
Journal of Artificial Intelligence in Electrical Engineering, Vol. 1, No. 2, September 2012 

54 





Mohammad Pourmahmood Aghababa  
Young Researchers Club, Ahar Branch, Islamic Azad University, Ahar, Iran,  

Email: m.pour13@gmail.com 




               

                
          

             

         
              

              
     


 numerical optimization, neural networks, objective function, weight updating, five bar linkage 
manipulator robot.



The objective of optimization is to seek 
values for a set of parameters that maximize 
or minimize objective functions subject to 
certain constraints. In recent years, many 
optimization algorithms have been 
introduced. Some of these algorithms are 
traditional optimization algorithms. 
Traditional optimization algorithms use 
exact methods to find the best solution. The 
idea is that if a problem can be solved, then 
the algorithm should find the global best 

solution. However, as the search space 
increases the objective value of these 
algorithms increases. Therefore, when the 
search space complexity increases the exact 
algorithms can be slow to find the global 
optimum. Linear and nonlinear 
programming, brute force or exhaustive 
search and divide and conquer methods are 
some of the most common exact 
optimization methods. 

Calculus provides the tools and elegance 
for finding the optimum value of many 
objective functions. It quickly finds a single 
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optimum but requires a search scheme to 
find the global optimum. Continuous 
functions with analytical derivatives are 
necessary (unless derivatives are taken 
numerically, which results in even more 
function evaluations plus a loss of 
accuracy). If there are too many variables, 
then it is difficult to find all the extrema. 
The gradient of the objective function 
serves as the compass heading solution to 
the steepest downhill path. It works well 
when the optimum is nearby, but cannot 
deal with cliffs or boundaries, where the 
gradient cannot be calculated. 

Other optimization algorithms are 
stochastic algorithms, consisted of 
intelligent, heuristic and random methods. 
Stochastic algorithms have several 
advantages compared to other algorithms as 
follows: 
1)  Stochastic algorithms are generally easy 
to implement. 
2)  They can be used efficiently in a 
multiprocessor environment. 
3)  They do not require the problem 
definition function to be continuous. 
4)  They generally can find optimal or near-
optimal solutions.  

There are several stochastic algorithms 
such as: Genetic algorithms (GA) (Holland, 
1975), Guided Local Search (GLS) 
(Voudouris, 1997), Tabu Search (TS) 
(Glover,1989), Variable Neighborhood 
Search (VNS) (Mladenovic and Hansen, 
1997), Iterated Local Search (ILS) (Stützle, 
1999), Simulated Annealing (SA) 
(Kirkpatrick et al. 1983), Greedy 
Randomized Adaptive Search Procedure 
(GRASP) (Feo and Resende, 1995), 
Memetic Algorithms (MA) (Moscato, 
1989), Scatter Search (SS) (Cung et al. 
1997), Ant Colony Optimization (ACO) 
(Marco Dorigo et al. 1999), Particle Swarm 

Optimization (PSO) (Kennedi and Eberhart 
1995) and Shuffled Frog Leaping algorithm 
(SFL) (Eusuff, Lansey 2003), etc. These 
algorithms are implemented in many 
optimization problems and they have many 
applications in practical problems.  

Artificial neural networks (ANNs) have 
been introduced as an effective tool in 
artificial intelligence field. Artificial neural 
networks have been used in many fields of 
science and engineering for many 
applications such as function 
approximation, prediction, pattern 
classification and control.

Among many types of the ANNs, the 
Hopfield network [1], the Boltzmann 
machine [2], the Mean Field network [3], 
the Gaussian machine [4], the Self 
Organizing Map network [5] and several 
others can be used as optimizers. Several 
authors have suggested the use of the neural 
networks as a tool to provide approximate 
solutions for combinatorial optimization 
problems such as the traveling salesman 
problem [6, 7], scheduling problems [8], 
[9], graph problems [10], [11], Knapsack 
Problems [12], [13], Placement Problems 
[14],vehicle routing problems[15], [16], 
Satisfaction Problems [17], [18], Large 
Scale Puzzles [19], channel assignment 
problems [20], [21], Circuit Partitioning 
[22], etc.

