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ABSTRACT 
In this paper, the optimal design of supplementary controller parameters of a unified power 
flow controller(UPFC) for damping low-frequency oscillations in a weakly connected system 
is investigated. The individual design of the UPFC controller, using hybrid particle swarm 
optimization and gravitational search algorithm (PSOGSA)technique under 3 loading 
operating conditions, is discussed. The effectiveness of proposed controller on enhancing 
dynamic stability is tested through eigenvalue analysis and time domain simulation. Also 
nonlinear and electrical simulation results show the validity and  effectiveness of the 
proposed control schemes over a wide range of loading conditions. It is also observed that the 
proposed UPFC-based damping stabilizers greatly enhance the power system transient 
stability. Also, simulation results of coordinated design of stabilizer based o E and mB is 
presented and discussed,the system performance analysis under different operating conditions 
show that the E-based controller is superior to the mB-based controller. 
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NOMENCLATURE 
1 BT boosting transformer 
D machine damping coefficient 
DC direct current 
E'q internal voltage behind transient reactance 
Efd equivalent excitation voltage 
K proportional gain of the controller 
KA regulator gain 
M machine inertia coefficient 
Pe active power 
Pm mechanical input power 
PSO particle swarm optimization 
GSA gravitational search algorithm 
UPFC unified power flow controller 

                                                           
 
 

FACTS 
flexible alternating current transmission 
systems 

PSS power system stabilizer 
SMIB single machine infinite bus 
VSC voltage source converter 

dc DC voltage deviation 
GTO gate turn off thyristor 
mE excitation amplitude modulation ratio 
mB boosting amplitude modulation ratio 

B boosting phase angle 
E excitation phase angle 

T1 lead time constant of controller 
T2 lag time constant of controller 
T3 lead time constant of controller 
T4 lag time constant of controller 
TA regulator  time constant 
T'do time constant of excitation circuit 
TW washout time constant 
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Ts settling time of speed deviation 
Vref reference voltage 
W rotor speed 
 rotor angle 

 
1. INTRODUCTION 

The main priorities in a power system 
operation are its security and stability, so a 
control system should maintain its 
frequency and voltage at a fixed level 
against any kind of disturbance such as a 
sudden increase in load, a generator being 
out of circuit, or failure of a transmission 
line because of factors such as human 
faults, technical defects of equipments, 
natural disasters, etc. Due to the new 
legislation of electricity market, this 
situation creates doubled stress for 
beneficiaries [1-2]. Low frequency 
oscillations that are in the range of 0.2 to 3 
Hz are created by the development of large 
power systems and their connection. These 
oscillations continue to exist in the system 
for a long time and if not well-damped, the 
amplitudes of these oscillations increase 
and bring about isolation and instability of 
the system [3-5]. Using a Power System 
Stabilizer (PSS) is technically and 
economically appropriate for damping 
oscillations and increasing the stability of 
power system. Therefore, various methods 
have been proposed for designing these 
stabilizers [6-8]. However, these stabilizers 
cause the power factor to become leading 
and therefore they have a major 
disadvantage which leads to loss of stability 
caused by large disturbances, particularly a 
three phase fault at the generator terminals 
[9]. In recent years, using Flexible 
Alternating Current Transmission Systems 
(FACTS) has been proposed as one of the 
effective methods for improving system 
controllability and limitations of power 

transfer. By modeling bus voltage and 
phase shift between buses and reactance of 
transmission line, FACTS controllers can 
cause increment in power transfer in steady 
state. These controllers are added to a 
power system for controlling normal steady 
state but because of their rapid response, 
they can also be used for improving power 
system stability through damping the low 
frequency oscillation [1-4,10]. 

The unified power flow controller 
(UPFC) has various applications including 
loop flow control, power flow control, load 
sharing among parallel corridors, mitigation 
of system oscillations, and voltage (reactive 
power) regulation and enhancement of 
transient stability [11-12]. In order to carry 
out performance analysis and control 
synthesis of the UPFC, it is necessary to 
have its steady-state and dynamic models. 
A bi-source UPFC steady-state model 
including source impedances is suggested 
in [13]. Also a steady-state model, a small-
signal linearized dynamic model, and a 
state-space large-signal model of a UPFC 
have been developed in [14], assuming that 
the power system is symmetrical and 
operates under 3-phase balanced conditions. 
In 1999, two UPFC models which have 
been linearized and incorporated into the 
Phillips-Heffron model were developed by 
Wang and were introduced in [15-16]. The 
UPFC damping controller design can be 
found in [1,3,17-20]. The supplementary 
controller can be applied to the series 
inverter through the modulation of the 
power reference signal or to the shunt 
inverter through the modulation index of 
the reference voltage signal. The particle 
swarm optimization (PSO) algorithm has 
been used in [1] and [3] to tune the 
optimum parameter settings of UPFC 
controllers for damping power system 
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oscillation.In [21], the real-coded genetic 
algorithm has been used for optimizing the 
damping controller parameters of the 
UPFC. Also, bacterialforaging has been 
used in [22] for the UPFC lead-lag type of 
controller parameter design. 
In [23] the linear quadratic regulator 
method has been used by Lee and Yung for 
designing the state feedback gain of the 
static synchronous compensator 
(STATCOM) controller to increase the 
damping of a single-machine infinite-bus 
(SMIB) power system. In [22] the authors 
have used an adaptive improved PSO 
hybrid with simulated annealing to design  
a UPFC damping controller. In [19] a 
comperehensive comparison between  the 
PSS, static VAR compensator, and 
STATCOM controllers for damping power 
system oscillations using the Hopf 

