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ABSTRACT

In the several past years, Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) have
became basic algorithm for state-variables and parameters estimation of discrete nonlinear systems.

The UKF has consistently outperformed for estimation. Sometimes least estimation error doesn't yield

with UKF for the most nonlinear systems. In this paper, we use a new approach for a two variable
state nonlinear systems which it is called Rotated UKF (R_UKF). R_UKF can be reduced estimation

error and reached for least error in state estimation.
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1. INTRODUCTION

It is derived from the Kalman filter
based on successive linearization of the
signal process and observation map [1]. The
algorithm of EKF is sub-optimal, so can be
became divergence. UKF is a free-
divergence approach and it can be used
instead of EKF for state estimation [2]. The
UKF has been used for state-estimation and
parameter-estimation at nonlinear systems.
The UKEF is a derivative free alternative to
the EKF. R UKF is a new suggestion
algorithm for estimation two variable state
nonlinear systems. This paper is organized
as follows. After the introduction in section
1, discussion UKF algorithm is discussion
for estimation of parameter nonlinear
system in section 2, section 3 present equal
R _UKEF for nonlinear system with two state
variables. Next approach R UKF and UKF

for as sample system and compare
simulation result in section 4. Finally the
conclusions is given in section5.
2. UNSCENTED KALMAN FILTER
The basic usage for the UKF is estimation
of the state of a discrete-time nonlinear
dynamic system. The UKF utilizes the
Unscented Transformation (UT). For this
application, the system nonlinear state
equations are expressed in the discretized
form:
X =F(X,Ug) +Vy
Yo =H(X)+n (D

X, as a parameter that represents the

K
state-variable of the system, U, is a known
input and y, is the output measurement
signal. The process noise y, drives

dynamic system and the measurement noise
is given by »,. ¥, and n, in the UKF are
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assumed Gaussian noise. Sometimes UKF
is used for system identification, with
nonlinear mapping Y, =G(X,,W), where
X, 1sinput, v, is output, and the nonlinear
map G(.) is parameterized by vector .
Wi =Wy +r¢
dy = G( X, W) +e (2)
The process noise 7, drives the dynamic

system, and the measurement noise is given
by ¢, .The output 4, corresponds to a

nonlinear observation on %, .The EKF have

inherent flaws, because EKF uses of
linearization approach for calculating the
mean and covariance of a random variables
[2,3,4]. In the UKF eliminated these flaws
by using a deterministic sampling approach
to calculate covariance and mean.
Essentially, 2L +1sigma points are chosen
based on a square-root decomposition of
the previous covariance. These sigma
points are spread to the true nonlinearity,
without approximation, and then a weighted
mean and covariance is calculated. A
simple illustration of this approach is
shown in Figure 1 for a two-dimensional
system. Figure 1-a shows the true mean
and covariance propagation using Monte-
Carlo sampling; the center plots show the
results using a linearization approach (EKF)
, the right plots show the performance of
the UKF approach for 5 sigma points. The
standard UKF involves the recursive
application of this sampling approach to the
state-space equations. The standard UKF
shown in Algorithm 1 for state-estimation,
with using the following definitions:
W =A/(L+A)
We=A/(L+A)+(1—c + )
We=Wwr=1/{2(L+2)} i=12,...,2L (3)
W 1s the weight associated with the i-th

sigma point so that iW -1.
=0
Scaling parameters are:
A=a’(L+x)-L
y=y(L+A)

Kk=3-L 4

The constant«a determines the spread of
the sigma points around X (10* <a<1).Kis
second scaling parameter which is usually
set tox=3—L and g is used to incorporate
prior knowledge of the distribution of
X (for Gaussian distributions), S=2 is
optimal Also note that we use linear algebra
operation by adding a column to a matrix.
Now it is choosed a set of 2L +1 weighted
samples y, (sigma points) deterministically
so that they completely represent the true
mean and covariance of state x.

§—k
X =X+ P.), i=1,..,L

)2',. =AA’—(7/JPK_1),. i=n+l,.,L

X = )?k—l )?k—1+(y Pk—l) )A(H_(;’ B ):| (5)

The mean and covariance of Y are
approximated by the weighted average
mean and covariance of the transformed
sigma point.

2L
=2,
i=0
2L .
P, =2 WY, =), - ) (6)
i=0
Figure 2 shows the standard UKF
algorithm.
3. ROTATED UNSCENTED KALMAN

FILTER

However, standard UKF approach has
more advantages with comparing EKF
[3,4], but it couldn't calculate state variables
without error and bios. In this paper we
discuss a new algorithm for calculating
sigma points, which it chooses sigma points
better than UKF. Percentage of improving
is correlated to type of nonlinear system
[5]. This new algorithm can be used for
nonlinear systems with only two state
variables.
Xy =F(X, Up) +7V¢

Yo = H(Xy)+ny (7)
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Actual (sampling) Linearized (EKF) UKF

Fig.1. Example of mean and covariance
propagation.