Hopfield optimizer solves combinatorial 
optimization problems by gradient descent, 
which has the disadvantage of being 
trapped in local minima [23]. Mean Field, 
Boltzmann and Gaussian machines are 
stochastic in nature and allow escaping 
from local optima. Moreover, In order to 
use a neural optimizer to solve 
combinatorial optimization problems, one 
must cast problems into the neural network 
model. In other words, the constraints and 
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the objective function should be mapped in 
energy function of neural network. 
However, using this mapping procedure 
may require higher order neural networks 
for solving the problem. There is also no 
direct method for mapping constrained 
optimization problems on to a neural 
network except through addition of terms in 
the energy function which penalize 
violation of the constraints. In addition, 
SOM network is only applicable to 
Euclidean problems. Therefore, application 
of artificial neural networks for 
optimization problems is restricted. In fact, 
there are two major restrictions: 1) the 
problem should be discrete and 2) the 
problem should be mapped onto the neural 
network. These mappings are not possible 
for many problems and many of the real 
world optimization problems are 
continuous.

In this paper, a recurrent artificial neural 
network called neuro-optimizer (NO) is 
introduced to overcome the mentioned 
shortages of the optimizer neural networks. 
The neuro-optimizer is a recurrent neural 
network that can evaluate stochastic 
optimization and adjust its weights by a 
new unsupervised heuristic rule to achieve 
optimal or near optimal solutions. There is 
no mapping in NO procedure and any 
continuous problem can be easily 
optimized. NO has not any train or test 
phases, because it updates its weights 
during optimization process using the 
heuristic unsupervised rule. The proposed 
neural optimizer is very fast and easy to 
implement. These claims can be shown by 
using simulation results in finding the 
minimums of several benchmark functions. 
For comparison, the results of NO are 
compared to the results of two well known 
intelligent optimization methods, Genetic 

Algorithm (GA) [24] and Particle Swarm 
Optimization (PSO) [25].  

PID (Proportional-Integral-Derivative)
control is one of the earliest control 
strategies. It has been widely used in the 
industrial control field. Its widespread 
acceptability can be recognized by: the 
familiarity with which it is perceived 
amongst researchers and practitioners 
within the control community, simple 
structure and effectiveness of algorithm, 
relative ease and high speed of adjustment 
with minimal down-time and wide range of 
applications where its reliability and 
robustness produces excellent control 
performances. However, successful 
applications of PID controllers require the 
satisfactory tuning of three parameters 
(which are proportional gain (KP), integral 
time constant (KI) and derivative time 
constant (KD)) according to the dynamics 
of the process. Unfortunately, it has been 
quite difficult to tune properly the gains of 
PID controllers because many industrial 
plants are often burdened with problems 
such as high order, time delays and 
nonlinearities [26]. 

Traditionally, these parameters are 
determined by a trial and error approach. 
Manual tuning of PID controller is very 
tedious, time consuming and laborious to 
implement, especially where the 
performance of the controller mainly 
depends on the experiences of design 
engineers. In recent years, many tuning 
methods have been proposed to reduce the 
time consumption on determining the three 
controller parameters. The most well 
known tuning method is the Ziegler-
Nichols tuning formula [27]; it determines 
suitable parameters by observing a gain and 
a frequency on which the plant becomes 
oscillatory.
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Considering the limitations of the 
Ziegler-Nichols method and some empirical 
techniques in raising the performance of 
PID controller, recently artificial 
intelligence techniques such as fuzzy logic 
[28], fuzzy neural network [29] and some 
stochastic search and optimization 
algorithms such as simulated annealing 
[30], genetic algorithm [31], particle swarm 
optimization approach [26], immune 
algorithm [32] and ant colony optimization 
[33] have been applied to improve the 
performances of PID controllers. In these 
studies, it has been shown that these 
approaches provide good solutions in 
tuning the parameters of PID controllers. 
However, there are several causes for 
developing improved techniques to design 
PID controllers. One of them is the 
important impact it may give because of the 
general use of the controllers. The other one 
is the enhancing operation of PID 
controllers that can be resulted from 
improved design techniques. Finally, a 
better tuned optimal PID controller is more 
interested in real world applications.

This paper proposes the NO technique as 
a new optimization algorithm. The 
proposed method is applied for determining 
the optimal values for parameters of PID 
controllers. Here, we formulate the problem 
of designing PID controller as an 
optimization problem and our goal is to 
design a controller with high performance 
by adjusting four performance indexes, the 
maximum overshoot, the settling time, the 
rise time and the integral absolute error of 
step response. An optimal PID controller is 
designed for a five bar linkage manipulator 
robot using NO algorithm. The advantages 
of this methodology are that it is a simple 
method with less computation burden, high-

quality solution and stable convergence 
specifications. 