eigenvalue analysis to study different 
controllers, their locations, and the use of 
various control signals for the effective 
damping of these oscillations has been 
presented. In [24] the authors have used of 
the imperialist competitive algorithm (ICA) 
technique for the optimal design of 
supplementary controller parameters of a 
unified power flow controller (UPFC) to 
damp low-frequency oscillations. In [25] 
Individual designs of the UPFC controller 
using adaptive improved particle swarm 
optimization hybrid with simulated 
annealing (AIPSO-SA) has been presented. 
In this paper, singular value decomposition 
(SVD) is used to select the control signal 
which is most suitable for damping the 
electromechanical (EM) mode oscillations. 
A single machine infinite bus (SMIB) 
power system equipped with a UPFC 
controller is used in this study. Also, the 
damping controllers design is formulated as 
an optimization problem to be solved using 
PSOGSA. This algorithm has been popular 
in academia and the industry mainly 

because of its intuitiveness, ease of 
implementation, and the ability to 
effectively solve highly nonlinear 
optimization problems that are typical of 
complex engineering systems. It has been 
reported in the literature that PSOGSA is 
more efficient in terms of CPU time and 
offers higher precision with more consistent 
results [31]. Theeffectiveness of the 
proposed controller is demonstrated 
through eigenvalue analysis, nonlinear time 
simulation studies and some performance 
indices to damp low frequency oscillations 
under different operating conditions. 
Results evaluation show that the proposed 
PSOGSA-based tuned damping controller 
achieves good robust performance for a 
wide range of operating conditions. 
 

2. PROPOSED ALGORITHMS 
2.1. Particle swarm optimization (PSO) 
PSO is an evolutionary computation 
technique which is proposed by Kennedy 
and Eberhart [26] . The PSO was inspired 
by the social behaviour of bird flocking. It 
uses a number of particles (candidate 
solutions) which fly around in the search 
space to find the best solution. Meanwhile, 
the particles all look at the best particle 
(best solution) in their paths. In other 
words, particles consider their own best 
solutions as well as the best solution found 
so far. 
Each particle in PSO should consider the 
current position, the current velocity, the 
distance to pbest, and the distance to gbest 
in order to modify its position. PSO was 
mathematically modelled as follows: 

(1) 
1

1

2

( )
( )

t t t
i i i i

t
i i

v w v c rand pbest x
c rand gbest x

 

 

(2) 1 1t t t
i i ix x v  

where vt
i is the velocity of particle i at 
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iteration t, w is a weighting function, cj is an 
acceleration coefficient, rand is a random 
number between 0 and 1, xt

iis the current 
position of particle i at iterationt, pbesti is 
the pbest of agent i at iteration t, and gbest 
is the best solution so far.  
The first part of(1), wvt

i, provides 
exploration ability for PSO. The second and 
third parts, c1×rand×(pbesti- xt

i)andc2 
×rand×(gbest - xt

i), represent private 
thinking and collaboration of particles 
respectively. The PSO starts by randomly 
placing the particles in a problem space. In 
each iteration, the velocities of particles are 
calculated using (1). After definingthe 
velocities, the positions of particles can be 
calculated as (2). The process of changing 

until an 
end criterion is met. 
 

2.2. Gravitational search algorithm (GSA) 
In 2009, Rashedi et al. [27] proposed a new 
heuristic optimization algorithm called the 
Gravitational Search Algorithm (GSA) for 
finding the best solution in problem search 
spaces using physical rules. The basic 
physical theory from which GSA is inspired 

particle in the universe attracts every other 
particle with a force that is directly 
proportional to the product of their masses 
and inversely proportional to the square of 

considered as a collection of agents 
(candidate solutions) which have masses 
proportional to their value of fitness 
function. During generations all masses 
attract each other by the gravity forces 
between them. The heavier the mass, the 
bigger the attraction force. Therefore, the 
heaviest masses which are probably close to 
the global minimum attract the other 
masses in proportion to their distances. 

