (search space dimension). In general,
large causes the algorithm to work
slowly, and less causes to fail in local
minima. A suitable value for , is (By trial
and error) 2<<5m, where m is the search
space�s dimension.

 . The results of several
simulations have shown that when the
number of hidden layers exceeds of two, the
convergence rate goes slower and no
significant improvement is occurred. So,
most of time it is suitable to select the
number of hidden layers one, or at most

Journal of Artificial Intelligence in Electrical Engineering, Vol. 1, No. 2, September 2012

60

two. It causes to a simple, fast and easily
implemented NO.

. Bias terms cannot be added in
input layer, because the number of neurons
in input layer is fixed and is equal to search
space dimension. However we can use the
bias terms to hidden layer(s) that can help
the diversification and escaping from local
minima.

. Common linear and nonlinear
functions (such as pure linear, unipolar
sigmoid and bipolar sigmoid functions) can
be considered as the output function of
neurons in hidden and output layers (f and g
in (1) and (2)), with the following
considerations:
a) If the variables are not constrained, then
when the output function is pure linear we
don�t need to renormalize the outputs of
neurons to the variables range, but if we use
nonlinear functions then we have to
renormalize the outputs of functions to the
suitable range, which is a time wasting
process.
b) If linear functions are employed for the
outputs of layers, the outputs of the output
layer are only a linear combination of the
inputs. So, the hidden layers may not help
to diversification. But, if nonlinear
functions are employed, a nonlinear
combination of input and hidden layers
make the output that the hidden layers will
help to diversification and escaping from
local minima trap.

Although, nonlinear functions such as
sigmoid functions have better
diversification characteristics than linear
functions but linear functions such as pure
linear function don�t need to renormalize
the outputs and has less time consumption.
Therefore, there is a tradeoff between
diversification and time consumption. So,
selecting the output functions is a problem

dependant issue and can be selected by trial
and error.

. The major difference between
artificial neural networks and neuro-
optimizer is in the procedure of weight
adjusting. Neuro-optimizer adjusts its
weights using a new heuristic rule (Eqs. (3)
and (4)). This means that neuro-optimizer
has not train or test phase. There is also no
mapping problem in NO.

 . The terms
))((and
))((, i=1, 2, are named

global and local adaptive coefficients,
respectively. In each iteration, the former
term defines the weights changing,
proportional to movement towards the
global solution found so far, and the later
term defines weights altering, proportional
to relative improvement of presented
solution with respect to the previous
solution, adaptively. In other words, the
adaptive coefficients decrease or increase
the weights size relative to being close or
far from the optimum point, respectively.
The terms))1()((1 and

))1()((2 are momentum

statement and are known as a tool for
escaping from local minima. Upper and
lower limits are also considered for weight
matrices to prevent the weights saturation
as follows: wmin<w<wmax and umin<u<umax.

. The stop condition can be as
follows:
a) When no improvement has been made
for a certain number of iterations.
b) The maximum number of iteration has
been reached.

Of course, other stop conditions can be
considered depending on the problem.

 . For diversification in search
and escaping from local minima as well as

M. P. Aghababa: Neuro-Optimizer: A New Artificial Intelligent Optimization Tool and Its Application for

61

to speed up the convergence, the following
contraptions can be applied.
a) Modifying the number of hidden layers
and the number of their neurons.
b) Using bias terms in hidden layer(s).
c) Using momentum in weight updating.
d) Selecting different functions in the
outputs of neurons.
e) Restarting the algorithm from other
(better) starter solutions.
f) Adapting other values for parameters:

,,, , Q, wmax , and umax.

3.1. Genetic algorithm
Genetic Algorithm [24] is the most

famous population based method and has
been applied to a large number of different
types of problems. The idea stems from
attempting to copy the way in which nature
has evolved and selected the fittest
individuals for reproduction, whilst
occasionally mutating the chromosomes or
genes of these individuals.

The algorithm starts with creating an
initial population of solutions, and then
creating a new generation, by means of
probabilistically selecting parents and
individuals (this may be by means of a kind
of roulette wheel mechanism which biases
the selection towards fitter individuals) to
perform crossover, mutation and
reproduction until the new population has
reached the predefined population size. This
process then continues until some
termination condition is reached.