The rest of this paper is organized as 
follows. In the Section 2, the neuro-
optimizer is explained in details and its 
optimization algorithm is described. Section 
3 deals with the description of genetic 
algorithm and particle swarm optimization 
as two well known optimization algorithms. 
In section 4, the neuro-optimizer is 
compared to genetic algorithm and particle 
swarm optimization technique by means of 
simulations. Finally, the paper ends with 
some conclusions in Section 5.  

 

Our lives confront us with many 
opportunities for optimization. What is the 
best route to work? Which project do we 
tackle first? When designing something, we 
shorten the length of this or reduce the 
weight of that, as we want to minimize the 
objective value or maximize the appeal of a 
product. In fact, we do optimization in our 
lives and this work is performed by our 
nervous system. If we want to find an 
optimum value, without any use of 
calculation devices, the following process 
may be occurred. We start with selecting a 
random solution in search space and then 
calculating its objective function value. 
Afterwards we select another solution and 
compute its objective value. Comparing 
these two results, we can find a better 
solution as third solution. Therefore, by this 
way, we use the results of previous 
solutions to determine a better solution in 
the next step. This process can be continued 
until a satisfactory solution is obtained. 

Now, we try to model the mentioned 
human optimization process. We can use 
artificial neural networks. ANNs have been 
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introduced as a model of human neural 
networks. As mentioned earlier, ANNs can 
do two important tasks: function 
approximation and pattern classification. 
Recently there are also attempts for using 
ANNs in optimization problems. But there 
are two major restrictions, first, the problem 
should be discrete and second, the problem 
should map onto neural network that these 
mappings are not possible for many 
problems. Therefore, introducing a new 
human inspired tool that can easily and 
efficiently optimize any continuous 
problems is required. 

With considering the mentioned 
assumptions about the quality of human 
optimization, we introduce a neuro-
optimizer (NO). A neuro-optimizer is a 
recurrent neural network that works as a 
stochastic intelligent optimizer, for 
continuous functions. NO uses a prediction-
correction strategy supported by a recurrent 
neural network to find an optimum of a 
given function. In each iteration, using an 
unsupervised heuristic weight updating 
rule, NO produces new better solutions, 
stochastically. The stochastic nature of NO 
prevents of being in any local optimum 
trap. Heuristic weight updating rule updates 
the weights to next solutions and move 
toward global or near global solutions, 
rapidly. This causes a fast convergence rate 
with less function evaluations. Figure (1) 
shows the schematic diagram of a neuro-
optimizer with 

)...,,,( 21  : A solution in search 
space. 
: Dimension of the search space. 
: Number of neurons in the hidden layer. 

)...,,,( 21  : Next solution generated 
by  neuro-optimizer. 
 Connection weight between ith neuron 
in input layer and jth neuron in hidden layer. 

: Connection weight between jth neuron 
in hidden layer and kth neuron in output 
layer.

The outputs of neurons in hidden layer ()
and output layer () are achieved by (1) and 
(2), respectively. 

)(


                                           (1) 

)(


                                           (2) 

 and  are two linear or nonlinear 
functions.

. The schematic of neuro-optimizer. 

In this paper, we consider minimization 
problems and introduce the neuro-optimizer 
as a minimizer; one can change a 
maximization problem to minimization one: 
just slap a minus sign on the front of the 
objective function to change a 
maximization problem to a minimization 
one.

For a minimization problem, the 
proposed neuro-optimizer works as follows: 

First, initial conditions are set and weight 
matrices are initialized with random values. 
Then a random solution is selected in 
search space. This solution is assigned to 
the best solution and its objective value is 
calculated and assigned to the best objective 
value. This solution is fed to NO, as input, 
and the output of NO is obtained by using 
(1) and (2). Then the objective value of the 
output solution is computed. If the new 
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objective value is less than the best one, the 
best objective value and the best solution 
are updated (replaced by new ones), 
otherwise no updating (replacement) 
occurs. Thereafter, the weights are updated 
by

))1()((
)())()1(()(

))(()()1(
11

11












                                                                  (3)
and
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where  is the iteration number, ]1,0[

, i=1,2 is the inertia coefficient, ],0[ max

and ],0[ max , i=1,2 are global and local 
learning factors, respectively ( max and max

are problem dependent constants), ]1,0[

, i=1,2 is the momentum coefficient and 
OBJ(n) and OBJGLOBAL are the current 
objective function value and the best 
objective value calculated so far, 
respectively. 