According to [27-28], suppose there is a 
system with N agents. The position of each 
agent (masses) which is a candidate 
solution for the problem is defined as 
follows: 

(3) 1( ,....., ,..... ) for 1, 2,...d n
i i i iX x x x i N  

whereN is the dimension of the problem 
and xd

iis the position of the ith agent in the 
dth dimension. 
The algorithm starts by randomly placing 
all agents in a search space. During all 
epochs, the gravitational forces from agent j 
on agent i at a specific time tare defined as 
follows: 

(4) 
( ) ( )

( ) ( ( ) ( ))
( )

pi ajd d d
ij j i

ij

M t M t
F G t x t x t

R t
 

Where Maj is the active gravitational mass 
related to agent jMpi is the passive 
gravitational mass related to agent i,G(t) is 
the gravitational constant at time t  is 
small constantRij(t) is the Euclidian distance 
between two agents i and j. 
The gravitational constant G and the 
Euclidian distance between two agents i and 
j are calculated as follows: 

(5) 0( ) exp( iter/ maxiter)G t G  
 

(6) 2
( ) ( ), ( )ij i jR t x t x t  

Where is the descending coefficient, G0 is 
the initial gravitational constant, iter is the 
current iteration, and maxiteris the 
maximum number of iterations. 
In a problem space with the dimension d, 
the total force that acts on agenti is 
calculated by the following equation: 

(7) 
1,

( ) ( )
N

d d
i j ij

j j i
F t rand F t  

whererandj is a random number in the 
interval [0,1]. 
According to the law of motion, the 
acceleration of an agent is proportional to 
the resultant force and inverse of its mass, 
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so the accelerations of all agents are 
calculated as follows: 

(8) 
( )( )
( )

d
d i
i

ii

F ta t
M t

 

whered is the dimension of the problem, t is 
a specific time, and Mi is the mass of object 
i. 
The velocity and position of agents are 
calculated as follows: 

(9) ( 1) ( ) ( )d d d
i i i iv t rand v t a t  
 

(10) ( 1) ( ) ( 1)d d d
i i ix t x t v t  

whered is the problem dimension and randi 
is a random number in the interval [0,1]. 
As can be inferred from (9) and (10) , the 
current velocity of an agent is defined as a 
fraction of its last velocity( i ) 
added to its acceleration. Furthermore, the 
current position of an agent is equal to its 
last position added to its current velocity. 

evaluation. This means that an agent with 
the heaviest mass is the most efficient 
agent. According to the above equations, 
the heavier the agent, the higher the 
attraction force and the slower the 
movement. The higher attraction is based 
on the law of gravity (4), and the slower 
movement is because of the law of motion 
(8) [27]. 

The masses of all agents are updated 
using the following equations: 

(11) 
( ) ( )

( )
( ) ( )

i
i

fit t worst t
m t

best t worst t
 

Where fiti(t) represents the fitness value of 
the agent i at time t, best(t) is the strongest 
agent at time t, and worst(t) is the weakest 
agent at time t. 
best(t) and worst(t) for a minimization 
problem are calculated as follows: 

(12) 1..
( ) min ( )jj N

best t fit t  
 

(13) 1..
( ) max ( )jj N

worst t fit t  

best(t) and worst(t) for a maximization 
problem are calculated as follows: 

(14) 1..
( ) max ( )jj N

best t fit t  
 

(15) 1..
( ) min ( )jj N

worst t fit t  

The normalization of the calculated masses 
(11) is defined by the following equation: 

(16) 
1

( )
( )

( )
i

i N
jj

m tM t
m t

 

In the GSA, at first all agents are initialized 
with random values. Each agent is a 
candidate solution. After initialization, 
thevelocity and position of all agents will 
be defined using (9) and (10) . Meanwhile, 
other parameters such as the gravitational 
constant and masses will be calculated by 
(5) and (11) . Finally, the GSA will be 
stopped by meeting an end criterion. The 
steps of GSA are represented in Fig. 1. 
In all population-based algorithms which 
have social behaviour like PSO and GSA, 
two intrinsic characteristics should be 
considered: the ability of the algorithm to 
explore whole parts of search spaces and its 
ability to exploit the best solution. 
Searching through the whole problem space 
is called exploration whereas converging to 
the best solution near a good solution is 
called exploitation. A population-based 
algorithm should have these two vital 
characteristics to guarantee finding the best 
solution. In PSO, the exploration ability has 
been implemented using Pbest and the 
exploitation ability has been implemented 
usingGbest. In GSA, by choosing proper 
values for the random parameters (G0 and 

slow movement of heavier agents can 
guarantee the exploitation ability [27, 29]. 
Rashedi et al.[27] provided a comparative 
study between GSA and some well-known 
heuristic optimization algorithms like PSO. 
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The results proved that GSA has merit in 
the field of optimization. However, GSA 
suffers from slow searching speed in the 
last iterations [30] . In this paper a hybrid of 
this algorithm with PSO, called PSOGSA, 
is proposed in order to improve this 
weakness. 
 