3.2. Particle swarm optimization
A particle swarm optimizer [25] is a

population based stochastic optimization
algorithm modeled after the simulation of

the social behavior of bird flocks. In a PSO
system a swarm of individuals (called
particles) fly through the search space. Each
particle represents a candidate solution to
the optimization problem. The position of a
particle is influenced by the best position
visited by itself and the position of the best
particle in its neighborhood. When the
neighborhood of a particle is the entire
swarm, the best position in the
neighborhood is referred to as the global
best particle.

The global optimizing model proposed by
Shi and Eberhart [25] is as follows:

)(
)(211

 (5)

11 (6)
where is the velocity of particle , is the
particle position, c1 and c2 are the positive
constant parameters, RAND and rand are
random functions in the range [0,1], is
the best position of the ith particle, is
the best position among all particles in the
swarm and w is the inertial weight [25].

 The efficiency of NO was tested using a
set of benchmark functions. To avoid any
misinterpretation of the optimization
results, related to the choice of any
particular initial parameters, we performed
each test 100 times, starting from various
randomly selected solutions, inside the
hyper rectangular search domain specified
in the usual litterateur.

The results of NO tests performed on 11
functions listed in Appendix 1 are shown in
Table 1. To evaluate the efficiency of the
proposed NO algorithm, we retained the
following criteria summarizing results from
100 minimizations per function: the rate of
successful minimizations (RATESM), the

Journal of Artificial Intelligence in Electrical Engineering, Vol. 1, No. 2, September 2012

62

average of the objective function evaluation
numbers (AVERAGEOBJEN) and the
average error (AVERAGEERROR). These
criteria are defined precisely below.

When at least one of the termination tests
is verified, NO stops and provides the
coordinates of a located solution, and the
objective function value OBJN.O at this
solution. We compared this result with the
known analytical minimum OBJANAL; we
considered this result to be successful if the
following inequality held:

 . (7)
where 01.0 , 0001.0 and OBJINIT

is an empirical average of the objective
function value, calculated over typically
100 solutions, randomly selected inside the
search domain, before running the
algorithm. The average of the objective
function evaluation numbers is evaluated in
relation to only the successful
minimizations and it shows the
convergence rate of the algorithm. In fact,
this criterion measures the speed of the
algorithm and shows whether it is fast or
slow. The average error is defined as the
average of OBJ gaps between the best
successful solution found and the known
global optimum. This criterion shows the
accuracy of the algorithm in finding the
global optimum. As Table 1 shows, when
the search space is more complicated the
rate of successful minimization is
decreased. Hence, NO can escape from
local minima trap because of its stochastic
and intelligent nature. For all functions, the
average of the objective function evaluation
numbers does not exceed 1000 with a
suitable accuracy. This shows that the
convergence of the NO is fast. For all
functions, average of OBJ gaps between the
best successful solution found and the

known global optimum is less than 0.1.
This accuracy is acceptable for many real
world optimization problems.

. Results of NO for 15 benchmark
functions.

Benchmar
k function

RATES

M (%)
AVERAGEOBJ

EN

AVERAGEERR

OR

RC 96 285 0.01
ES 96 446 0.04
GP 96 290 0.015
B2 96 185 0.015
SH 94 318 0.01
R2 95 347 0.03
Z2 95 205 0.035
DJ 95 272 0.02
H3,4 83 361 0.05
S4,5 81 467 0.03
S4,7 80 445 0.01
S4,10 78 431 0.04
R5 80 688 0.05
Z5 82 651 0.055

H6,4 84 664 0.065

The performance of NO is then compared
to continuous GA and PSO algorithms. The
experimental results obtained for the test
functions, using the 3 different methods, are
given in Table 2. In our simulations, each
population in GA has 20 chromosomes and
a swarm in PSO has 20 particles. Other
parameters of 3 algorithms are selected
optimally, by trial and error. For each
function, we give the average number of
function evaluations for 100 runs. The best
solution found by 3 methods was similar, so
there were not given in Table 2. We notice
that results from NO are better than results
from GA and PSO methods (NO is faster
than GA and PSO). This is because that NO
is not a population based algorithm and it
evaluates just one objective function in each
iteration, while GA and PSO (and any other
population based algorithms) evaluate a
population of objective functions.

M. P. Aghababa: Neuro-Optimizer: A New Artificial Intelligent Optimization Tool and Its Application for

63

. Average number of objective function
evaluations used by three methods.