Then the current solution, the output of 
the previous input, is fed back to NO, as the 
new input, to generate the next solution. In 
fact, in each iteration, current solution is fed 
to NO to produce an output as the next 
solution and after updating the weights, the 
best solution and corresponding objective 
value, this new solution is fed back to NO 
as the current input to generate the next 
output as the next solution. Therefore, in 
NO procedure just one function evaluation 
is assessed in each iteration and there is no 
mapping onto the network and any 
continuous problem can be optimized using 
NO. In other words, NO just acts as a 
solution generator. This process continues 
until one of the stop conditions is satisfied. 

When the process is stopped, the saved best 
solution is the optimum of the problem.  

The pseudo-code of the neuro-optimizer 
procedure is as follows: 


     



     







       

       





        



       

    





         



    





 The number of hidden layer�s 
neurons () depends on the complexity of 
the problem, objective value and search 
space (search space dimension). In general, 
large  causes the algorithm to work 
slowly, and less  causes to fail in local 
minima. A suitable value for , is (By trial 
and error) 2<<5m, where m is the search 
space�s dimension. 

 .  The results of several 
simulations have shown that when the 
number of hidden layers exceeds of two, the 
convergence rate goes slower and no 
significant improvement is occurred. So, 
most of time it is suitable to select the 
number of hidden layers one, or at most 



Journal of Artificial Intelligence in Electrical Engineering, Vol. 1, No. 2, September 2012

60 

two. It causes to a simple, fast and easily 
implemented NO. 

. Bias terms cannot be added in 
input layer, because the number of neurons 
in input layer is fixed and is equal to search 
space dimension. However we can use the 
bias terms to hidden layer(s) that can help 
the diversification and escaping from local 
minima. 

. Common linear and nonlinear 
functions (such as pure linear, unipolar 
sigmoid and bipolar sigmoid functions) can 
be considered as the output function of 
neurons in hidden and output layers (f and g 
in (1) and (2)), with the following 
considerations: 
a) If the variables are not constrained, then 
when the output function is pure linear we 
don�t need to renormalize the outputs of 
neurons to the variables range, but if we use 
nonlinear functions then we have to 
renormalize the outputs of functions to the 
suitable range, which is a time wasting 
process.
b) If linear functions are employed for the 
outputs of layers, the outputs of the output 
layer are only a linear combination of the 
inputs. So, the hidden layers may not help 
to diversification. But, if nonlinear 
functions are employed, a nonlinear 
combination of input and hidden layers 
make the output that the hidden layers will 
help to diversification and escaping from 
local minima trap.  

Although, nonlinear functions such as 
sigmoid functions have better 
diversification characteristics than linear 
functions but linear functions such as pure 
linear function don�t need to renormalize 
the outputs and has less time consumption. 
Therefore, there is a tradeoff between 
diversification and time consumption. So, 
selecting the output functions is a problem 

dependant issue and can be selected by trial 
and error. 

. The major difference between 
artificial neural networks and neuro-
optimizer is in the procedure of weight 
adjusting.  Neuro-optimizer adjusts its 
weights using a new heuristic rule (Eqs. (3) 
and (4)). This means that neuro-optimizer 
has not train or test phase. There is also no 
mapping problem in NO.  

 . The terms 
))((    and 
))((   , i=1, 2, are named 

global and local adaptive coefficients, 
respectively.  In each iteration, the former 
term defines the weights changing, 
proportional to movement towards the 
global solution found so far, and the later 
term defines weights altering, proportional 
to relative improvement of presented 
solution with respect to the previous 
solution, adaptively. In other words, the 
adaptive coefficients decrease or increase 
the weights size relative to being close or 
far from the optimum point, respectively. 
The terms ))1()((1    and 

))1()((2    are momentum 

statement and are known as a tool for 
escaping from local minima. Upper and 
lower limits are also considered for weight 
matrices to prevent the weights saturation 
as follows: wmin<w<wmax and umin<u<umax.

.  The stop condition can be as 
follows: 
a) When no improvement has been made 
for a certain number of iterations. 
b) The maximum number of iteration has 
been reached. 

Of course, other stop conditions can be 
considered depending on the problem. 