2.3. The hybrid PSOGSA algorithm 
The basic idea of PSOGSA is to combine 
the ability for social thinking (gbest) in 
PSO with the local search capability 
ofGSA. In order to combine these 
algorithms,(17) is proposed as follows: 

(17) 1

2

( 1) ( ) ' ( )
' ( )

i i i
t

i i

v t w v t c rand ac t
c rand gbest x

 

where Vi(t) is the velocity of agent i at 
iteration t ; c'j is an acceleration coefficient, 
w is a weighting function, rand is a random 
number between 0 and 1, aci(t) is the 
acceleration of agent i at iterationt, and 
gbest is the best solution so far. 
In each iteration, the positions of agents are 
updated as follows: 

(18) ( 1) ( ) ( 1)i i ix t x t v t  

In PSOGSA, at first, all agents are 
randomly initialized. Each agent is 
considered as a candidate solution. After 
initialization, the gravitational force, 
gravitational constant, and resultant forces 
among agents are calculated using (4), (5) 
and (7) respectively. After that, the 
accelerations of particles are defined as (8). 
In each iteration, the best solution so far 

should be updated. After calculating the 
accelerations and updating the best solution 
so far, the velocities of all agents can be 
calculated using (17). Finally, the positions 
of agents are updated by (18). The process 
of updating velocities and positions will be 
stopped by meeting an end criterion. The 
steps of PSOGSA are represented in Fig. 2. 
To see how PSOGSA is efficient, the 
following remarks are noted: 
 In PSOGSA, the quality of solutions 

(fitness) is considered in the updating 
procedure. 

 The agents near good solutions try to 
attract the other agents which are 
exploring different parts of the search 
space. 

 When all agents are near a good 
solution, they move very slowly. In this 
case, gbest helps them to exploit the 
global best. 

 PSOGSA uses a memory (gbest) to save 
the best solution found so far, so it is 
accessible at any time. 

 Each agent can observe the best 
solution (gbest) and tend toward it. 

 By adjusting c'1 and c'2, the abilities of 
global searching and local searching can 
be balanced 

The above-mentioned remarks make 
PSOGSA powerful enough to solve a wide 
range of optimization problems [31].

  
Generate initial population Evaluate the finness for all

agents
Update the G, best(t) and
worst(t) for the population

Update velocity and position Calculate M and a for all agentsMeeting end
criterion?

Return the best solution

NO

Yes
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Fig. 1.General steps of the gravitational search algorithm [27] . 

Generate initial population Evaluate the finness for all
agents

Update the G, best(t) and
worst(t) for the population

Update velocity and position Calculate M, forces and
accelerations for all agents

Meeting end
criterion?

Return the best solution (gbest)

No

Yes

Fig. 2.Steps of PSOGSA [31] . 
 
 

3. DESCRIPTION OF CASE STUDY 
SYSTEM 

Fig3 shows the test power system with a 
UPFC. In this paper, the test power system 
is an SMIB with 2 parallel lines. It can be 
seen from Fig3 that the UPFC has 4 input 
control signals. These control signals are 
mE, mB, E, and B, where, mE isthe 
excitation amplitude modulation ratio, mB 
is the boosting amplitude modulation ratio, 

E is the excitation phase angle and B is the 
boosting phase angle. The parameters of the 
test power system are given in the 
Appendix. 

 
Fig. 3.SMIB power system equipped with UPFC. 
 

3.1. System nonlinear model with UPFC 
In this section, to study the effect of the 
UPFC in the small-signal stability 
improvement of a power system, a dynamic 

model of a UPFC is presented. While 
neglecting the resistance and transients of 
the excitation (ET) and boosting (BT) 
transformers in Fig 3, the UPFC model in 
the dq reference frame can be obtained as 
[1,3,13,15]. 

(19) 

cos
0 2

0 sin
2

E E dc

Etd EdE

Etq EqE E E dc

m v
v ix
v ix m v

 

 

(20) 

cos
0 2

0 sin
2

B B dc

Btd BdB

Btq BqB B B dc

m v
v ix
v ix m v

 

 
 

(21) 

3
cos sin

4

3
cos sin

4

EdE
dc E E

Eqdc

BdB
B B

Bqdc

imv
iC

im
iC

 

In the above equations, vEt, iE, vBt, and 
iBrepresent the voltage and current of the 
excitation and boosting transformers, 
respectively, and vdcandCdcshow the DC 
link voltage and DC link capacitance, 
respectively. When considering the circuit 
equations of Fig.3 and some 
simplifications, the currents of the 
excitation and boosting transformers and 
line 2 in the dq reference frame can be 
written as: 
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(22) 
sin1 cos

2
E E dc

TLd E Ed b
T

m vi x i v
x

 
 

(23) 
cos1 sin

2
E E dc

TLq E Eq b
T

m vi x i v
x

 
 

(24) 

'
7

2

5 6

sin
2

sincos
2

B B dcBB
Ed q d

d

E E dc
d b d

m vxi E x
x

m vx v x
 

 

(25) 
7 5

6

cos
sin

2
cos

2

B B dc
Eq q q b

E E dc
q

m v
i x x v

m vx
 

 

(26) 

' 1

2 2

3 4

sin
2

sincos
2

d B B dcE
Bd q

d d

E E dc
d b d

x m vx
i E

x x
m vx v x

 

 

(27) 

1
3

2

4

cos
sin

2
cos

2

q B B dc
Bq q b

q

B B dc
q

x m v
i x v

x
m vx

 

wherexE and xBrepresent the leakage 
reactance of the ET and BT, respectively, 
and the reactances xqE, xdE, xBB, xd1 d7, and 
xq1 q7 are given in [32]. 
The conventional nonlinear dynamic 
equations of the generator shown in the 
SMIB test system in Fig.3 are: 