Function/Method NO GA PSO
RC 285 486 426
ES 446 920 903
GP 290 410 395
B2 185 325 334
SH 318 576 615
R2 347 657 633
Z2 205 620 622
DJ 272 601 556
H3,4 361 712 681
S4,5 467 915 822
S4,7 445 766 741
S4,10 431 792 816
R5 688 2516 2441
Z5 651 1712 1945

H6,4 664 1956 2122

Larger population size causes to more
function evaluation numbers. So,
convergence rate of GA and PSO is
population size dependant while NO is not
related to population.

 In this section, an optimal PID controller
is designed for a five-bar-linkage
manipulator robot.
5.1. Problem Formulation

The PID controller is used to improve the
dynamic response and to reduce the steady-
state error. The transfer function of a PID
controller is described as:

 / (8)
where KP, KI and KD are the proportional
gain, integral and derivative time constants,
respectively. For designing an optimal PID
controller, a suitable objective function that
represents system requirements, must be
defined in the first step. A set of good
control parameters KP, KI and KD can
produce a good step response that will

resultant in minimization of performance
criteria. The optimal PID controller
parameters that minimize the performance
indexes are designed using the proposed
NO algorithm. In the design of a PID
controller, the performance criterion or
objective function is first defined based on
some desired specifications and constraints
under input testing signal. Some typical
output specifications in the time domain are
overshoot, rise time, settling time, and
steady-state error. In general, three kinds of
performance criteria, the integrated absolute
error (IAE), the integral of squared-error
(ISE), and the integrated of time-weighted-
squared-error (ITSE) are usually considered
in the control design under step testing
input, because they can be evaluated
analytically in the frequency domain. It is
worthy to notice that using different
performance indices probably makes
different solutions for PID controllers. The
three integral performance criteria in the
frequency domain have their own
advantages and disadvantages. For
example, a disadvantage of the IAE and ISE
criteria is that their minimization can result
in a response with relatively small
overshoot but a long settling time. Although
the ITSE performance criterion can
overcome the disadvantage of the ISE
criterion, the derivation processes of the
analytical formula are complex and time-
consuming [26]. The IAE, ISE, and ITSE
performance criteria formulas are as
follows:

00

 (9)

0

2 (10)

0

2 (11)

Journal o

In th
perform

/(1(e+
Wmin K

Wher
5] is th
selectio
requirem
plant u
smaller
steady-s
can set
rise tim
set to 0
oversho
steady-s
worth.

For d
determi
the min
the ma
process
NO al
respons
four pe
steady-s
setting
first, th
controll
Then th
optimal

Here,
perform
designin
known
robot is
configu
Dynami
describe
Afterwa
PID con
5.2. Dy
manipul

of Artificial In

his paper,
mance criteri

+)).(Me+1
+/(1(1=W(K)

p

re, K is [KP
he weightin
n of
ments and t

under contro
than 0 to r

state error.
to be lar

me and settlin
0, then all p
oot, rise ti
state error)

designing an
nation of v

nimization
ain issue.

is perform
gorithm. F
e of the p

erformance
state error
time (Ts)

he lower an
ler paramet
he NO meth
 solutions.
to show the

mance of th
ng optimal

Mechatron
s considere

uration is
ic equatio
ed in the
ards, NO al
ntroller is ut
ynamic equa
lator robot

telligence in E

another
ion defined

)E+
+(T×))e+

ss

-
s

P, KI, KD],
ng factor.
depends o
the charact
ol. We can
reduce the o

On the ot
rger than 0
ng time. No
performanc
ime, settlin
) will hav

n optimal P
vector K w
of perform
Here, the

med using
For this p
lant is use
criteria ov
(Ess), rise
in the tim

nd upper b
ters should
hod is appli

e efficiency
he proposed

PID contr
nics applic
ed. The ex
s a fiv
ons of th
e following
lgorithm fo
tilized.
ations of fiv

Electrical Eng

time dom
by

)Tr (1

, and [
The optimu
on designe
teristics of
n set to
overshoot a
ther hand,
to reduce

ote that, if
ce criteria (
ng time, a
ve the sa

PID controll
with regards
mance index

minimizati
the propos

purpose, s
d to comp
ershoot (M
time (Tr) a
e domain.