 . For diversification in search 
and escaping from local minima as well as 
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to speed up the convergence, the following 
contraptions can be applied. 
a) Modifying the number of hidden layers 
and the number of their neurons. 
b) Using bias terms in hidden layer(s). 
c) Using momentum in weight updating. 
d) Selecting different functions in the 
outputs of neurons. 
e) Restarting the algorithm from other 
(better) starter solutions. 
f) Adapting other values for parameters: 

,,, , Q, wmax , and umax.





3.1. Genetic algorithm 
Genetic Algorithm [24] is the most 

famous population based method and has 
been applied to a large number of different 
types of problems. The idea stems from 
attempting to copy the way in which nature 
has evolved and selected the fittest 
individuals for reproduction, whilst 
occasionally mutating the chromosomes or 
genes of these individuals.

The algorithm starts with creating an 
initial population of solutions, and then 
creating a new generation, by means of 
probabilistically selecting parents and 
individuals (this may be by means of a kind 
of roulette wheel mechanism which biases 
the selection towards fitter individuals) to 
perform crossover, mutation and 
reproduction until the new population has 
reached the predefined population size. This 
process then continues until some 
termination condition is reached. 

3.2. Particle swarm optimization 
A particle swarm optimizer [25] is a 

population based stochastic optimization 
algorithm modeled after the simulation of 

the social behavior of bird flocks. In a PSO 
system a swarm of individuals (called 
particles) fly through the search space. Each 
particle represents a candidate solution to 
the optimization problem. The position of a 
particle is influenced by the best position 
visited by itself and the position of the best 
particle in its neighborhood. When the 
neighborhood of a particle is the entire 
swarm, the best position in the 
neighborhood is referred to as the global 
best particle. 

The global optimizing model proposed by 
Shi and Eberhart [25] is as follows:

)(
)( 211






    (5) 

11                                                 (6)
where  is the velocity of particle ,  is the 
particle position, c1 and c2 are the positive 
constant parameters, RAND and rand are 
random functions in the range [0,1],  is 
the best position of the ith particle,  is 
the best position among all particles in the 
swarm and w is the inertial weight [25]. 



  The efficiency of NO was tested using a 
set of benchmark functions. To avoid any 
misinterpretation of the optimization 
results, related to the choice of any 
particular initial parameters, we performed 
each test 100 times, starting from various 
randomly selected solutions, inside the 
hyper rectangular search domain specified 
in the usual litterateur. 

The results of NO tests performed on 11 
functions listed in Appendix 1 are shown in 
Table 1. To evaluate the efficiency of the 
proposed NO algorithm, we retained the 
following criteria summarizing results from 
100 minimizations per function: the rate of 
successful minimizations (RATESM), the 
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average of the objective function evaluation 
numbers (AVERAGEOBJEN) and the 
average error (AVERAGEERROR). These 
criteria are defined precisely below. 

When at least one of the termination tests 
is verified, NO stops and provides the 
coordinates of a located solution, and the 
objective function value OBJN.O at this 
solution. We compared this result with the 
known analytical minimum OBJANAL; we 
considered this result to be successful if the 
following inequality held: 

  .          (7) 
where 01.0 , 0001.0  and OBJINIT

is an empirical average of the objective 
function value, calculated over typically 
100 solutions, randomly selected inside the 
search domain, before running the 
algorithm. The average of the objective 
function evaluation numbers is evaluated in 
relation to only the successful 
minimizations and it shows the 
convergence rate of the algorithm. In fact, 
this criterion measures the speed of the 
algorithm and shows whether it is fast or 
slow. The average error is defined as the 
average of OBJ gaps between the best 
successful solution found and the known 
global optimum. This criterion shows the 
accuracy of the algorithm in finding the 
global optimum. As Table 1 shows, when 
the search space is more complicated the 
rate of successful minimization is 
decreased. Hence, NO can escape from 
local minima trap because of its stochastic 
and intelligent nature. For all functions, the 
average of the objective function evaluation 
numbers does not exceed 1000 with a 
suitable accuracy. This shows that the 
convergence of the NO is fast. For all 
functions, average of OBJ gaps between the 
best successful solution found and the 

known global optimum is less than 0.1. 
This accuracy is acceptable for many real 
world optimization problems. 

. Results of NO for 15 benchmark 
functions. 