(28) ( 1)b  
 

(29) 1 ( )m eP P D
M

 
 

(30) ' '1' ( ( ) )q fd d d d q
do

E E x x i E
T

 

 

(31) 
1 ( )A

fd fd ref pss
A A

KE E V v u
T T

 

where 
d qe d qP v i v i

, d q qv x i , 
' '

q q d dv E x i

d Ed Bd TLdi i i i , q Eq Bq TLqi i i i , 
2 2 1/2( )d qv v v

 Above, Pmis the mechanical input power of 
the generator; Peis the electrical output 
power of the generator; M and D are the 
inertia constant and damping coefficient; 

bis the synchronous speed of the 
generator; and are the rotor angle and 
speed; E'q, Efd, and v are the generator 
internal voltage, field voltage, andterminal 
voltages, respectively; T'dois the open-
circuit field time constant; xd, x'd, and xqare 
the generator reactance in the d-axis, d-axis 
transient reactance, and q-axis reactance, 
respectively; KAand TAare the gain and time 
constant of the generator exciter, 
respectively; Vrefis the AC bus reference 
voltage; and upssis the control signal of the 
PSS. 
3.2. Linearized model of the power system 

In this paper, in order to perform a stability 
evaluation, eigenvalue analysis is used. For 
this purpose and to obtain the eigenvalues 
of the system, the nonlinear dynamic 
equations of the test power system must be 
linearized around an operating point 
condition. Eqs. (32) through (36) show the 
linearized model of the test power system 
from Fig.3. 

(32) b  
 

(33) ( ) /eP D M  
 

(34) '
1' ( ( ) ) / 'q q fd d d d doE E E x x i T  

 

(35) 
1 ( ( ))fd fd A tref t pss
A

E E K V V u
T

 
 

(36) 
7 8 9'dc q dc ce

c e E cb B c b B

V K K E K V K m
K K m K
 
In the state-space representation, the power 
system can be modeled as: 

(37) X Ax Bu  
where the state vector x, control vector u, 
state matrix A, and input matrix B are: 

 
T

q fd dc

T

pss E E B B

x E E v

u u m m
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1 2

34

5 6

7 8 9

0 0 0 0

0 0

10 ;

10

0 0

b

pd

qd

do do do do

A A A vd

A A A A

w
KK K

M M M
KKK

A
T T T T

K K K K K K
T T T T
K K K

0 0 0 0 0

0

0
' ' ' '

0

pe p e pb p b

qe q e qb q b

do do do do

A ve A v e A vb A v bA

A A A A A

ce c e cb c b

K K K K
M M M M
K K K K

B
T T T T

K K K K K K K KK
T T T T T

K K K K
 

The linearized dynamic model of the state-
space representation is shown in Fig 4. 

 
Fig. 4.Modified Heffron Phillips transfer 

function model. 
3.3. UPFC-based damping controller 
The damping controller is designed to 
produce an electrical torque, according to 
the phase compensation method, in phase 
with the speed deviation. In order to 
produce the damping torque, four control 
parameters of the UPFC (mE, E, mB, and 

B) can be modulated. 

In this paper, E and mB are modulated in 
order to damping controller design.The 
speed deviation  is chosen as the input to 
the damping controller. Fig.5 shows the 
structure of the UPFC-based damping 
controller [1,3,5]. This controller may be 
considered as a lead-lag compensator. 
However, an electrical torque in phase with 
the speed deviation is to be produced to 
improve the damping of the power system 
oscillations. It consists of a gain block, a 
signal-washout block, and lead-lag 
compensator. The parameters of the 
damping controller are obtained using the 
PSOGSA technique. 

s

Ks
1 ST

+

+

uref u

w 31

w 2 4

ST 1 ST1 ST
1 ST 1 ST 1 ST

Fig 5.UPFC with a lead-lag controller. 
4. UPFC CONTROLLER DESIGN 

USING THE PSOGSA 
In the proposed method, the UPFC 
controller parameters must be tuned 
optimally to improve overall system 
dynamic stability in a robust way. This 
study employs the PSOGSA to improve 
optimization synthesis and find the global 
optimum value of the fitness function in 
order to acquire an optimal combination. In 
this study, the PSOGSA module works 
offline. In other words, the parameters of 
the UPFC damping controller are tuned for 
different loading conditions and system 
parameter uncertainties based on Table 1, 
and then the obtained optimal parameters of 
the damping controller are applied to the 
time-domain simulation. 
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Table 1.Loading condition 

Operating 
conditions P (pu) Q (pu) XL(pu) 

Normal 0.8 0.114 0.3 

Light 0.2 0.01 0.3 

Heavy 1.2 0.4 0.3 

Case 4 
the 30% increace of line reactance XL 
at nominal loading condition 
 

Case 5 
the 30% increace of line reactance XL 
at heavy loading condition 
 

 
For our optimization problem, an integral  
time  absolute error of the speed deviations 
is taken as the objective function J, 
expressed as: 

(38) 
1

0

( )
t

J e t t dt  

t1 is 
the time range of  simulation. 
The optimization problem design can be 
formulated as the constrained problem 
shown below, where the constraints are the  
 

controller parameters bounds. 