bounds of
be specifi

ied to find

y and desira
d algorithm
rollers, a w
cation, i.e.,
xamined rob
ve-bar-linka
e robot
g subsecti

or an optimu

ve-bar-linka

gineering, Vol

64

main

12)

[-5,
um
er�s
the
be

and
we
the

is
i.e.
and
ame

ler,
 to

x is
ion
sed
tep
ute

Mp),
and
At
the

ied.
the

able
in

well
, a
bot

age.
are
on.
um

age

I
int
lig
stu
lin
ba
rob
the
wh
qi,
an
res
the
ce
co

T
ma

1

(

2

(

W

M

M
M

. 1, No. 2, Sep

In recent ye
terest in
ghtweight ro
udied the m
nk flexible b
ar linkage
botics resea
e five-bar l
here the lin
, Ti and Ih

nd hub i
spectively.
e inertia m
ntre of grav

orresponding

. Plana

The dyn
anipulator a

3311

1
11

(

)(

2321

2
22

(

)(

Where, g is th

11 =
1
11 +

3
11 +

22 =
2

11 +
4

11 +
12=M21 = (m

ptember 2012

ears, there h
the design

obots. Sever
modeling and

beam [34].
manipulat

arch lab. A
linkage man
nks form a
hi be the jo
nertia of
Also, let Ii

matrix, leng
vity and m
gly.

ar presentatio

namic equ
are [35]:

114

2121

cos)

244

1212

cos)

he gravitatio

+ m1
2
1 + m

+ m2
2
2 + m

m3dc3l2-m4d

has been a
n and con
ral research
d control of
Fig. 2 show
tor built

Also, Fig. 3
nipulator sc
parallelogr

int variable
the ith

i, li, dCi an
gth, distance
mass of the

on of robot.

uations o

1

2

2
2

12

2

2

2
1

21

onal constan

m3
2
3 + m4

2
1

m3
2
2 + m4

2
4

dc4l1)cos(q1-

growing
ntrol of

hers have
f a single
ws the 5
in our

3 depicts
chematic
ram. Let
e, torque

motor,
nd mi be
e to the
ith link,

of the

 (13)

nt and

-q2) (14)

M. P. Aghababa: Neuro-Optimizer: A New Artificial Intelligent Optimization Tool and Its Application for

65

It�s noticed from (13)-(14) that for
m3lc3l2 = m4lc4l1 (15)

 We have and equal to zero, that
is, the matrix of inertia is diagonal and
constant. Hence the dynamic equations of
this manipulator will be

T1= (M11+
1
) 1 + g (m1lc1+m3lc3+m4l1) cosq1,

T2=(M22+
2
) 2 +g(m1lc2+m3l2+m4lc4)cosq2

 (16)

. Planar presentation of the robot.

Notice that T1 depends only on q1 but
not on q2. On the other hand T2 depends
only on q2 but not on q1. This discussion
helps to explain the popularity of the
parallelogram configuration in industrial
robots. If the condition (15) is satisfied,
then we can adjust the two rotations
independently, without worrying about
interactions between them.

5.3. Simulation Results
Having 2 motors, the manipulator

specification consisting of mass, length and
centre of gravity of links are given in Table
3. The main purpose is designing an
optimal PID controller for each of motors to
control their rotations, with good
performance. Using equation (16), five-bar-
linkage manipulator robot is easily
simulated using Matlab and Simulink. The
block diagram of the five-bar-linkage
manipulator robot with PID controller for

motor 1 is shown in Fig. 4. The block
diagram for motor 2 is similar to this figure.
The maximum iteration of all experiments
is considered equal to 200. Also, is set to
0 for all performance criteria to have the
same merit in the objective function.

The following process is done to
determine the optimal values of the PID
controller parameters (i.e., vector K). First,
the lower and upper bounds of the three
controller parameters are selected as 0 and
30, respectively. Then, the network is
initialized, randomly. Each solution K (the
controller parameters) is sent to Matlab®
Simulink® block and the values of four
performance criteria in the time domain,
i.e., Mp, Ess, Tr and Ts are calculated
iteratively. Afterwards, the objective
function is evaluated for each solution
according to these performance criteria.

. Five-bar-linkage manipulator data.
Link Mass (Kg) Length (m) C of G (m)

1 0.288 0.33 0.166
2 0.0324 0.12 0.06
3 0.3702 0.33 0.166
4 0.2981 0.45 0.075

. Block diagram of the motor with PID
controller.