Benchmar
k function

RATES

M (%)
AVERAGEOBJ

EN

AVERAGEERR

OR

RC 96 285 0.01 
ES 96 446 0.04 
GP 96 290 0.015 
B2 96 185 0.015 
SH 94 318 0.01 
R2 95 347 0.03 
Z2 95 205 0.035 
DJ 95 272 0.02 
H3,4 83 361 0.05 
S4,5 81 467 0.03 
S4,7 80 445 0.01 
S4,10 78 431 0.04 
R5 80 688 0.05 
Z5 82 651 0.055 

H6,4 84 664 0.065 

The performance of NO is then compared 
to continuous GA and PSO algorithms. The 
experimental results obtained for the test 
functions, using the 3 different methods, are 
given in Table 2. In our simulations, each 
population in GA has 20 chromosomes and 
a swarm in PSO has 20 particles. Other 
parameters of 3 algorithms are selected 
optimally, by trial and error. For each 
function, we give the average number of 
function evaluations for 100 runs. The best 
solution found by 3 methods was similar, so 
there were not given in Table 2. We notice 
that results from NO are better than results 
from GA and PSO methods (NO is faster 
than GA and PSO). This is because that NO 
is not a population based algorithm and it 
evaluates just one objective function in each 
iteration, while GA and PSO (and any other 
population based algorithms) evaluate a 
population of objective functions. 
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. Average number of objective function 
evaluations used by three methods. 

Function/Method NO GA PSO
RC 285 486 426 
ES 446 920 903 
GP 290 410 395 
B2 185 325 334 
SH 318 576 615 
R2 347 657 633 
Z2 205 620 622 
DJ 272 601 556 
H3,4 361 712 681 
S4,5 467 915 822 
S4,7 445 766 741 
S4,10 431 792 816 
R5 688 2516 2441 
Z5 651 1712 1945 

H6,4 664 1956 2122 

Larger population size causes to more 
function evaluation numbers. So, 
convergence rate of GA and PSO is 
population size dependant while NO is not 
related to population.







  In this section, an optimal PID controller 
is designed for a five-bar-linkage 
manipulator robot.  
5.1. Problem Formulation 

The PID controller is used to improve the 
dynamic response and to reduce the steady-
state error. The transfer function of a PID 
controller is described as: 

  /                            (8) 
where KP, KI and KD are the proportional 
gain, integral and derivative time constants, 
respectively. For designing an optimal PID 
controller, a suitable objective function that 
represents system requirements, must be 
defined in the first step. A set of good 
control parameters KP, KI and KD can 
produce a good step response that will 

resultant in minimization of performance 
criteria. The optimal PID controller 
parameters that minimize the performance 
indexes are designed using the proposed 
NO algorithm. In the design of a PID 
controller, the performance criterion or 
objective function is first defined based on 
some desired specifications and constraints 
under input testing signal. Some typical 
output specifications in the time domain are 
overshoot, rise time, settling time, and 
steady-state error. In general, three kinds of 
performance criteria, the integrated absolute 
error (IAE), the integral of squared-error 
(ISE), and the integrated of time-weighted-
squared-error (ITSE) are usually considered 
in the control design under step testing 
input, because they can be evaluated 
analytically in the frequency domain. It is 
worthy to notice that using different 
performance indices probably makes 
different solutions for PID controllers. The 
three integral performance criteria in the 
frequency domain have their own 
advantages and disadvantages. For 
example, a disadvantage of the IAE and ISE 
criteria is that their minimization can result 
in a response with relatively small 
overshoot but a long settling time. Although 
the ITSE performance criterion can 
overcome the disadvantage of the ISE 
criterion, the derivation processes of the 
analytical formula are complex and time-
consuming [26]. The IAE, ISE, and ITSE 
performance criteria formulas are as 
follows: 

00

                    (9) 

0

2                                          (10) 

0

2                                       (11) 
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It�s noticed from (13)-(14) that for 
m3lc3l2 = m4lc4l1                                     (15) 

 We have  and  equal to zero, that 
is, the matrix of inertia is diagonal and 
constant. Hence the dynamic equations of 
this manipulator will be 

T1= (M11+
1
 ) 1 + g (m1lc1+m3lc3+m4l1) cosq1, 

T2=(M22+
2
 ) 2 +g(m1lc2+m3l2+m4lc4)cosq2

                                               (16)

. Planar presentation of the robot. 

Notice that T1 depends only on q1 but 
not on q2. On the other hand T2 depends 
only on q2 but not on q1. This discussion 
helps to explain the popularity of the 
parallelogram configuration in industrial 
robots. If the condition (15) is satisfied, 
then we can adjust the two rotations 
independently, without worrying about 
interactions between them. 