(39) 
min max

1min 1 1max

2min 2 2max

3min 3 3max

4min 4 4max

Minimize
Subject to

J

K K K
T T T
T T T
T T T
T T T  

Typical ranges of the optimized parameters 
are [0, 100] for K and [0.01, 1] for T1, T2, 
T3, and T4. The mentioned approach 
employs the PSOGSA to solve this 
optimization problem and searches for an 
optimal or near-optimal set of controller 
parameters. It should be noted that 
PSOGSA algorithm is run several times and 
then optimal set of output feedback gains 
for the UPFC controllers is selected. The 
final values of the optimized parameters are 
given in Table 2. Fig.6 shows the 
illustration of cost versus iteration for both 
the E -and mB -based controllers using the 
PSO, GSA and PSOGSA techniques.

Table 2.The optimal settings of the individual controller 

controller parametes mB E 

PSO GSA PSOGSA PSO GSA PSOGSA 
K 73.8019 62.6673 81.3002 84.3309 76.6433 83.9329 
T1 0.7008 0.3887 0.4363 0.9447 0.9347 0.8017 
T2 0.4822 0.7517 0.6890 0.1334 0.1201 0.3188 
T3 0.9978 0.1944 0.9257 0.3332 0.5180 0.8281 
T4 0.0669 0.0603 0.1119 0.0818 0.2554 0.0171 
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Figure.6.The convergence for objective function minimization using PSO, GSA and PSOGSA techniques : 
(a): mB -based controller, (b): E -based controller. 
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5. SIMULATION RESULTS 
In order to demonstrate the effectiveness 
and robustness of the proposed controller, 
against severe turbulence and the damping 
of oscillations caused by it, power system 
using the proposed model, is simulated in 
MATLAB software. To make sure that the 
obtained results are reliable, this simulation 
is evaluated with eigenvalue analysis 
method and time domain nonlinear 
simulation, which is shown as follows. 
5.1. Eigenvalue Analysis 

The electromechanical modes and the 
damping ratios obtained for all operating  
conditions both with and without proposed 
controllers in the system are given in Table. 
3and 4 Given a complex 
eigenvalue, [5]:  

(40) 2 2
 

When UPFC is not installed, it can be seen 
that some of the modes are poorly damped 
and in some cases, are unstable (highlighted 
in Table 3 and 4). 
 

 
Table 3.Eigenvalues and damping ratios of electromechanical modes with and without Econtroller 

          Controller 
Loding  
Condition 

without  
controller 

PSO 
controller 

GSA 
controller 

PSOGSA 
Controller 

Nominal loading 
condition 

Eigenvalue 
(damping ratio) 

0.0663 ± 8.6962i, (-0.076) 
-0.4778,-0.0742 
-20.0678 

-8.0014 ±7.0712i, (0.749) 
-0.5577 ±0.8434i, (0.551) 
-0.5531±0.1742i, (0.953) 
-0.2529, -20.1713 

-9.8349 ±1.2659i, (0.991) 
-0.5524±0.1692i, (0.956) 
-0.4548,-0.4842 
-0.8712, -20.3216 

-0.5326±0.1968i, (0.938) 
-0.4548 ±0.3019i, (0.833) 
-1.0200,  -5.0062 
-18.7853, -21.8784 

Light loading 
condition 

Eigenvalue 
(damping ratio) 

0.0223 ± 7.961i, (-0.028) 
-0.371,  -0.0426 
-20.438 

-8.0160±7.0143i, (0.752) 
-0.5017 ±0.7019i, (0.581) 
-0.7845±0.2474i, (0.953) 
-0.2520, -20.987 

-9.3441±1.6052i, (0.985) 
-0.4352 ±0.6981i, (0.529) 
-0.4041, -0.4340 
-0.7019, -18.2169 

-0.4532 ±0.1696i, (0.936) 
-0.4037±0.2369i, (0.862) 
-0.9243,  -5.0316 
-18.8054, -20.8998 

Heavy loading 
condition 

Eigenvalue 
(damping ratio) 

0.0461 ± 8.1912i, (-0.056) 
-0.4008,  -0.7432 
-18.673 

-9.1984 ±8.7923i, (0.722) 
-0.6001±0.7143i, (0.643) 
-0.5511±0.1318i, (0.972) 
-0.2682 , -18.7139 

-9.3499±1.2591i, (0.991) 
-0.5929±0.1889i, (0.952) 
-0.4941, -0.4099 
-0.8919, -20.2872 

-0.5022 ±0.1916i, (0.934) 
-0.4214±0.1889i, (0.912) 
-1.2316,  -5.0426 
-16.1354, -21.9735 

Case 4  loading 
condition 

Eigenvalue 
(damping ratio) 