Then, the procedure of NO algorithm is
performed, as illustrated the pseudo-code in
Section 2. At the end of any iteration, the
program checks the stop criterion. When
one termination condition is satisfied,

Journal of Artificial Intelligence in Electrical Engineering, Vol. 1, No. 2, September 2012

66

theprogram stops and the latest global best
solution is the best solution of K.

Fig. 5 illustrates the step response without
PID controllers for two motors. Figures 6
and 7 show the step response of rotation for
motors 1 and 2, respectively.

. Step response of the robot motors
without PID controller.

. Step response of the motor #1 rotation
using NO method.

. Step response of the motor #2 angel
using NO method.

The simulation results of the best solution
are summarized in Table 4. These results
demonstrate that cost function is converged
rapidly. In conclusion, NO algorithm has
rapid convergence characteristic and is
highly effective in solving the optimal
tuning problem of PID controller
parameters.
. Summary of simulation results of five-
bar-robot motors.

algorith
m

P I D Mp Ts Tr
Es

s
cost

1 NO 29 1.6 2.4 0 0.141 0.12 0
0.145

5
34

2 NO 31 1.5 2.5 0 0.193
0.11

5
0

0.161
1

30

In this paper, a new optimization
technique based on neural networks has
been introduced and it called neuro-
optimizer (NO). Implemented by a
recurrent neural network, NO uses a
heuristic new intelligent rule to update its
weights, with no supervision. The new
optimization algorithm (NO) was proposed
to solve the optimization problems
numerically. Different benchmarks were
used to illustrate the mentioned advantages.
Dealing with this problem, a new time
domain performance criterion for PID
controller design was proposed. In all case
studies, NO performed better than GA and
PSO approaches which exposed NO as a
promising optimization method. The
optimal controller design of the five-bar-
linkage manipulator robot has been
considered, as a practical application. The
proposed method was implemented for
tuning the controller for the robot. High
promising results demonstrate that the

M. P. Aghababa: Neuro-Optimizer: A New Artificial Intelligent Optimization Tool and Its Application for

67

proposed algorithm is robust, efficient and
can obtain higher quality solution with
better computational efficiency.

Some well-known benchmark functions
of optimization problems:

Branin RCOS (RC) (2 variables):

10)cos())28/1(1(10
)6)14.3/5()13/5((),(2

B2 (2 variables):

7.0)13cos(4.0
)10cos(3.02),(2 2

Easom (ES) (2 variables):

))14.3(
)14.3((exp()cos()cos(),(

2

2

Goldstein and Price (GP) (2 variables):

Shubert (SH) (2 variables):

5

1

5

1

])1cos[(

])1cos[(),(

De Joung (DJ) (3 variables):
222),,(

Hartmann (H3,4) (3 variables):
4

1

4

1

2
4,3])(exp[)(

3
.0

1
0.0

3
0.0

1
.0

0.36
89

0.11
70

0.26
73

0
.1

1
0.0

3
5.0

1
.2

0.46
99

0.43
87

0.74
70

3
.0

1
0.0

3
0.0

3
.0

0.10
91

0.87
32

0.55
47

0
.1

1
0.0

3
5.0

3
.2

0.03
81

0.57
43

0.88
28

Shekel (S4,n) (3 variables):

1

1
,4])()[()(

3 functions were considered: S4,5, S4,7
and S4,10;

i

1 4.0 4.0 4.0 4.0 0.1
2 1.0 1.0 1.0 1.0 0.2
3 8.0 8.0 8.0 8.0 0.2
4 6.0 6.0 6.0 6.0 0.4
5 3.0 7.0 3.0 7.0 0.4
6 2.0 9.0 2.0 9.0 0.6
7 5.0 5.0 3.0 3.0 0.3
8 8.0 1.0 8.0 1.0 0.7
9 6.0 2.0 6.0 2.0 0.5
10 7.0 3.0 7.0 3.6 0.5

Hartmann (H6,4) (6 variables):
4

1

6

1

2
4,6])(exp[)(

i

1
1

.0
1

0.0
3.

00
1

7.0
3

.5
1.

70
8.

00

2
1

.2
0.

05
1

0.0
1

7.0
0

.1
8.