5.3. Simulation Results 
Having 2 motors, the manipulator 

specification consisting of mass, length and 
centre of gravity of links are given in Table 
3. The main purpose is designing an 
optimal PID controller for each of motors to 
control their rotations, with good 
performance. Using equation (16), five-bar-
linkage manipulator robot is easily 
simulated using Matlab and Simulink. The 
block diagram of the five-bar-linkage 
manipulator robot with PID controller for 

motor 1 is shown in Fig. 4. The block 
diagram for motor 2 is similar to this figure. 
The maximum iteration of all experiments 
is considered equal to 200. Also, is set to 
0 for all performance criteria to have the 
same merit in the objective function. 

The following process is done to 
determine the optimal values of the PID 
controller parameters (i.e., vector K). First, 
the lower and upper bounds of the three 
controller parameters are selected as 0 and 
30, respectively. Then, the network is 
initialized, randomly. Each solution K (the 
controller parameters) is sent to Matlab® 
Simulink® block and the values of four 
performance criteria in the time domain, 
i.e., Mp, Ess, Tr and Ts are calculated 
iteratively. Afterwards, the objective 
function is evaluated for each solution 
according to these performance criteria.  

. Five-bar-linkage manipulator data. 
Link Mass (Kg) Length (m) C of G (m) 

1 0.288 0.33 0.166 
2 0.0324 0.12 0.06 
3 0.3702 0.33 0.166 
4 0.2981 0.45 0.075 

. Block diagram of the motor with PID 
controller. 

Then, the procedure of NO algorithm is 
performed, as illustrated the pseudo-code in 
Section 2. At the end of any iteration, the 
program checks the stop criterion. When 
one termination condition is satisfied, 
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theprogram stops and the latest global best 
solution is the best solution of K. 

Fig. 5 illustrates the step response without 
PID controllers for two motors. Figures 6 
and 7 show the step response of rotation for 
motors 1 and 2, respectively. 

. Step response of the robot motors 
without PID controller. 

. Step response of the motor #1 rotation 
using NO method. 

. Step response of the motor #2 angel 
using NO method. 

The simulation results of the best solution 
are summarized in Table 4. These results 
demonstrate that cost function is converged 
rapidly. In conclusion, NO algorithm has 
rapid convergence characteristic and is 
highly effective in solving the optimal 
tuning problem of PID controller 
parameters. 
. Summary of simulation results of five-
bar-robot motors. 

algorith
m

P I D Mp Ts Tr
Es

s
cost 

1 NO 29 1.6 2.4 0 0.141 0.12 0
0.145

5
34

2 NO 31 1.5 2.5 0 0.193 
0.11

5
0

0.161
1

30



In this paper, a new optimization 
technique based on neural networks has 
been introduced and it called neuro-
optimizer (NO). Implemented by a 
recurrent neural network, NO uses a 
heuristic new intelligent rule to update its 
weights, with no supervision. The new 
optimization algorithm (NO) was proposed 
to solve the optimization problems 
numerically. Different benchmarks were 
used to illustrate the mentioned advantages. 
Dealing with this problem, a new time 
domain performance criterion for PID 
controller design was proposed. In all case 
studies, NO performed better than GA and 
PSO approaches which exposed NO as a 
promising optimization method. The 
optimal controller design of the five-bar-
linkage manipulator robot has been 
considered, as a practical application. The 
proposed method was implemented for 
tuning the controller for the robot. High 
promising results demonstrate that the 
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proposed algorithm is robust, efficient and 
can obtain higher quality solution with 
better computational efficiency. 



Some well-known benchmark functions 
of optimization problems: 

Branin RCOS (RC) (2 variables): 

10)cos())28/1(1(10
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Shekel (S4,n) (3 variables): 
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3 functions were considered: S4,5, S4,7 
and S4,10; 

i
 

1 4.0 4.0 4.0 4.0 0.1 
2 1.0 1.0 1.0 1.0 0.2 
3 8.0 8.0 8.0 8.0 0.2 
4 6.0 6.0 6.0 6.0 0.4 
5 3.0 7.0 3.0 7.0 0.4 
6 2.0 9.0 2.0 9.0 0.6 
7 5.0 5.0 3.0 3.0 0.3 
8 8.0 1.0 8.0 1.0 0.7 
9 6.0 2.0 6.0 2.0 0.5 
10 7.0 3.0 7.0 3.6 0.5 
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