Initial with:
)A(o = E[X 0]

R :E[(XO_XOXXO_XOY}
For Ke {1,2,...., OO}
Calculate Sigma points:

lika[f% f(k4+(y\/a) f(k,l—(y\/aﬂ

Time update:
2 X;k—l =F [Xk—I’Uk—l]

2L
3 X = ZVVimXi,k\k—l
i=0

2L r
- c * - * - v
4: Pk = ZWz [Xi,k\k—l _Xk J[Xi,k\k—l _Xk} +R
i=0
R"= process noise covariance

5 X, = [X & +l7 ) YH(NPT’H
6: Yk|k,1 :HXch—l]

2L

7. Y = ZVV;mYLk\k—l
i=0

Measurement updates equations:

2L
8 Bfm = ZW/L |:Yi,kV(—1 _);k_:H:Yi,kk—l _JA/;}T +R

i=

R = measurement noise covariance

Am ZW([ i klk—1 A7:||:Yi,k\k—l_j>1::|T

10: K, =P, P

XV ViVk
11: X, :X’+Kk(yk—)7,;)
122 =P -K,P, . K/

Vidx

Fig.2. Standard UKF algorithm.

State variables: y — {X ! }
2
For two state variables nonlinear systems
the UKF algorithm calculates sigma points
with equations (8):

AA/OZE[XO] R):E[(XO_XOXXO_XO)lJ
al a2
N E :L)l bz} ®

P, ,1s state covariance matrix:

(7 B )I{Zﬂ
)| ©

Sigma points are follows:

el S A, £, A} ] (19)

It is used equation (11) for calculating
update sigma points:

noclic bl bl b b OD

In R UKF , it is utilized following

equations for sigma points calculating:

Let:

o1 { 8(‘9)} & wore 2O o)
sin(6) cog®)

In these equations @ can be represented by:

0<O<180” Or —90° <#<+90°

New sigma points are follows:

a7

X, =(rfB) Mo (13)

Also, equation (14) in indicates to update
sigma points:

qr

(14)
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R _UKEF approach is shown in figure 2.

Initial with:
X = [? } Xo=ELX o] 5 =] (-2, v, |

2

For Ke {1,23---'7 OO}

-l [ )

Calculate Sigma points:

r T

XA 1_(7 371)2M92

Time ui)date:
2 XZV{—I =F [Xk—I’Uk—l]

2L
3 X = ZVVimXi,k\k—l
i=0

*

4: P/; = 2Wz{ [Xi*,k\k—l _)%I:}[Xx,k\k—l _)A(/; }T +R

R’= process noise covariance

aQr

5: X +

Measurement updates equations:
u£L N .
8 By, = ZW/L |:Y/,kV(—1 Y :||:Yi,kk—l ~ Y } +R
i=0
R"= measurement noise covariance
2L
. ~~ ~_T
9P, = ZWz |:‘Xvi,k\k—l =X :||:Yi,k\k—l — Yk J
i=0
. _ -1
10: Kk _P)kakPj/kj/k
1: X, =X, +Kk(yk —j/,;)
122 B,=P -K,P, . K/

Pibi

Fig.3. Rotate UKF algorithm.
For more nonlinear systems can find
convenient rotate angle, which errors are

minimum [6].We called @ this rotation
angle. @ can add to adjusting parameters of
standard UKF algorithm [7].

4. SIMULATION

The improvement in error performance of
the R_UKF for state estimation is shown in
following example. Results of simulation
for R UKF are compared with standard
UKF.

X, =-X,-2X} +U

X, =X,X, -X]+U

Y =0.8X, +X, (15)
Initial conditions are:

0.1 0 0
R = X, -

0 0.1 0
R = 0.1 0 R"=0.12
" 0 0.1

a=1 f=2 k=0 (16)
Figure 4 shows relation between Mean
Square Error (MSE) of x, & X, and
rotated angle. For this example, least MSE
for state X, is at rotated angle 14" and
least MSE for state X, is at rotated 8.

Standard UKF is equal with rotated 0". In
this nonlinear system, the best rotated angle

is about 11° for total least MSE.

Standard UKF

Fig.4. MSE of X, & X; due rotation angle
from =90 to +90°

Figure 5 & Figure 6 show the superior
performance of R UKF compared with
standard UKF for state estimating the white
noise (3dB SNR). The performance of
R_UKEF is superior to the standard UKF for
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state estimating. The computational of R-
UKF is a few complexes, but MSE for
states in the R_UKF is approximately 10%
less than the standard UKF.

0

e
—X*0(0)
04 ng * XM (147)
i
3
¢ &)

02
0|
-0.2)

04

06

0.

Fig.5. Estimation of X, with white noise

(3dB SNR) with standard UKF (at 0") &
R_UKF (at 14°).

==
X0
X8 |

-O.GD

20 40 60 80 100 120

Fig.6. Estimation of x| with white noise (3dB

SNR) with standard UKF (at 0") & R_UKF
(at8).

5. CONCLUSIONS

The R_UKF consistently performs better
than or equal than the standard UKF, with
the added advantage of R__UKF to standard
UKF we can perform best estimation for
nonlinear systems. In this paper, it is
introduced rotated forms of the UKF. If
rotation angle of each nonlinear system

adjust finely, the R UKF has better

properties.  Nonetheless, this  paper

discusses for 2 state nonlinear systems, but
it may expand to higher number of state
nonlinear systems.
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