00
1

4.0

3
3

.0
3.

00
3.

50
1.

70
1

0
1

7.0
8.

00

4 3
.2

1
7.0

8.
00

0.
05

1
0

0.
10

1
4.0

0.1
312

0.1
696

0.5
569

0.0
124

0.8
283

0.5
886

0.2
329

0.4
135

0.8
307

0.3
736

0.1
004

0.9
991

0.2
348

0.1
451

0.3
5522

0.2
883

0.3
047

0.6
650

0.4
047

0.8
828

0.8
732

0.5
743

0.1
091

0.0
381

Rosenbrock (Rn) (n variables):

1

22

1

2
1

2])1()(100[)(

Zakharov (Zn) (n variables):

)]2736
48123218()32(30[)]3

631419()1(1[),(

2

222

22

Journal of Artificial Intelligence in Electrical Engineering, Vol. 1, No. 2, September 2012

68

4

1

2

2

1

2

1

2 5.05.0)(

This work is financially supported by
Young Researchers Club of Islamic Azad
University of Ahar Branch.

[1] J. Hopfield, and D. Tank, Neural computation
of decisions in optimization problems,
Biological Cybernetics, Vol. 52, 1985, pp. 141-
152.

[2] G.E. Hinton, and T.J. Sejnowsky, Optimal
perceptual inference, Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition, Washigton, 1983, pp. 448-453.

[3] D. Amit, H. Gutfreund, and H. Sompolinsky,
Spin-Glass models of neural networks,
Physical Review Letters A 32, 1985, pp. 1007-
1018.

[4] Y. Akiyama, A. Yamashita, M. Kajiura, and H.
Aiso, Combinatorial optimization with
gaussian machines, Proceedings IEEE
International Joint Conference on Neural
Networks 1, 1989, pp. 533�540.

[5] T. Kohonen, Self-Organized formation of
topologically correct feature maps, Biological
Cybernetics 43, 1982, pp. 59�69.

[6] A.H. Gee, and R. W. Prager, Limitations of
neural networks for solving traveling salesman
problems, IEEE Trans. Neural Networks, vol.
6, 1995, pp. 280�282.

[7] M. Goldstein, Self-Organizing feature maps for
the multiple traveling salesman problem
(MTSP), Proceedings IEEE International
Conference on Neural Networks, Paris, 1990,
pp. 258�261.

[8] Y. P. S. Foo, and Y. Takefuji, Stochastic neural
networks for job-shop scheduling: parts 1 and
2, Proceedings of the IEEE International
Conference on Neural Networks 2, 1988, pp.
275�290.

[9] Y.P. S. Foo, and Y. Takefuji, Integer Linear
programming neural networks for job shop
scheduling, Proceedings of the IEEE
International Conference on Neural Networks
2, 1988, pp. 341�348.

[10] J.S. Lai, S.Y. Kuo, and I.Y. Chen, Neural
networks for optimization problems in graph
theory, Proceedings IEEE International
Symposium on Circuits and Systems 6, 1994,
pp. 269�272.

[11] D.E. Van Den Bout, and T.K. Miller, Graph
partitioning using annealed neural networks,
IEEE Transactions on Neural Networks 1,
1990, pp. 192�203.

[12] S. Vaithyanathan, H. Ogmen, and J. IGNIZIO,
Generalized boltzmann machines for
multidimensional knapsack problems,
Intelligent Engineering Systems Through
Artificial Neural Networks 4, ASME Press,
New York, 1994, pp. 1079�1084.

[13] A. Yamamoto, M. Ohta, H. Ueda, A. Ogihara,
and K. Fukunaga, Asymmetric neural network
and its application to knapsack problem, IEICE
Transactions Fundamentals E78-A, 1995, pp.
300�305.

[14] K. Urahama, and H. Nishiyuki, Neural
algorithms for placement problems,
Proceedings International Joint Conference on
Neural Networks 3, Nagoya, 1993, pp. 2421�
2424.

[15] K.E. Nygard, P. Jueli, and N. Kadaba, Neural
networks for selecting vehicle routing
heuristics, ORSA Journal of Computing 2,
1990, pp. 353�364.

[16] A.I. Vakhutinsky, and B. L. Golden, Solving
vehicle routing problems using elastic nets,
Proceedings IEEE International Conference on
Neural Networks 7, 1994, pp. 4535�4540.