0.0432 ± 8.1275i, (-0.053) 
-0.3986,  -0.0646  
-19.2165 
 

-8.3217 ± 7.1653i, (0.757) 
-0.5097 ±0.8074i, (0.533) 
-0.5963 ±0.1701i, (0.961) 
-0.3189, -20.015 

-9.9219 ±1.6215i, (0.986) 
-0.5023 ±0.1312i, (0.967) 
-0.3985, -0.4056 
-0.8022, -19.4379 

-0.6013 ±0.1857i, (0.955) 
-0.4843 ±0.3956i, (0.774) 
-1.1120,  -4.1248 
-18.4223, -21.0549 

Case 5  loading 
condition 

Eigenvalue 
(damping ratio) 

0.0334 ± 7.1289i, (-0.046) 
-0.3991,  -0.0401  
 -19.428  
 

-8.2160 ±7.5213i, (0.737) 
-0.4986 ±0.6973i, (0.581) 
-0.7218 ±0.2189i, (0.956) 
-0.2521, -20.917 

-9.1481 ±1.2945i, (0.990) 
-0.4182 ±0.6019i, (0.570) 
-0.4312, -0.4951  
-0.7184, -18.9321 

-0.4012 ±0.1121i, (0.963) 
-0.6246 ±0.3421i, (0.877) 
-0.9931,  -5.1136  
-18.9934, -20.3328 

 

 
Table 4.Eigenvalues and damping ratios of electromechanical modes with and without  mB controller 

          Controller 
Loding  
Condition 

without  
controller 

PSO 
controller 

GSA 
controller 

PSOGSA 
Controller 

Nominal loading 
condition 

Eigenvalue 
(damping ratio) 

0.0663 ± 8.6962i, (-0.076) 
-0.4778,-0.0742 
-20.0678 

-5.9119 ±5.4726i, (0.733) 
-0.5309 ±0.0739i, (0.990) 
-0.3493, -0.4386  
-0.1771, -19.1459 

-6.5215 ±4.3600i, (0.831) 
-0.5764 ±0.0574i, (0.995) 
-0.3792, -0.4188  
-0.1766, -19.1676 

-7.6405 ±3.2901i, (0.918) 
-0.8275 ±0.2550i, (0.955) 
-0.5022,  -0.1818  
-0.4270, -20.2031 

Light loading 
condition 

Eigenvalue 
(damping ratio) 

0.0223 ± 7.961i, (-0.028) 
-0.371,  -0.0426 
-20.438 

-5.1756 ±5.2091i, (0.704) 
-0.5311 ±0.0709i, (0.991) 
-0.4922,  -0.4021 
-0.1643, -18.5076 

-6.01327 ±4.1384i, (0.823) 
-0.5604 ±0.0511i, (0.995) 
-0.3087, -0.5859 
-0.7381,-18.3279 

-6.1465 ±3.9211i, (0.843) 
-0.8001 ±0.2364i, (0.959) 
-0.6130,-0.1076 
-0.4021, -20.6643 

Heavy loading 
condition 

Eigenvalue 

0.0461 ± 8.1912i, (-0.056) 
-0.4008,  -0.7432 
-18.673 

-6.1543 ±4.7166i, (0.793) 
-0.5499 ±0.1731i, (0.953) 
-0.3043,-0.4918 

-8.4338 ±5.6871i, (0.829) 
-0.4326 ±0.1215i, (0.962) 
-0.3711,  -0.4033 

-8.6493 ±3.9543i, (0.909) 
-0.7587 ±0.3212i, (0.920) 
-0.5943,  -0.8532 



 
 
Journal of Artificial Intelligence in Electrical Engineering, Vol. 2, No. 5, May 2013 
 

57 
 

(damping ratio) -0.7915, -16.5348 -0.2312, -16.8351 -0.2115, -18.6732 
Case 4  loading 

condition 
Eigenvalue 

(damping ratio) 

0.0432 ± 8.1275i, (-0.053) 
-0.3986,  -0.0646  
-19.2165 
 

-5.0219 ±5.7112i, (0.660) 
-0.3319 ±0.0661i, (0.980) 
-0.4243, -0.4898  
-0.2231, -19.3249 

-6.3321 ±4.1976i, (0.833) 
-0.5098 ±0.2214i, (0.917) 
-0.4436, -0.4567  
-0.3215, -19.1032 

-8.7890 ±4.8719i, (0.874) 
-0.7765 ±0.4432i, (0.868) 
-0.6783,  -0.2134  
-0.4991, -20.5529 

Case 5  loading 
condition 

Eigenvalue 
(damping ratio) 

0.0334 ± 7.1289i, (-0.046) 
-0.3991,  -0.0401  
 -19.428  
 

-5.4551 ±5.1181i, (0.729) 
-0.6043 ±0.1129i, (0.982) 
-0.5532,  -0.4912  
-0.4321, -18.0233 

-7.8864 ±4.9974i, (0.844) 
-0.5032 ±0.1123i, (0.975) 
-0.3332, -0.5987  
-0.7765,-18.7895 