[17] L. Fang, W. H. Wilson, and T. Li, Mean-Field
annealing neural net for quadratic assignment,
Proceedings International Conference on
Neural Networks, Paris, 1990, pp. 282�286.

[18] G.A. Tagliarini, and E. W. Page, Solving
constraint satisfaction problems with neural
networks, Proceedings IEEE International
Conference on Neural Networks 3, 1987, pp.
741�747.

[19] M. Kajiura, Y. Akiyama, and Y. Anzai, Solving
large scale puzzles with neural networks,
Proceedings Tools for AI Conference, Fairfax,
1990, pp. 562�569.

[20] N. Funabiki and Y. Takefuji, A neural network
parallel algorithm for channel assignment
problems in cellular radio networks, IEEE
Trans. Veh. Technol., vol. 41, Nov. 1992, pp.
430�437.

[21] K. Smith, and M. Palaniswami, Static and

M. P. Aghababa: Neuro-Optimizer: A New Artificial Intelligent Optimization Tool and Its Application for

69

dynamic channel assignment using neural
networks, IEEE Journal on Selected Areas in
Communications 15, 1997, pp. 238�249.

[22] T. Bultan and C. Aykanat, Circuit partitioning
using parallel mean field annealing algorithms,
Proceedings 3rd IEEE Symposium on Parallel
and Distributed Processing, 1991, pp. 534�541.

[23] U. Halici, Artificial neural networks, EE 543
Lecture Notes, Middle East Technical
University, Ankara, Turkey, 2004.

[24] J.H. Holland, Adaptation in natural and
artificial systems, University of Michigan
Press, Ann Arbor, MI, Internal Report, 1975.

[25] Y. Shi, and R. Eberhart, A modified particle
swarm optimizer, Proceedings of the IEEE
international conference on evolutionary
computation, Piscataway, NJ: IEEE Press;
1998, pp. 69�73.

[26] J.G. Ziegler and N.B. Nichols, �Optimum
settlings for automatic controllers,� Trans. On
ASME., vol. 64, pp. 759-768, 1942.

[27] Z.L. Gaing, �A Particle Swarm Optimization
Approach for Optimum Design of PID
controller in AVR system,� IEEE Transactions
on Energy Conversion, vol. 9, no. 2, pp. 384-
391, 2003.

[28] Z.Y. Zhao, M. Tomizuka, and S. Isaka, �Fuzzy
gain scheduling of PID controllers,� IEEE
Trans. System, Man, and Cybernetics, vol. 23,
no. 5, pp. 1392-1398, 1993.

[29] S.Y. Chu, C.C. Teng, �Tuning of PID
controllers based on gain and phase margin
specifications using fuzzy neural network,�
Fuzzy Sets and Systems, vol. 101, no. 1, pp.
21-30, 1999.

[30] G. Zhou and J.D. Birdwell, �Fuzzy logic-based
PID autotuner design using simulated
annealing,� Proceedings of the IEEE/IFAC
Joint Symposium on Computer-Aided Control
System Design, pp. 67 � 72, 1994.

[31] R.A. Krohling and J.P. Rey, �Design of optimal
disturbance rejection PID controllers using
genetic algorithm,� IEEE Trans. Evol.
Comput., vol. 5, pp. 78�82, 2001.

[32] D.H. Kim, �Tuning of a PID controller using a
artificial immune network model and local
fuzzy set,� Proceedings of the Joint 9th IFSA
World Congress and 20th NAFIPS
International Conference, vol. 5, pp. 2698 �
2703, 2001.

[33] Y.T. Hsiao, C.L. Chuang, and C.C. Chien, �Ant
colony optimization for designing of PID

controllers,� Proceedings of the 2004 IEEE
Conference on Control Applications/
International Symposium on Intelligent
Control/International Symposium on Computer
Aided Control Systems Design, Taipei, Taiwan,
2004.

[34] D. Wang and M. Vidyasagar, �Modeling of a
five-bar-Linkage Manipulator with One
Flexible Link,� in Proc. IEEE Int. Symp,
subject, Turkey, pp. 21�26, 1988.

[35] D. Wang, J.P. Huissoon and K. Luscott, �A
teaching robot for demonstrating robot control
strategies,� manufacturing research corporation
of Ontario, 1993.