-7.5541 ±4.5321i, (0.857) 
-0.8861 ±0.3245i, (0.939) 
-0.6124,-0.1747 
-0.4428, -20.3323 

5.2. Nonlinear time-domain simulation 
The single-machine infinite-bus system 
shown in Fig. 3is considered for nonlinear 
simulation studies. 6-cycle 3-phase fault at  
t = 1 s, on the infinite bus has occurred, at 
all loading conditions given in Table 1, to 
study the performance of the proposed 
controller.The speed deviation and 

electrical power deviation based on the 
Eand mBcontroller in three different 

loading conditions are shown in Figs. 7-16. 
It can be seen that the PSOGSA based 
UPFC controller tuned using the objective 
function achieves good robust performance 
and provides superior damping. 

 

 
(a) 

 
(b) 

Fig. 7.Dynamic responses for (a) , (b)  with and whith out mBcontroller at Normal loading condition 

 

 
(a) 

 
(b) 

Fig. 8.Dynamic responses for (a) , (b)  with and whith out mBcontroller at light loading condition  
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(a) 

 
(b) 

Fig. 9.Dynamic responses for (a) , (b)  with and whith out mBcontroller at heavy loading condition 

 
(a) 

 
(b) 

Fig. 10.Dynamic responses for (a) , (b)  with and whith out mBcontroller at case 4 loading condition 
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(b) 

Fig. 11.Dynamic responses for (a) , (b)  with and whith out mBcontroller at case5 loading condition 
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(a) 

 
(b) 

Fig. 12.Dynamic responses for (a) , (b)  with and whith out Econtroller at normal loading condition 

 

 
(a) 

 
(b) 

Fig. 13.Dynamic responses for (a) , (b)  with and whith out Econtroller at light loading condition 

 
(a) 

 
(b) 

0 1 2 3 4
-0.0024

-0.0019

0

0.0019

0.0024

Time (sec.)
 

 
without co
PSS
PSO
GSA
PSOGSA

0 1 2 3 4
-0.08

0

0.28

0.33

Time (sec.)
 

 

without co
PSS
PSO
GSA
PSOGSA

0 1 2 3 4
-0.0017

-0.0012

0

0.0012

0.0017

Time (sec.)
 

 

without co
PSS
PSO
GSA
PSOGSA

0 1 2 3 4-0.02

0

0.22

0.27

Time (sec.)
 

 

without co
PSS
PSO
GSA
PSOGSA

0 1 2 3 4
-0.0024

-0.0019

0

0.0019

0.0024

Time (sec.)
 

 
without co
PSS
PSO
GSA
PSOGSA

0 1 2 3 4
-0.07

0

0.27

0.32

Time (sec.)
 

 
without co
PSS
PSO
GSA
PSOGSA



 
 

60 
 

Fig. 14.Dynamic responses for (a) , (b)  with and whith out Econtroller at heavy loading condition 

 

 
(a) 

 
(b) 

Fig. 15.Dynamic responses for (a) , (b)  with and whith out Econtroller at case4 loading condition 

 

(a) (b) 

Fig. 16.Dynamic responses for (a) , (b)  with and whith out Econtroller at case5 loading condition 

6. CONCLUSION 
In this paper, low-frequency oscillation 
damping using a UPFC controller was 
investigated. The stabilizer was tuned to 
simultaneously shift the undamped 
electromechanical modes of the machine to 
the left side of the s-plane. An objective 
problem comprising the damping ratio of 
the undamped electromechanical modes 
was formulated to optimize the controller 
parameters. The design problem of the 

controller was converted into an 
optimization problem, The PSOGSA 
optimization technique has been proposed 
to design the UPFC controllers individually 
and E, mBcoordinately. PSO, GSA and 
PSOGSA have been utilized to search for 
the optimal controller parameter settings 
that optimize a damping ratio based 
objective function.The effectiveness of the 
proposed UPFC controller for damping 
low-frequency oscillations of a power 
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system were demonstrated by a weakly 
connected example power system subjected 
to a disturbance.The eigenvalue analysis 
and time-domain simulation results showed 
the effectiveness of the proposed controller 
in damping low-frequency 
oscillations,alsothe system performance 
analysis under different operating 
conditions show that the E-based controller 
is superior to the mB based controller. 
 

APPENDIX  
The nominal parameters and operating 
condition of the systemare listed in table 5. 
 

Table 5.System parameters 

Generator 
M = 8 MJ/MVA Xq=0.6 pu 
T'do=5.044 X'd=0.3 pu 
Xd=1 pu D=4 

Excitation system KA=80 TA=0.05s 

Transformers 
XT=0.1 pu XE= 0.1 pu 
XB= 0.1 pu  

Transmission line XL=1pu  

Operating condition 
P = 0.8 pu Vb=1.0 pu 
Vt= 1.0 pu  

DC link parameter VDC=2pu CDC=1pu 

UPFC parameter 
mB= 0.08 B= 78.21 

E= 85.35 mE= 0.4 
Ks=1 Ts= 0.05 
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